Properties of strains of *Escherichia coli* belonging to serogroup O157 with special reference to production of Vero cytotoxins VT1 and VT2

BY S. M. SCOTLAND, G. A. WILLSHAW, H. R. SMITH AND B. ROWE Division of Enteric Pathogens, Central Public Health Laboratory, Colindale Avenue, London NW9 5HT, UK

(Accepted 22 June 1987)

SUMMARY

Fifty-four strains of *Escherichia coli* belonging to serogroup O 157 were examined for the production of Vero cytotoxins VT 1 and VT 2, and for other properties such as plasmid content, resistance to antimicrobial agents and colicin production. Twenty-six strains from cases of diarrhoea, haemorrhagic colitis and haemolytic uraemic syndrome in humans produced VT. By serum neutralization tests and hybridization with DNA probes for VT 1 or VT 2, three classes were recognized which produced either VT 1 alone or VT 2 alone or both VT 1 and VT 2. These strains were of H type 7 or non-motile. The strains producing VT were sensitive to all the antimicrobial agents tested, and all carried at least one plasmid which had a molecular weight of $c. 60 \times 10^6$. Seven strains of porcine origin and 21 strains of human origin did not produce VT or hybridize with either DNA probe. None of these strains was of H type 7. Of the 21 human VT⁻ strains, 17 were of extraintestinal origin and 18 were of H type 45. Twenty-three of the 28 VT⁻ strains were resistant to at least one antimicrobial agent.

INTRODUCTION

Escherichia coli of serogroup O 157 was first isolated from piglets with enteritis (Furowicz & Ørskov, 1972). Strains of this serogroup are now recognized as a cause of enteric colibacillosis in piglets; these pathogenic strains may possess the K 88 adhesin and produce heat-labile enterotoxin, LT, and heat-stable enterotoxins ST_A and ST_B (Wilson & Francis, 1986 and review by Morris & Sojka, 1985). In humans, strains of this serogroup cause haemorrhagic colitis (HC) (Johnson, Lior & Bezanson, 1983; Riley et al. 1983; Pai et al. 1984; Remis et al. 1984; Ratnam & March, 1986; Smith et al. 1987) and haemolytic uraemic syndrome (HUS) (Karmali et al. 1985; Neill, Agosti & Rosen, 1985; Gransden et al. 1986; Spika et al. 1987). These strains are of flagellar type H7 or non-motile, do not possess the K88 adhesin and do not produce LT or ST. However, they produce a cytotoxin detected on Vero cells termed Vero cytotoxin or VT (Konowalchuk, Speirs & Stavric, 1977).

Two distinct Vero cytotoxins were produced by strains of $E. \ coli$ O 157 from cases of HC and HUS (Scotland, Smith & Rowe, 1985), and these were termed

S. M. SCOTLAND AND OTHERS

VT1 and VT2. Serum neutralization experiments showed that VT1 was immunologically related to Shiga toxin; O'Brien & LaVeck (1983) had previously demonstrated this for the VT produced by strains of *E. coli* O26. VT2 was not immunologically related to Shiga toxin, and some strains of *E. coli* O157 produced only VT2. Other O157 strains produced both VT1 and VT2. The terms Shiga-like toxin I (SLTI) and SLTII have also been used to describe the two toxins (Strockbine *et al.* 1986). VT is phage-encoded in several strains of *E. coli* O157 (Smith *et al.* 1984; O'Brien *et al.* 1984) and DNA sequences coding for VT have been cloned from these phages (Newland *et al.* 1985; Willshaw *et al.* 1985). DNA probes specific for VT1 and for VT2 were developed from these sequences, and these probes show no cross-hybridization under stringent conditions (Willshaw *et al.* 1987).

In this paper *E. coli* belonging to serogroup O157 and isolated from various sources have been compared. They include strains of animal origin and strains of human origin from HC and other diarrhoeal disease, cases of HUS and extraintestinal infections. The strains were tested for production of VT and for hybridization with DNA probes for VT1 or VT2. Other properties were compared, including resistance to antimicrobial agents and plasmid profiles.

METHODS

Bacterial strains

Strains from the culture collection of the Division of Enteric Pathogens belonging to *E. coli* serogroup O157 were studied. They had been serotyped using antisera for *E. coli* somatic (O) antigens 1–170 and flagellar (H) antigens 1–56 (Gross & Rowe, 1985). These strains had been stored on Dorset egg agar medium at room temperature.

Twenty-one strains of E. coli O 157 producing VT (VT⁺) had been isolated in the United Kingdom (Table 1). They were compared to four strains isolated in Canada sent by H. Lior and strain 933 sent by A. D. O'Brien (Table 1). Strain 933 was the causative agent of an outbreak of HC in the United States (O'Brien *et al.* 1983).

Strains belonging to serogroup O 157 that were isolated in the United Kingdom from human sources but did not produce VT (VT⁻) were also examined (Table 2). These 21 strains had been sent to this laboratory for routine serotyping between 1977 and 1986. Seventeen of these 21 VT⁻ strains were of extra-intestinal origin.

Seven strains belonging to serogroup O 157 and isolated from animals were also examined (Table 3). One of these was strain A2, *E. coli* O 157.K88ac.H 19, the antigenic test strain for serogroup O 157 (Furowicz & Ørskov, 1972), which had been isolated from a piglet with enteritis (Sweeney, 1970). A further six O 157.K88ac porcine strains were received from C. Wray.

