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Abstract. In this paper, we prove that if M? is a complete maximal spacelike
surface of an anti-de Sitter space H‘z‘(c) with constant scalar curvature, then S =0,
S == §==or §=—-2¢, where S is the squared norm of the second funda-
mental form of M?. Also

(1) S =0 if and only if M? is the totally geodesic surface H?(c);

2) S= ‘T“" if and only if M? is the hyperbolic Veronese surface;

(3) S = —2c if and only if M? is the hyperbolic cylinder of the totally geodesic

surface Hf(c) of H‘Z'(c).
1991 Mathematics Subject Classification. 53C40, 53C42

1. Introduction. Let M;*”(c) be an (n+ p)-dimensional connected semi-
Riemannian manifold of index p and of constant curvature ¢, which is called as an
indefinite space form of index p. The standard models of indefinite space forms are
given as follows. In an (n + p)-dimensional real vector space R"*? with the standard
basis, the scalar product (, ) is given by

n+p

vy = inyi - Z XiVj
i=1

J=n+1

where x = (x1, X2, <+, Xupp) and y = (1, y2, =+, Vutp). Then (R"*7,(,)) is an indefi-
nite Euclidean space, which is denoted by R"*.
Let Sn*7(c) for ¢ > 0 be the hypersurface in R;“’“ given as

Then we know that the S"*l’(c) inherits an indefinite Riemannian metric induced
through R"*”“ and has constant curvature c. This is called a de Sitter space of
constant curvature ¢ with index p.

On the other hand, let H’”” (¢) for ¢ < 0 be the hypersurface in R, +” + given as

L
(x, x) = = —ry.
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Then we also know that the HZ“’ (¢) inherits an indefinite Riemannian metric
induced through RZfl’+1 and has constant curvature c. This is called an anti-de Sitter
space of constant curvature ¢ with index p.

Let M" be an n-dimensional Riemannian manifold immersed in Mzﬂ’(c). A
submanifold M" of M]”fl’(c) is said to be spacelike if the induced metric on M” from
that of the ambient space is positive definite.

E. Calabi [1] first studied the Bernstein problem for a maximal spacelike entire
graph in the Minkowski space R’l”'l and proved that it has to be hyperplane, when
n<4.S.Y.Cheng and S. T. Yau [6] proved that the conclusion remains true for all
n. As a generalization of the Bernstein type problem, T. Ishihara [8] proved that a
complete spacelike maximal submanifold M" of M;*P(c) (¢ = 0) is totally geodesic.

On the other hand, there exist many examples of complete maximal spacelike
submanifolds in the anti-de Sitter space H;Jr” (¢), which are not totally geodesic. For
examples, we consider the following examples.

ExAMPLE 1. We consider the mapping defined by

1 1 1
U = ———VZ, Uy = ———7ZX, U3 = Xy,
! \/—3cy : V=3¢ : V=3¢ Y
1 1
Uy = (x> = %), us = (X + 3> +22%),

-2V 3¢ 67/—¢
where (X, y, z) is the natural coordinate system in Rf and (uy, up, uz, ug, us) is the
natural coordinate system Rg . This defines a complete maximal spacelike isometric
immersion of H2(§’) into Hg(c), where H"(¢;) is an n;-dimensional hyperbolic space of
constant curvature ¢;, which is called the hyperbolic Veronese surface.

ExAMPLE 2. Let ny, - - -, np4| be positive integers and n = ny 4 --- +n,4. Let x;
be a point of H"(%). Then x = (xi, -, X,4+1) is a vector in Rfo“ with (x,x) =1

This also defines a complete maximal spacelike isometric immersion of
ny (nc¢ . Nyl (_NC ) 1 n+p
H (m) X x H (n,M) into HJ™(c).

Hence this case of complete maximal spacelike submanifolds in the anti-de Sit-
ter HZ*”(C) is very different from the ones in the indefinite Euclidean space R;*” and
the de Sitter space S}j*f’(c). Hence, the investigation of complete maximal spacelike
submanifolds in HZ*” (¢) would be very interesting.