A strain of Shigella dysenteriae type 1, E7926, and two derivatives of E. coli K12, 60R344 and 60R366, were used as control strains in neutralization tests of VT. Strain 60R366 produced VT1 after acquisition of a recombinant plasmid containing genes cloned from a VT1-encoding phage from strain E30480, E. coli O157.H7 (Scotland, Smith & Rowe, 1985; Willshaw et al. 1985, 1987). Strain

VT1 and VT2 in E. coli 0157

60 R344 produced VT2 after infection with a VT-encoding phage from strain E32511, E. coli O157.H⁻ (Smith et al. 1984; Scotland, Smith & Rowe, 1985).

Biochemical tests

The strains were tested for their ability to utilize mucate and to ferment adonitol, arabinose, cellobiose, dulcitol, glucose, glycerol, inositol, inulin, lactose, maltose, mannitol, raffinose, rhamnose, salicin, sorbitol, sorbose, sucrose, trehalose and xylose. They were also tested on MacConkey-sorbitol agar, in which sorbitol (1%) replaced lactose.

Colicin tests

Strains were tested for production of colicins by the overlay test using the colicin-producing or colicin-insensitive strains described by Pugsley (1985), which were received from V. Hughes (Plasmid Section, National Collection of Type Cultures).

Tests for resistance to antimicrobial agents

Strains were tested by the method of Anderson & Threlfall (1974) for resistance to amikacin, ampicillin, chloramphenicol, colomycin, gentamicin, kanamycin, mecillinam, nalidixic acid, netilmicin, spectinomycin, streptomycin, sulphathiazole, tetracyclines, tobramycin and trimethoprim.

Tests for toxin production and invasion of cells grown in tissue culture

The strains were grown as shaken cultures in trypticase soy broth with dextrose (BBL), and sterile culture supernatants were tested for VT as described previously (Scotland, Day & Rowe, 1980). Production of heat-labile enterotoxin (LT) was determined by testing the same sterile culture supernatants in a Y1 adrenal cell test, or by an enzyme-linked immunoassay (ELISA) (Scotland, Gross & Rowe, 1985). The sterile culture supernatants were tested also for heat-stable enterotoxin (ST_A), using the infant mouse test (Dean *et al.* 1972). Because piglets are needed to test for ST_B in intestinal loops we did not test for this toxin. Strains were tested for their ability to invade HEp-2 cells by the method of Scotland, Gross & Rowe (1985).

Neutralization of Vero cytotoxin

Neutralization tests were performed on filtered culture supernatants as described previously (Scotland *et al.* 1987). Polyelonal antisera raised in rabbits against Shiga toxin (VT1) and against VT2 were used separately and together for their ability to neutralize VT. The antiserum to purified Shiga toxin was kindly provided by A. D. O'Brien. The antiserum to VT2 was prepared using VT2 produced by strain E32511 (Scotland *et al.* 1987).

Characterization of plasmids

The plasmid content was determined by agarose gel electrophoresis (Willshaw, Smith & Anderson, 1979) of DNA prepared by the method of Birnboim & Doly (1979). The agarose concentration was 0.6% and molecular weights were measured relative to standard plasmids run on the same gel.

DNA hybridization experiments

Broth cultures were spotted on nylon disks (Hybond-N, Amersham) supported on MacConkey agar plates, which were incubated at 37 °C for 5–6 h. Filters were prepared for colony hybridization as described by Maniatis, Fritsch & Sambrook (1982). The conditions for hybridization and washing at high stringency were as described by Willshaw *et al.* (1985). The probe for VT1 sequences was a 0.75 kb *HinclI* fragment contained in a recombinant plasmid (NTP 705) that was derived from the VT1 phage in strain H19, scrotype O26.H11 (Willshaw *et al.* 1985). The VT2 probe was a 0.85 kb *AvaI-PstI* fragment obtained from a recombinant plasmid (NTP 707) containing cloned VT2 genes from a phage originating in strain E32511 (Willshaw *et al.* 1987).

RESULTS

Production of Vero cytotoxins, VT1 and VT2, and hybridization with specific DNA probes

Twenty-one strains of *E. coli* O 157 isolated from cases of HUS, HC or diarrhoca in the UK were shown to produce VT by testing culture supernatants (Table 1). All strains were of H type 7 with the exception of two non-motile strains. All hybridized with at least one of the two DNA probes specific for VT genes, and the strains fell into three classes. A single strain of the first class hybridized with only the VT 1 probe, 11 strains of the second class hybridized with only the VT 2 probe and 9 strains of the third class hybridized with both probes. The 5 VT⁺ strains from Canada and the United States hybridized with both probes. The 21 VT⁺ strains isolated in the UK did not produce ST_A or LT, and this agrees with reports on strains isolated in North America (Johnson, Lior & Bezanson, 1983; Wells *et al.* 1983).

Twenty-one strains of serogroup O157 isolated from human sources did not produce VT or hybridize with either of the VT probes. These strains did not produce ST_A or LT. Eighteen of these strains were of flagellar type H45 (Table 2).

The seven porcine strains of serogroup O157 (Table 3) did not produce VT or hybridize with either of the VT probes. All produced LT detected in both an ELISA and the tissue culture test, but they did not produce ST_A .

Serum neutralization tests

Neutralization tests were performed on VT present in filtered culture supernatants. Table 4 shows the results of neutralization tests with 14 strains of serogroup O157 and the control strains.

VT produced by control strains E7926 and 60R366 and by strain E40705, which hybridized only with the VT1 probe, was neutralized by the anti-Shiga toxin but not by the antiserum raised against VT2. VT produced by strain 60R344 and the five O 157 strains that hybridized with only the VT2 probe was neutralized by the anti-VT2 serum but not by anti-Shiga toxin.

Anti-Shiga toxin, when tested alone, did not neutralize the VT produced by any of the eight strains hybridizing with probes for VT1 and VT2. There was a

2	
истиј у его сунонит	
roa	
2	
20	
5	
COII	
E	
6	
of strains of E. con u.i.o. p	
5	
l'ropernes	
Γ.	
Table 1	

Hybridization with

~

	Reference	Smith et al. 1987	Day et al. 1983	Taylor et al. 1986	Taylor et al. 1986	Scotland et al. 1987	Day et al. 1983	Scotland et al. 1987	Scotland et al. 1985	Scotland et al. 1987	Palmer, 1986	Palmer, 1986	Johnson et al. 1983	0'Brien et al. 1983														
د ا	ght of (× 10 ⁶)		2.0												1-7				4.7								2.0	
•	Molecular weight of plasmids carried $(\times 10^6)$	4.8	5.4			38	36	1 0	39	2.5			37		1 0	5.0	1.4	4-7	24	4-5	4 .8	4:5	4-7	4.7	4.7	7-7		
	Molec	59	61	59	56	59	55	60	57	57	57	58	56	59	59	61	55	60	61	57	63	57	59	59	61	61	57	
probe specific for§	VT2	1	÷	+	÷	+	+	+	+	+	+	÷	+	÷	+	+	+	÷	÷	+	Ŧ	÷	÷	+	÷	+	÷	
probe sp	VT1	+	I	I	I	1	۱	1	ł	I	I	ł	I	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	
	Collein Collein Production	D	D	I	I	I	I	I	I	I	I	ł	I	I	Q	I	D	Q	١	G	G	G	Q	Q	D	D	I	
	H type†	H 7	Η7	НŢ	Н7	Η7	н –	Η7	Η7	Η7	Η7	Η7	Η7	н-	H 7	H 7	Η7	H 7	Η7	H7	Η7	1 H 7	H 7	Η7	H7	Η7	Η7	
	Clinical details*	HC	Diarrhoea	HUS outbreak	HUS outbreak	HUS	Diarrhoea	HUS	нс	HUS	HUS	HUS	HUS	HC outbreak	HC outbreak	HC	HC	HC outbreak	HC outbreak	HC outbreak								
V	t ear and place of isolation	1986 Hereford	1981 Bradford	1983 Wolverhampton	1983 Wolverhampton HUS	1983 Peterborough	1983 Birmingham	1984 Ipswich	1984 Burton	1984 London	1984 London	1984 Yarmouth	1984 Birmingham	1982 High Wycombe	1983 Salisbury HUS	1983 Wolverhampton	1984 London	1984 Cardiff	Birmingham	Birmingham		Cambridge		1982 Canada	1982 Canada	1982 Canada	States	
	nie no.	E40705	E27164	E 29962	E30138	E30979	E32511	E35413	E36303	E36316	E36320	E36419	E37709	E 22826	E30228	E30480	E34500	E 36307	E37719	E:38848	E39047	E39146	80-2740	81-110	83-1933	82-1947	933	

* HC, haemorrhagic colitis; HUS, haemolytic uraemic syndrome.

+ H-, indicates non-motile strain.
Letters indicate identified colicin; + indicates colicin which could not be identified; - indicates no colicin produced.
\$ + indicates hybridization; - indicates that hybridization was not detected.

								-7, 2-0															
Table 2. Properties of human strains of E. coli 0157 that do not produce VT	Molecular weight of plasmids carried (× 10°)‡	94, 60, 28, 26, 9, 5.1, 3.9	94, 27, 24, 4.4, 3.3	86, 5-5, 3-6	86, 63	94, 3·3, 3·1	83, 60, 6.8, 3.4	120, 91, 63, 56, 28, 25, 72, 3	95, 60, 30, 3.7, 3.4	150, 97, 63, 6-5, 3-7	94, 58, 3.8	86, 4.2, 3.2	100, 55, 25, 42, 39	85, 54, 28, 23, 5-6, 3-3	3:4	100, 53, 7.4, 3.5	94, 3-9, 3-2	86, 52, 5.5, 3.6	83, 3.6	71, 60, 7-4, 4-5	81, 5-9, 3-6	None	
of E. coli 015	Colicin* Drug production resistance†	Ap	Ap	Ap, Nx	Cm, Te	None	Ap	Ap	Ap, Sm, Su	None	Ap, Sm, Su	None	Ap, Su	Ap, Sm, Su	Ap, Cm	Ap	Ap	Ap	None	Ap	Ap	Ap, Tm	
an strains o	Colicin* production	1	1	I	1	1	I	+	1	1	I	1	1	+	ł	I	I	I	ſ	+	I	I	
certies of hum	Age of patient	52	74	#	9	Unknown	72	59	48	68	9 days	4 days	5 months	3 months	3 months	19	'Adult'	Unknown	77	11 months	'Child'	2 weeks	
ble 2. Prop	Source of specimen	Blood	Blood	Blood	Blood	Blood	Blood	Blood	Blood	Blood	Eye	Eye	Faeces	Faeces	Faeces	Faeces	Urine	Urine	Urine	Urine	Urine	Urine	
Ta	H type*	H45	H45	H45	H45	H45	H45	H45	H45	H45	H45	H45	H45	H45	н–	H45	H45	H45	H45	H45	н	H 39	Table 1.
	Strain no.	E10411	E11547	E12734	E14080	E 15746	E 20597	E 22493	E27236	E 28688	E11544	E 12506	E9818	E17097	E24005/2	E30288	E 10376	E 13639	E16159	E 18044	E 19221	E27023	e footnotes to Table 1.