T. Ishihara [8] characterized the complete maximal spacelike submanifolds
H™ (Z—f) x - x H"! (n%) of HZ*”(C), that is, he proved that let M" be an n-dimen-
sional complete maximal spacelike submanifold in HZ_H)(C), then S < —npc and
S = —npc if and only if M" = H™ () x -+ x H' (n’p%), where S is the squared norm
of the second fundamental form of M”. When p = 1, the Bernstein type properties of
complete maximal spacelike hypersurfaces in H’]“l(c) are also studied in [3] and [4].

In particular, if » =2, we know that the well known examples of complete
maximal spacelike surfaces in the anti-de Sitter space H‘z‘(c) are the totally geodesic
surface H*(c) with S = 0 and the hyperbolic Veronese surface with S = *T“‘ There-
fore, it is natural to ask whether there exist the other complete maximal spacelike
surfaces with S = constant in Hg(c), which are different from the above ones. If
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there exist such surfaces, can we determine all of the value of S? In this paper we
shall answer these problems.

MaIN THEOREM. Let M? be a complete maximal spacelike surface of an anti-de
Sitter space Hg(c) with constant scalar curvature, then S =0, S = _1'?", S = _74" or
S = —2¢, where S is the squared norm of the second fundamental form of M*. And

(1) S =0 if and only if M? is the totally geodesic surface H>(c);

2) S= % if and only if M is the hyperbolic Veronese surface;

(3) S = —2c if and only if M* is the hyperbolic cylinder of the totally geodesic
surface H? (¢) of Hg(c).

REMARK 1. It is still open for the author whether there exist complete maximal
spacelike surfaces of the anti-de Sitter space Hj(c) with § = =%,

2. Preliminaries. Let M” be an n-dimensional spacelike submanifold of an anti-
de Sitter space H;-H)(C) of dimension n + p and with index p. We choose a local

orthonormal frame field ey, -, ey, €441, -+, €npp In HZH)(C), restricted to M", so
that e, - -+, e, are tangent to M". With respect to the above frame field of HZ*P(C),
let wi, - - -, wu4p denote the dual coframe field. Then

wy =0 forany a=n+1,---,n+p. 2.1

It follows from Cartan’s Lemma that

Wi = Zh?]‘.a)j, hf; = hz (22)
J

The structure equations of M" are given by

do; + 3 ;05 A @j =0, wi+w; =0,
dwij + )" wi N Wi = Qyj, (2.3)

1
Qij = E Zk,lRijklwk N wy,

Ryt = c(Sudy — 8udje) — Y (Wyhly — hyhly), (2.4)
p

where €;; (resp. R;x;) denotes the curvature form (resp. the components of the cur-
vature tensor) of M".
We have also the structure equations of the normal bundle of M”".

dwop + 32, Oy N Oyp = Qap,

1 (2.5)
Qup = EZM Ropriwr A wy,
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Ropis = j{j(h AR AT (2.6)

The second fundamental form h of M" is given by

o
h = E hé.f1vi1¢f/ea

ij.o

We recall 13" (3", h%)e, the mean curvature vector. If Y~ 4% = 0 for all «, then M" is
said to be max1ma1 The Codazzi equation and Ricci formulas for the second fun-
damental form and its covariant derivatives are given by

e = Mo = My, (2.7)

hg‘[d lﬂk — Z hlmijkl + Z hm]Rnnk/ Z hURaﬁkl’ (28)

m
hz/klm - h;‘;/‘»m/ = Z h(;t/-erilm + Z h(,-):.erjlm + Z hZ‘rRrklm - Z hg/cRaﬁlma (2-9)
r r r B

where Ay, h, and hf,, are the coefficients of the first, the second and the third
covariant derivatives of the second fundamental form of M", respectively. If M" is

maximal, the scalar curvature is given by
R=n(n—c+ Y (). (2.10)
ij,0

Hence the scalar curvature is constant if and only if S=73_,, ( -)2 is constant.
The following Generalized Maximum Principle due to Omori [9] and Yau [12]
will be used in this paper.