* See footnotes to Table 1.

Ap, ampicillin; Cm. chloramphenicol; Km, kanamycin; Nx, nalidixic acid; Sp, spectinomycin; Sm, streptomycin; Su, sulphathiazole; Tc, tetracyclines; Tm, trimethoprim.
Molecular weights correspond to plasmid DNA bands visible on agarose gels. Bands of molecular weight < 10×10⁶ may not represent independent plasmids.

Strain H Source of specimen Colicin production Drug resistance† $A2$ $H10$ Faces - None $E39220$ $H4$ Faces - None $E39220$ $H4$ Faces - None $E39220$ $H4$ Faces - Sn, Su, Sp, Te $E39230$ $H4$ Faces - Sn, Su, Sp, Te $E39233$ $H4$ Faces - Sn, Su, Sp, Te $E39233$ $H4$ Faces - Cm Su, Sp, Te $E39233$ $H4$ Faces - Cm Su, Sp, Te $E39233$ $H4$ Neutralization V For cylotoxin With $Table 4. Neutralization V Notin (VT) Notin (VT) $								
226 H 19 Facees - None 2221 H 43 Facees - None 2231 H 43 Facees - Sm, Su 2331 H 43 Facees - Sm, Su 2331 H 43 Facees - Km, Sn 233 H 43 Facees - Km, Sn 225 H 43 Facees - Cm 233 H 41 P See footnotes to Table 1. F See fomm of V Hybridization With probe for - - Mith probe for - - - - 10157 + - - - - 14005 - - - - - - 14005 - - - - - - - - - - -		/pe*	Source of specimen	Colicin production*	Drug resist	s tance†	Molecular plasmids o	Molecular weight of plasmids carried (×10 ⁶)†
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19	Faeces	1	None	0	110, 90, 52	
H43 Faces - Sm, Su H43 Faces - Km, Sn, Su H43 Faces - - Faces - - Km, Sn, Su H43 Faces - - Kath probe for - - - No. VT1 VT2 antiserum Sh 0157 + - - - - No. VT1 VT2 antiserum Sh - - - 0.157 + + -		1	Faeces	+	Ap,]	Ap, Km, Sm, Su, Sp, Tc	70, 61, 45, 3.2,	, 3.2, 2.7
H43 Faces - Km, Sn H43 Faces - Km, Sn, Su, Su, Su, Su, Su, Su, Su, Su, Su, Su		43	Faeces	ł	Sm,		58, 52, 45, 30	, 3.0
H43 Faces - Km, Sn H43 Facees - Cm H43 Facees - Cm $H43$ Facees - Cm $H43$ Facees - Cm $*$ See footnotes to Table 1. $†$ See f Table 4. Neutralization of V $Hybridization$ with probe for Nithout $T1$ VT1 VT2 antiserum 0157 + - 1250 056 - + 6250 038 - + 1250 0157 + - 1250 0157 + + 781250 0157 + + 781250 33 + + 781250 33 + + 781250 31260 + + 781250 11 - - 131250 31250 + + 781250 46 + + 781250 46 + + 781250<		43	Faeces	1	Km,	Sm, Su, Sp, Tc	63, 58, 22, 3·1	
H43 Faces + Sm, Su, Su, Su, Su, Su, Su, Su, Su, Su, Su		43	Faeces	I	Km,	Sm, Su, Sp, Tc	63, 56, 43, 3·1,	, 3.1, 1.9
H43 Faces - Cm * See footnotes to Table 1. $+$ See f Table 4. Neutralization of V Hybridization Without No. VT1 VT2 No. VT1 VT2 No. VT1 VT2 Nithout Nithout No. VT1 No. VT2 No. VT2 No. VT2 No. VT2 No. VT2 No.		43	Faeces	÷	Sm,	Su, Sp, Tc	58, 52, 45, 2.9	, 2.0
* See footnotes to Table 1. $+$ See f Table 4. Neutralization of V Hybridization with probe for YT1 VT2 Without YT1 VT2 Table 4. Neutralization of V With probe for YT1 VT2 Without Y11 VT2 Y11 Y72 antiserum Sh Y11 Y72 A 6250 + + + + + + + + + + - - - + - + - + - + - - + + - - - - - - - - - - - - - - - - - -		43	Faeces	I	Cm		72, 58, 52, 40	, 40
Table 4. Neutralization of V Hybridization With probe for VT1 VT2 Without VT1 VT2 Without VT1 VT2 Without VT1 VT2 Without V1 VT3 V1 V14 V1 V12 Without Shot V1 V12 Without Shot V1 V12 Without Shot V1 V12 Mithout Shot Shot V1 V12 Mithout Shot Shot Shot H			* See fo	otnotes to Table 1		† See footnote to Table 2.		
Hybridization with probe forWithout for $VT1$ $VT2$ $Without$ $VT1$ $VT2$ $Without$ $VT1$ $VT2$ $antiserum$ $VT2$ $antiserum$ $antiserum$ <tr< td=""><td></td><td></td><td>Tal</td><td>ble 4. Neutraliz</td><td>ation oj</td><td>f Vero cyloloxin</td><td></td><td></td></tr<>			Tal	ble 4. Neutraliz	ation oj	f Vero cyloloxin		
$\left\{\begin{array}{ccccc} Without\\ VT1 & VT2 & antiserum\\ + & - & 1250\\ - & + & + & 6250\\ - & + & + & 6250\\ - & + & + & 6250\\ + & + & + & 6250\\ + & + & + & 31250\\ + & + & + & 781250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & + & + & 31250\\ + & - & 156250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & 31250\\ + & - & - & 31250\\ + & - & - & 31250\\ + & - & - & 31250\\ + & - & - & 31250\\ + & - & - & - & 31250\\ + & - & - & - & - & - & - & - & - & - &$			Hybridiza with prob	tion e for		Titre of Vero cytotoxin activity*	oxin activity*	
VT1VT2antiserum $+$ $ +$ $ +$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $+$ $+$ $+$ $ +$ $+$ $ +$ $+$ $ +$ $+$ $+$ $ +$ <			{	<pre>[]></pre>	ithout	With antiserum to	With antiserum	With
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	train no.		VT1	8	serum	Shiga toxin (VT1)	to VT2	both antisera
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ľ. coli 0157 E40705		+		250	50	1250	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E 29962		- 1		250	6250	0	n.t. t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E30138		1		250	6250	0	n.t.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E30979		I		250	6250	0	n.t.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E32511		I		250	31250	50	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E36419		t		1250	6250	0	n.t.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82-1933		+		250	156250	1250	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E30228		+	-	250	781250	1250	250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E30480		+	-	250	781250	6250	250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E36307		+	-	250	781250	6250	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E37719		÷		250	31250	31250	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E39047		+		250	31250	31250	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E39146		+		250	31250	31250	0
- + 781250 + - 156250 + - 31250	933		+		250	31250	1250	50
- + 781250 + - 156250 + - 31250	(12 derivative	Ŧ						
ı ı + +	60 R 344		I	-	250	781250	0	n.t.
!	60 R 366		+		250	6250	156250	6250
	lh. dysenteriae 1 E 7926	type 1	+		250	250	31250	250
$*$ Titre was highest dilution with cytotoxic effect on Vero cells after 4 days incubation at 37 $^{\circ}$ C.	* Titre was h	nighest d	lilution with cyto	toxic effect on Ve	ro cells :	after 4 days incubation		† n.t., not tested.

VT1 and VT2 in E. coli 0157

S. M. SCOTLAND AND OTHERS

620

reduction in the titre of VT produced by five of these eight strains in the presence of the antiserum against VT2. For all eight strains the lowest titre was seen when anti-Shiga toxin and antiserum to VT2 were used together. It was concluded that these eight strains produced both VT1 and VT2 but that in five supernatants there was more VT2 than VT1. Two additional culture supernatants were prepared at different times with four strains (E 30228, E 30480, 82-1933 and 933), hybridizing with both VT1 and VT2 probes to see whether the proportion of VT1 to VT2 was the same in different preparations of the same strain. Anti-Shiga toxin alone did not neutralize any of the eight preparations. The preparations from strains E30228, E30480 and 933 gave the same results as shown in Table 4, that is, partial neutralization with the anti-VT2 serum and a further drop in titre when both antisera were tested together. One of the additional preparations of strain 82-1933 gave the same results as shown in Table 4; however, the second preparation was only neutralized when both antisera were used together. Thus the proportions of VT1 and VT2 produced by a strain varied even when the same procedure was used.

Biochemical tests

All the *E. coli* O 157 strains utilized mucate and fermented arabinose, glucose, glycerol, lactose, mannitol, maltose, sorbose, rhamnose, trehalose and xylose. None fermented adonitol, cellobiose, inositol, insulin or salicin. The strains differed in the fermentation of dulcitol, raffinose, sorbitol and sucrose to give three biogroups.

The 26 VT⁺ strains did not ferment sorbitol within 1 day, although only six strains failed to ferment sorbitol within 14 days. Nevertheless, all the 28 VT⁻ strains fermented sorbitol within 1 day and so the VT⁺ and VT⁻ strains were clearly distinguishable on MacConkey-sorbitol agar plates when these were examined after overnight incubation. This is in agreement with the results of other groups, who have used modifications of this test to screen for VT⁺ O157 strains (Farmer & Davis, 1985; March & Ratnam, 1986).

Plasmid profiles

All the VT⁺ strains isolated in the UK carried a plasmid with a molecular weight between 55×10^6 and 63×10^6 (Table 1). A similar plasmid had been reported in the VT⁺ strains from Canada (Johnson, Lior & Bezanson, 1983) and the United States (Wells *et al.* 1983) and this was confirmed (Table 1). For some strains this was the only plasmid, but the single VT 1⁺ strain and 12 of 14 VT 1⁺/VT 2⁺ strains also carried a plasmid with a molecular weight of c. 4.7×10^6 . All but four of the VT⁻ strains carried at least three plasmids, and the strains gave few common patterns (Tables 2 and 3).

Resistance to antimicrobial agents and other properties

The VT⁺ strains were sensitive to all the antimicrobial agents tested. In contrast, 17 of the 21 VT⁻ strains from human sources and 6 of the 7 LT⁺ porcine strains were resistant to one or more antimicrobial agent. The resistance patterns are shown in Tables 2 and 3.

Thirteen of the 26 VT⁺ strains produced a colicin, and for all except strain E30138 this could be identified as colicin D (Table 1). Strain E30138 probably

https://doi.org/10.1017/S0950268800066462 Published online by Cambridge University Press

No. of strains	Produc	etion of	Fermentation of										
50101115	VT	LT `	Sorbitol	Dulcitol	Raffinose	Sucrose							
26	+	_	(d)	+	+	+							
19	_	-	+	(d)	-	_							
2*	_	_	+	+	+	+							
7	-	+	+	+	+	+							

Table 5. Fermentation patterns of strains of E. coli 0157

-, No fermentation (14-day test); +, fermentation within one day; (d), variable reaction but all were negative at 1 day.