GENERALIZED MAXIMUM PRINCIPLE (cf. Omori [9] and Yau [12]). Let M" be an
n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from
below. Let F be a C*-function bounded from above on M, then there exists a sequence
{pm} of points in M" such that

lim F(p,,) =supF, lim |VF|(p,,) =0, lim supAF(@p,) <0.
m—o0 m—o0

m—00

3. Proof of main theorem. In this section, we assume n = p = 2. We first com-
pute some local formulas in order to prove Main Theorem. Let Sy = Z (h )2 and
Sy = le(h“) We know that S35y is a function defined globally on M?. "For arbi-
trary fixed point p in M? we can choose e; and e, such that

= Ay, (3.1)

Since M is maximal we get A; = —1, =: 1. Let

Sup = Zh“hﬁ.
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We know that the (2 x 2)-matrix (Syp) is symmetric. Hence we can assume that it is
diagonal for a suitable choice of e; and es. Thus setting u := A, = —h3, and
w1 = hi,, we have

Zh*h“ =2 =0. (3.2)

THEOREM 3.1. For o = 3, 4, we have

AW = (S+20)h% =2 Y Hehohl + Y kb, (3:3)
It,B#a 1t,B#a
- AS = X]: (%7 + (S +20)S + 28384, (3.4)
l] K,o
1
S AS; = D U + (S +20)S5 + S3S4, (3.5)
ik

where S = S3+ S84 =), ol )2 is the squa; ed norm of the second fundamental form
of M* and Sy =y, (Il Y and Sy = Z”(h :

Proof. For any «,
ARG = ZI: iy = z}: hiii
= Z higy; + Z h Ryt + Z iy Ryjji — Z hﬁRaﬂﬂ
7 It I
= Z 1380 — Sudy) — Z(hﬁhﬂ hf’}h )]
+ Z hle(848i — 8udij) — Z(hﬁhﬁ hé’}h

+ Zhﬁ(h“h*“ “hl)

t,1,B
= Qe+ S —2 Y Wil + > Wik,
L1, B#£a Lt, B#£a
= AS DO+ hyAhg
ijk,a ija
= Y () + Qe+ S)S + 2835,
ij ko
-~ AS3 > )’ + Z N
i,k
= ()’ + Qe+ 8)S3 + 5354
ij,k
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This finishes the Proof of Theorem 3.1.

THEOREM 3.2.

Z (hI/k

2 ijk,o
= ) U’ +( S+7¢) ) Uiy
ij ko ijk,o
+3IVSP =53 S, Y ().

a ij,k

Since M? is maximal, for any «, we have
o o
h{, +h5, =0.
Hence

o o o _ o
Iy = —hy,  hfy = —h5,y forany [ k.

In the sequel, we will often use the formula (3.7).

Proof.

Z hg‘kAhg'k = Z h;khgkn

ijk,o ij,k,lLa

= Yl ks + Vi h R
t

ijk,lLa
+ Z N Ryjr — Z hf Rapicr)]
= Z B + ZhU[Rnk/
ik,

+ Z iy Rejr + Z D Rokr — Z hZ/Raﬁk/]
+ Z hiyl Z iy Rt + Z h,,le/k/ Zh,/lRaﬁkl]

ik, La
Z B Z hy ViR + Z I ViR — Z V) Rapid]
ik, Lo t B
= Y K AVA(S + 200
ijk,a
=2 > MGG+ Y k)
Lt,p#a 1,t,B+a
+20) 0 KRG R +2 Y R Ry
ij k0t ij.k,dta
+ Z Mg 5y, Rt — 2 Z hljk i Raphi
ijk, 0t ijk,a,B

ik, Lo
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3RS +20m —2 3 bl + 3 nebriy
A L1.p#a Lipta

2
=(S+20) > )+ Y W ViS
ij,k,a ijk,a
BB B 1B
-2 Z hOl llkhljhzl Z hakh ht]khtl
ikt fFa l,j,/c,t,l,a,ﬂ;éa

BB BB
-2 E hig oy, + E iy gy oty
ij.k,tlo, pFa ijk,t, 10, o

B /3 B B
+ Z g hohig iy + Z hi i oty
ij,k,t,la, fFa ij,k,t,la, fFa

= (S+20) Z(hyk) += |VS| -2 Z Iy iy

4l
ik« i)k, t

—4 Z hz]k t]kh?zhn 4 Z hykhzz/\héh?; + Z hUAh?/Ah?/h?f

l/kl ij,k,t ikt

Z(hl]k) +4x Z hllkh4hz]k (by (32))

ljk ij,k

1
=(S+20) Y ) 5|VS|2+ Y (i)’

ij,k,a ij,k

-2 Z hljkhtlkhrj il -8 Z hljk tj/ch;llhi

ij,k,l,t ijk,t

+ Z(Z huk ) +4)‘Zh11khy ijk

ij,k

o o
D i Roaka
ikt

= Z Z/c UI[C((kaS[/ (Sflalk) - Z(hltgkhg hﬁ/’lﬁ )]
B

i,j,k,l,z,o:

= (— ) Y ().

ij,k,o

2 Y R

ijk.la,B
=2 Y Wy Z(h A )
ijka,B
=—4 Z hz]k 1]/ (h/l - hl3ck)'
i)k,
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ikt

2 Z gy Rewr + 2 Z heh% Rejed
ijk,dta
2 3" K [e(Sudiy — 8udi) — Z(hﬁ i — Wn)

ij k0t
+20 3 ey — Bud) — Z(h’?khﬁ A
ij.k,lto B
=de Yy U —4 Y ki
i.j.k,o ikt
(3.12)
+4 ) R,
ikt B
—de YU 285 3 ()
ijk,a ijk.a
33 34 14 4,4
_4 lZ/hUkhU,(htkhi, — hyhg,
i,j,k,t
— 4 Y i — Wi,
ij,k,t,1
Z f]‘k[z I ViR + Z hEV IR
ijk,La t t
- Z hgleaﬂkl]
B
=— Y KNG — W)
ikt Lo,
Z hyk 'V/(h?khﬁ h’,’;hﬁ{)
ijk,t, o, B
DD AU A
ij,k,t,lo,B
_ (o — WoHP
=-2 . ];a 5hy/c gy — iy, (3.13)
+ Z thhif tklhfl - h(txlh/tgkl
ijk,t, o, B
=S5y () + 3 2 (i)’
ij.k ij.k
+ Z(Zh Uk) —4x Zh lkh Uk
ko ij i,k
-2 Z hyk kil "‘2 Z hzjk ikl
ij k1l ikl
-4 Z hljk ikl l(h )
i k,t,l

Hence, (3.8)~(3.13) yield
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> R AKE,

ijk,a
= (—S +70) DU +5 |VS| +383 Y ()
ijk,a ij.k,a
—4 Z hz;k il (h// - hik)
ikl
—4 Z hz]k ikl 141(11131 - h;’])
ikl
—2 Z hz/kh?lkh -8 Z hikhz/khihz}r (3.14)
ikt ijk,t
—4 Z h:,k Ijl h h?l - h?lh?k
i,k,t,1
—4 Z hgk Ijl h h?l - h?lh?k
ikt
=2 ) Il i 2 kg hihy
ijk,t,1 ijk,t,l

+2 Z(Z I3cht)?

82}1 s

ijk,t
Jok,t
= 81 Z(h et + e (3.15)
j k

- hgjkh?_/kﬂl + hgikhgjk“)
= 8 (el — W) (by (3.2))
= 3201 (h3hiy, — Bty /yy).