* These two strains were E27023, H type 39 and E24005/2, which was non-motile.

produced more than one colicin. Eight of the 28 VT^- strains produced colicins (Tables 2 and 3), but where these could be identified they were not colicin D.

None of the VT⁺ or VT⁻ O 157 strains in the present study was invasive in the HEp-2 cell tissue culture test. Similar examination of VT⁺ O 157 strains isolated in North America showed that they were not invasive (Wells *et al.* 1983).

DISCUSSION

In a preliminary communication we have described the production of two Vero cytotoxins by strains of E. coli 0157. This was based on serum neutralization experiments and the properties of bacteriophages carrying VT genes isolated from these strains (Scotland, Smith & Rowe, 1985). Subsequently specific DNA probes for both VT1 and VT2 have been developed from these phages (Willshaw et al. 1985, 1987). By hybridization tests we have identified three classes of $VT^+ O 157$ strains which hybridized with either the VT1 probe, or the VT2 probe, or with both probes. Serum neutralization tests confirmed the production of one or two toxins in agreement with the probe results, and we conclude that both toxins are virulence factors. Neutralization of the toxins produced by VT1+/VT2+ strains was not observed in any experiment using anti-Shiga toxin (VT1) alone; for some tests the titres of VT1 and VT2 were similar and for other tests VT2 titres were higher than those of VT1. The strains from North America produced both VT1 and VT2. Strains producing only VT2 were common amongst the strains isolated in the United Kingdom, particularly from cases of HUS. In our collection of over 70 VT⁺ strains of 0157 isolated in the United Kingdom there is only one strain producing VT1 and not VT2 (unpublished results).

All VT⁺ strains carried a plasmid with a molecular weight between 55×10^6 and 63×10^6 . This plasmid has been associated with the ability to attach to epithelial cells (Karch *et al.* 1987). For some strains this was the only plasmid carried, but usually other plasmids were present. The majority of strains producing VT 1 and VT 2 also produced colicin D and carried a plasmid with a molecular weight of c. 4.7×10^6 . Strains producing VT 2 only did not have a plasmid of this size. Further experiments showed that this plasmid encoded colicin D production (Willshaw, unpublished results). There were a number of different plasmid profiles, and these have been useful in identifying strains related to a particular outbreak.

S. M. SCOTLAND AND OTHERS

Strains which did not produce VT in the tissue culture test did not hybridize with either VT probe. None of the VT⁻ strains of human or animal origin was H type 7. Eighteen of the 21 VT⁻ strains of human origin were H45. The plasmid profiles of the VT⁺ strains were relatively simple, but the profiles of the VT⁻ strains were more complex (Table 2). Certain plasmids probably encoded antibiotic resistance or colicin production and, for the porcine strains, also K 88 fimbriae and toxin production. No two VT⁻ strains of human origin had common plasmid profiles although the majority were of the same serotype, O157.H45. All the strains of this serotype carried a large plasmid, but the functions encoded on this plasmid are not known. Although strains of serogroup O157 are not a common cause of extra-intestinal infections, most of these human VT⁻ strains were isolated from blood, the eye or urine and it is probable that they do represent a group with special pathogenic abilities. Strain SP88 of serotype 0157.H45 isolated from urine possesses fimbriae which belong to the fimbrial antigen group F16, which has been associated with uropathogenic strains (Parry & Rooke, 1985; Ørskov, personal communication).

Strains of E. coli 0157 belong to at least three pathogenic groups. First, strains of H type 45, whose virulence mechanisms are not known, appear to be associated with extra-intestinal infections in humans. Secondly, strains producing enterotoxins and possessing the adhesive factor K88 cause enteric colibacillosis in pigs. Although VT⁺ strains have been isolated from animals with enteric disease. to our knowledge these have not belonged to serogroup O157. Thirdly, strains producing Vero cytotoxin and almost invariably of H type 7 cause diarrhoea in humans, which is usually bloody. VT⁺ O 157 strains have also been associated with HUS, which may be preceded by bloody diarrhoea. Beef products and milk have been implicated as the vehicles of infection in several outbreaks of HC (Riley et al. 1983; Ryan et al. 1986), and although VT⁺ O 157 strains have not been shown to be a cause of animal disease, they have been isolated from milk and healthy cattle (Martin et al. 1986; Borczyk et al. 1987), indicating the zoonotic nature of the disease. Although the importance of VT⁺ O 157 strains as a cause of human disease is established, there is a need to identify the modes of action of both VT1 and VT2 and to study the stages of pathogenesis in which they are involved, including the immunological response.

REFERENCES

- ANDERSON, E. S. & THRELFALL, E. J. (1974). The characterization of plasmids in the enterobacteria. Journal of Hygiene 72, 471-487.
- BIRNBOIM, H. C. & DOLY, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 1513-1523.
- BORCZYK, A. A., KARMALI, M. A., LIOR, H. & DUNCAN, L. M. C. (1987). Bovine reservoir for Verotoxin-producing Escherichia coli O 157.H7. Lancet i, 98.
- DAY, N. P., SCOTLAND, S. M., CHEASTY, T. & ROWE, B. (1983). Escherichia coli O157.H7 associated with human infections in the United Kingdom. Lancet i, 825.
- DEAN, A. G., CHING, Y. C., WILLIAMS, R. G. & HARDEN, L. B. (1972). Test for Escherichia coli enterotoxin using infant mice: application in a study of diarrhea in children in Honolulu. Journal of Infectious Diseases 125, 407-411.
- FARMER, J. J. & DAVIS, B. R. (1985). H7 antiserum-sorbitol fermentation medium for detecting Escherichia coli O 157. H7 associated with hemorrhagic colitis. Journal of Clinical Microbiology 22, 620–625.