42 il O = i)
ikl
= 42}131]7 (i3, — )
+4 Zhj]zhj;lh“ — h3,) (3.16)

=—8w1 Z(hh/hz,/ hiih)  (by (3.2))

= 32)L,u1(h 22h111 ll?llh%ZZ)'
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4 I iy = i)

ij,k,l
= 4Zh — 3,)
+4thlkhzk hy, — ) (3.17)

=8\ Z(hlzkhlk/h?z Iyl
k.l

= 1621 (hhyo 3, — h) 135,)  (by (3.2)).

4 Z o (i by — hyhi

ikt

=4 Z h 1(h hi h?l h?k
i,k to

+4 > Kk il — Tk,
i)k, t,a

=4 Z ht/kh(f/l(h h?lh?k
ij,k,o

+4 > Rk (ki — B,
ikt

+4 X/: hichSy, (il — I3, B, (3.18)
i,j.k,o

+4 Z h /khgﬂ(hgkh?Z — ligy i
ijk,a

= -8 Z hl/kh‘iy][hlk 11

ijk,a

4RI (i — W)
ijk,a

-8 Z hzkh?[z,hfkh?z +38 Z hl/kh72/h?lhgk
ijk,a ijk,a

= =284 > (%) .

ijk,o

For any «,

2 Z hljk tlkh;;hj‘l

ijk,lt
=2 Z i b2 Z highs lkhgjhll
ikl ikt (319)
=2u Z(h(fikh?/k hSuhSu )iy + 4 Z IS ahShi
ikl ikl
=0.

https://doi.org/10.1017/5S0017089500010168 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500010168

COMPLETE MAXIMAL SPACELIKE SURFACES

2 Z(Z hz]k
YT 5 Y
ko

i,k

2 Z hljk zk/h4h4

ij,k,t,l
=2 Z h?} zklh;‘l 2 Z hiy lkzhfz
ijk.t ij.k,t
=S4 Z(hyk)
ijk

According to (3.14) ~ (3.21), we get

> i Ak,

Ijka

1
_(—S+7c) > o) 5|VS|2
ijk,a

— 801 (1 1y — 31 ).

Since, for any «,

D ()t = 4 ) + (H))

i Js k

and

IVS|? = Z(VZS)2

- Z(z Z hehe)?

ij,o

=16 Z(Mlm + ety + ki)

=2 Z Salhy ) = 32010y 3y, = Iy 1320),
ijk,a

we obtain

—8hpu1 () iy, hmhzzz)— |VS| -5 Z Salli)".
t}ka

From

Z (hzjk) - Z hz;k 1]/\ + Z (ht]k/

ij.k,o ij,k,a ij.k,lo

NI'—*

(3.22) and (3.23) yields the Theorem 3.2.

https://doi.org/10.1017/5S0017089500010168 Published online by Cambridge University Press

149

(3.20)

(3.21)

(3.22)

(3.23)


https://doi.org/10.1017/S0017089500010168

150 QING-MING CHENG

LEMMA 1.
D () = 3 Uy = B + 3 0+ 1)
ik, La i#f,a i#j,a
+ Z(hm/ - hz/z)z + Z(hzy + hg‘ji)z'
i#j,a i#j,a
Proof.

Z (hUk/) - Z(h””) +3 Z(hlljl) + Z(h”lj) +3 Z(h(i);ji)z'

i),k i#j,o i#j,a i#j,o
Since
hiy = —hj; forany o and j#i
and
hiy = —hj; forany o and j#i,

we know that Lemma 1 holds.

LEMMA 2.
h1122 /12211 =A2c+ S+ Sy),

h%nz - h?lzl =0,
W, —hh, =2
1122 — M1 = Qe+ S,

His = hi = —Qc+ S+ S

Proof. From the Ricci formula (2.8), we have

he — he = he, — he

iijj — 'ji ijij ijji
= HRui+ Y iRz — > hiRupy
t t !
o o S o
= (= e =5 Uy =

— > RHHE + Y .