- FUROWICZ, A. J. & ØRSKOV, F. (1972). Two new Escherichia coli O antigens, O 150 and O 157, and one new K antigen, K93, in strains isolated from veterinary disease. Acta Pathologica Microbiologica Scandinavica, Section B 80, 441-444.
- GRANSDEN, W. R., DAMM, M. A. S., ANDERSON, J. D., CARTER, J. E. & LIOR, H. (1986). Further evidence associating haemolytic uraemic syndrome with infection by Verotoxin-producing *Escherichia coli* O 157. H7. Journal of Infectious Diseases 154, 522-524.
- GROSS, R. J. & ROWF, B. (1985). Serotyping of *Escherichia coli*. In *The Virulence of Escherichia coli*. *Reviews and Methods* (ed. M. Sussman), pp. 345-363. London: Academic Press.
- JOHNSON, W. M., LIOR, H. & BEZANSON, G. S. (1983). Cytotoxic Escherichia coli O 157H7 associated with haemorrhagic colitis in Canada. Lancet i, 76.
- KARCH, H., HEESEMAN, J., LAUFS, R., O'BRIEN, A. D., TACKET, C. O. & LEVINE, M. M. (1987). A plasmid of enterohemorrhagic *Escherichia coli* O 157. H 7 is required for expression of a new fimbrial antigen and for adhesion to epithelial cells. *Infection and Immunity* 55, 455–461.
- KARMALI, M. A., PETRIC, M., LIM, C., FLEMING, P. C., ARBUS, G. S. & LIOR, H. (1985). The association between idiopathic hemolytic uremic syndrome and infection by Verotoxinproducing Escherichia coli. Journal of Infectious Diseases 151, 775-782.
- KONOWALCHUK, J., SPEIRS, J. I. & STAVRIC, S. (1977). Vero response to a cytotoxin of *Escherichia coli*. Infection and Immunity 18, 775-779.
- MANIATIS, T., FRITSCH, E. F. & SAMBROOK, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
- MARCH, S. B. & RATNAM, S. (1986). Sorbitol-MacConkey medium for detection of Escherichia coli associated with hemorrhagic colitis. Journal of Clinical Microbiology 23, 869-872.
- MARTIN, M. L., SHIPMAN, L. D., WELLS, J. G., POTTER, M. E., HEDBERG, K., WACHSMUTH, I. K., TAUXE, R. V., DAVIS, J. P., ARNOLDI, J. & TILLELI, J. (1986). Isolation of *Escherichia* coli O 157. H7 from dairy cattle associated with two cases of haemolytic uraemic syndrome. *Lancet* ii, 1043.
- MORRIS, J. A., & SOJKA, W. J. (1985). Escherichia coli as a pathogen in animals. In The Virulence of Escherichia coli: Reviews and Methods (ed. M. Sussman) pp. 47-77. London: Academic Press.
- NEILL, M. A., AGOSTI, J. & ROSEN, H. (1985). Hemorrhagic colitis with Escherichia coli O157.H7 preceding adult hemolytic uremic syndrome. Archives of Internal Medicine 145, 2215-2217.
- NEWLAND, J. W., STROCKBINE, N. A., MILLER, S. F., O'BRIEN, A. D. & HOLMES, R. K. (1985). Cloning of Shiga-like structural genes from a toxin converting phage of *Escherichia coli*. *Science* 230, 179–181.
- O'BRIEN, A. D. & LAVECK, G. D. (1983). Purification and characterization of a Shigella dysenteriae 1-like toxin produced by Escherichia coli. Infection and Immunity 40, 675-683.
- O'BRIEN, A. D., LIVELY, T. A., CHEN, M. E., ROTHMAN, S. W. & FORMAL, S. B. (1983). Escherichia coli O 157.H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (Shiga)-like cytotoxin. Lancet i, 702.
- O'BRIEN, A. D., NEWLAND, J. W., MILLER, S. F., HOLMES, R. K., SMITH, H. W. & FORMAL, S. B. (1984). Shiga-like toxin-converting phages from *Escherichia coli* strains that cause hemorrhagic colitis or infantile diarrhea. *Science* 226, 694-696.
- PAI, C. H., GORDON, R., SIMS, H. V. & BRYAN, L. E. (1984). Sporadic cases of hemorrhagic colitis associated with *Escherichia coli* O157.H7. Clinical, epidemiologic, and bacteriologic features. *Annals of Internal Medicine* 101, 738-742.
- PALMER, S. R. (1986). A community outbreak of haemorrhagic colitis due to verotoxin producing Escherichia coli O157 H7. Proceedings of the 2nd World Congress. Foodborne Infections and Intoxications. Berlin: Institute of Veterinary Medicine – Robert von Ostertag Institute.
- PARRY, S. H. & ROOKE, D. M. (1985). Adhesins and colonization factors of *Escherichia coli*. In *The Virulence of* Escherichia coli. *Reviews and Methods* (ed. M. Sussman), pp. 79–155. London: Academic Press.
- PUGSLEY, A. P. (1985). Escherichia coli K12 strains for use in the identification and characterization of colicins. Journal of General Microbiology 131, 369-376.
- RATNAM, S. & MARCH, S. B. (1986). Sporadic occurrence of hemorrhagic colitis associated with Escherichia coli O157, H7 in Newfoundland. Canadian Medical Association Journal 134, 43–49.