1, B#a t,B#a
Hence
h1122 /12211 =A2c+ S+ Sy),

h?122 - hgzll = (2c+ .
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By the same proof, we can obtain
s = Mo = 2w =0 (by (3.2)),
Ky = I = —Qe+ S+ Sy
Thus we complete the proof of Lemma 2.

Next, we shall prove the Main Theorem. Since the scalar curvature is constant if
and only if S is constant, in the sequel, we assume that S is constant.

Proof of Main Theorem. If S =0, then M is totally geodesic because S is con-
stant. Next we assume S # 0. Since S is constant, we have

V[S = 0, fOr l: 13 27
namely,
203, + 2uhty, + 2ty = 0.

QK3+ 2uhity = 2pihity, =0, (3.24)
20k, + 2k, + 2uihity, = 0.

Hence we obtain

S Y () =S4y (W)’ (3.25)
ij,k ij.k
from
SO = 4+ ). (3.26)
ij,k

We know that S35y are function defined globally on M. Because S is constant, from
Gauss equation, we infer that the sectional curvature is bounded from below and
that function S3S4 is bounded because 0 < S3S; < S?. Since M is complete, from the
Generalized Maximum Principle due to Omori and Yau, we know that there exists a
sequence {p,,} C M? of points such that

lim (S384)(py) = inf(S53S4), (3.27)
lim |V(S354)|(pm) =0, (3.28)
lim inf A(S3S4)(p) = 0. (3.29)

From Theorem 3.1, we have

D ) = —=S(S + 2¢) — 28354, (3.30)

ij.k,a
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because S is constant. Hence Zhj’kﬂ(hf;k)z is bounded and

Jim Y ()% (o) = sup Y (), (3.31)
ij.k,o ij.k,o

im [V (i |(pm) = =2 lim [V(S384)](pm) = 0. (3.32)

m—00 i,j,k,a m—0o0

From
o \2
A Z (h%)° = —283A8, — 4VS3 - VS, — 25,AS; (3.33)
ij.k,o

and Theorem 3.1 and Theorem 3.2, we obtain that 3, ;. ],a(hfikl)z is bounded. Thus,
we can assume lim, o S3(Pm) = S3, iMoo Sa(Pm) =S4, im0 M) = A,
limlneoo w(pm) = i, limy, s 0o 1 (Pm) = i1, limy, 0 hf}k(Pm) = h?;k and lim,,_, o h?;‘k[(pm)
= hy,, by taking a subsequence if necessary. Since

Tim [V(S588)|(pm) = 0

and

Vi(5384) = S3ViS4 + S4V,S3,

we have

lim (S5V;Ss + SaViS3)(pm) = 0.
m—o0

From S = S5 4+ S4, we get

V,S; = —V,Si.
Therefore,
Jim (S5 = Sa)(ViS)pm) = lim (Sy — S3)(ViS3)(pm) = 0. (3.34)
Hence,
S;=S8; or Jim (ViS)(pm) = lim (ViS3)(pm) = 0. (3.35)

(1). In the case where Sy = 54. From Theorem 3.1, we have

. . " 3
0= lim { D U+ (S+ 2008 + 2838 (pw) = sup > (%) + GS+20S.

ijk,a ik,
Hence, 5 3
sup » (k%) = ~(55+20)S.

i, ko
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From Theorem 3.1, we have

(h%)? = —(S +2¢)S — 2838,
ijk

ij ko
3 1 5
= ~(GS+20S +5(5: — S)

3
= _(E S+ 2(,)5
Hence, we have

. N 3 ,
inf Y (h)* = ~(5S+20)S = sup S ey,

i.j.k,a ik,

that is,

3
> U5)* = —GS+20S (3.36)

i,k
is constant. Therefore, S3 = S4 on M? and they are constant. Hence, on M?,

V1S3 = V84 =0.

From (3.25), we have ), ., ,(h%)? = 0 on M. According to (3.36), we have S = =,
(2). In the case where S; # S4. We have, for / = 1,2,

n}I—I}go ViS3(pm) = mh_l;rgo ViS4(pm) = 0.

From |VS,|* = 48, Z[,j’k(h‘?‘ )2, we have

ijk
n}i—l;lgo S3 Z(h;/‘y(pm) = mh—l;rolo S4 Z(h?ik)z(pm) = 0’
ij.k ij.k
that is
Sy lim S (302 (pm) = S lim 3 (i (om) = 0. (3.37)
[,j,k l,/,k
If
Tim Y () pw) = Tim S (i) =0,
' ij.k ! ijk
we have

sup Z (h%)* = 0.

ij.k,o

Hence, from Theorem 3.1, we have
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1
0 = S(S+2¢) + 28384 = S(%S+ 20) = 5(83 = Sa)’.

Hence S > 3‘ and S3S; is constant. Hence S3 and S; are constant because
S = S3+ S4 and S3S54 are constant. Since S > 0, we can assume Sy > 0. From the
proof of Theorem 3.1, we have, for a = 3, 4,

ASa =D (h)* + (S +20)Sy + S35Ss.
i,k
Hence,
(S+2c)Sy + 5384 =0.
Therefore, S = —2¢ and M? is the hyperbolic cylinder of the totally geodesic hyper-
surface H3 (¢) from the Theorem due to Ishihara [8].

Next we can assume lim,,, Z,j k(hl/k) (Pm) # 0 without loss of the generality.
We have S4 = 0. Because S = S3 + S4 > 0 is constant, we have S3 # 0. Hence,

lim > " (5)*(p) = 0.

ik

=10¢ in this case. Since S4 = 0, we have

We shall prove S =

lim_ > U8 (pm) + (2c + 5)S = 0.

m—
zjkoz

Hence,

sup Y (h)* = —(S+20)S.
ijk,a

From (3.31) and (3.32), we know that lim,; 00 [V k)2| = 0. Hence,

ljk()(

lim > il il (pm) =0 for 1=1,2,

m—00
ij,k

because of lim,;,_, o Zi.j, k(h;.k)2(pm) = 0. Thus we conclude
};?11};3211 = —/;‘2‘22}?11121, hmh‘llnz = 542122}?1‘121
According to Lemma 2 we have
}?11122 = 542‘211’ ;?11112 = 541‘121'
Hence

(//?1111)2}?21211 + (};42‘22)2};‘2‘211 =0.
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Since Z,jk(hl/k) #£0, then iy, =htpy =i, =h?,, =0. On the other hand,
since S is constant we have

> Hh + Y hh =0 forany I k.

ij,0 ij,0
Hence
2003, =0,
2403, =0,
~~ 1
2)‘}1%122 = ) Z (hnk) >
ik«
2”’%211 =5 Z (hzjk)
1 Jk,a
We infer

(3135 + 130 + (1 + I 15)* = 0.
Therefore, from Lemma 2 we have

> (hW = (S + 2¢)*S. (3.38)

ik, La

From Theorem 3.1, we have

A (W)

ik«
= —A(S384)
= —S53A84 — 2VS3 - VSy — S4AS5.

N —

Hence

mlglgo A Y Ui (o) = = lim (S3AS)(p) =28(S+20)S  (3.39)
ij.k,o

because of S; = 0 and lim,_ Z,—,,—,k(h?,-k)z(Pm) = 0. From (3.37), (3.38), (3.39) and
Theorem 3.2, we have o

S +20)S* =~ hm A () () = (S +20°S — (%S +7¢)(S + 20)S.

ij,k,a

Thus § = — 1 From the above proof, we know that § = ={¢ if and only if S5 = S,
is constant on M2 and ;o Uk)z = 0. By making use of the similar method to one
which was used in [7] by Chern, do Carmo and Kobayashi, we can prove that M? is
isometric to the hyperbolic Veronese surface. We complete the proof of Main Theorem.
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