- REMIS, R. S., MACDONALD, K. L., RILEY, L. W., PUHR, N., WELLS, J. G., DAVIS, B. R., HEBERT, R. J., OLCOTT, E. S., JOHNSON, L. M., HARGRETT, N. T., BLAKE, P. A. & COHEN, M. L. (1984). Sporadic cases of hemorrhagic colitis associated with *Escherichia coli* O 157.H7. Annals of Internal Medicine 101, 624–626.
- RILEY, L. W., REMIS, R. S., HELGERSON, S. D., MCGEE H. B., WELLS, J. G., DAVIS, B. R., HEBERT, R. J., OLCOTT, E. S., JOHNSON, L. M., HARGRETT, N. T., BLAKE, P. A. & COHEN, M. L. (1983). Hemorrhagic colitis associated with a rare *Escherichia coli* serotype. New England Journal of Medicine 308, 681-685.
- RYAN, C. A., TAUXE, R. V., HOSEK, G. W., WELLS, J. G., STOESZ, P. A., MCFADDEN, H. W., SMITH, P. W., WRIGHT, G. F. & BLAKE, P. A. (1986). Escherichia coli O 157.H7 diarrhea in a nursing home: clinical, epidemiological, and pathological findings. Journal of Infectious Diseases 154, 631-638.
- SCOTLAND, S. M., DAY, N. P. & ROWE, B. (1980). Production of a cytotoxin affecting Vero cells by strains of *Escherichia coli* belonging to traditional enteropathogenic serogroups. *FEMS Microbiology Letters* 7, 15-17.
- SCOTLAND, S. M., GROSS, R. J. & ROWE, B. (1985). Laboratory tests for enterotoxin production, enteroinvasion and adhesion in diarrhoeagenic Escherichia coli. In The Virulence of Escherichia coli. Reviews and Methods (ed. M. Sussman), pp. 395-405. London: Academic Press.
- SCOTLAND, S. M., ROWE, B., SMITH, H. R., WILLSHAW, G. A. & GROSS, R. J. (1987). Vero cytotoxin-producing strains of *Escherichia coli* from children with haemolytic uraemic syndrome and their detection by specific DNA probes. *Journal of Medical Microbiology*. In press.
- SCOTLAND, S. M., SMITH, H. R. & ROWE, B. (1985). Two distinct toxins active on Vero cells from Escherichia coli O 157. Lancet ii, 885-886.
- SMITH, H. R., DAY, N. P., SCOTLAND, S. M., GROSS, R. J. & ROWE, B. (1984). Phage-determined production of Vero cytotoxin in strains of *Escherichia coli* serogroup O157. *Lancet* i, 1242-1243.
- SMITH, H. R., ROWE, B., GROSS, R. J., FRY, N. K. & SCOTLAND, S. M. (1987). Haemorrhagic colitis and Vero cytotoxin-producing *Escherichia coli* in England and Wales. *Lancet* i, 1062-1065.
- SPIKA, J. S., PARSONS, J. E., NORDENBERG, D., WELLS, J. G., GUNN, R. A. & BLAKE, P. A. (1986). Hemolytic uremic syndrome and diarrhea associated with *Escherichia coli* O157.H7 in a day care center. *Journal of Pediatrics* 109, 287-291.
- STROCKBINE, N., MARQUES, L. R. M., NEWLAND, J. W., SMITH, H. W., HOLMES, R. K. & O'BRIEN, A. D. (1986). Two toxin-converting phages from *Escherichia coli* O157.H7 strain 933 encode antigenically distinct toxins with similar biologic activities. *Infection and Immunity* 53, 135-140.
- SWEENEY, E.J. (1970). Strains of *Escherichia coli* associated with mortality in pigs. Irish Veterinary Journal 24, 108-113.
- TAYLOR, C. M., WHITE, R. H. R., WINTERBORN, M. H. & ROWE, B. (1986). Haemolytic-uraemic syndrome: clinical experience of an outbreak in the West Midlands. *British Medical Journal* 292, 1513-1516.
- WELLS, J. G., DAVIS, B. R., WACHSMUTH, I. K., RILEY, L. W., REMIS, R. S., SOKOLOW, R. & MORRIS, G. K. (1983). Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare *Escherichia coli* serotype. *Journal of Clinical Microbiology* 18, 512–520.
- WILLSHAW, G. A., SMITH, H. R. & ANDERSON, E. S. (1979). Application of agarose gel electrophoresis to the characterization of plasmid DNA in drug-resistant enterobacteria. Journal of General Microbiology 114, 15-25.
- WILLSHAW, G. A., SMITH, H. R., SCOTLAND, S. M., FIELD, A. M. & ROWE, B. (1987). Heterogeneity of *Escherichia coli* phages encoding Vero cytotoxins: comparison of cloned sequences determining VT 1 and VT2 and development of specific gene probes. *Journal of General Microbiology* 133, 1309-1317.
- WILLSHAW, G. A., SMITH, H. R., SCOTLAND, S. M. & ROWE, B. (1985). Cloning of genes determining the production of Vero cytotoxin by *Escherichia coli*. Journal of General Microbiology 131, 3047-3053.
- WILSON, R. A. & FRANCIS, D. H. (1986). Fimbriae and enterotoxins associated with Escherichia coli serogroups isolated from pigs with colibacillosis. American Journal of Veterinary Research 47, 213-217.