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A Mahler Measure of a K3 Surface
Expressed as a Dirichlet L-Series

Marie José Bertin

Abstract. We present another example of a 3-variable polynomial defining a K3-hypersurface and

having a logarithmic Mahler measure expressed in terms of a Dirichlet L-series.

1 Introduction

The logarithmic Mahler measure m(P) of a Laurent polynomial P ∈ C[X±
1 , . . . , X±

n ]

is defined by

m(P) =
1

(2πi)n

∫

Tn

log |P(x±1 , . . . , x±n )| dx1

x1
· · · dxn

xn

,

where Tn is the n-torus {(x1, . . . , xn) ∈ Cn/|x1| = · · · = |xn| = 1}.

For n = 2 and polynomials P defining elliptic curves E, conjectures have been

made, with proofs in the CM case, by various authors [6, 13]. These conjectures give

conditions on the polynomial P for getting explicit expressions of m(P) in terms of

the L-series of E. A crucial condition for P is to be “tempered,” that is, the roots of the

polynomials of the faces of its Newton polygon are only roots of unity. This condition

is related to the link between m(P) and the second group of K-theory, [1, 13].

We are trying to generalize these results for n = 3. Since both elliptic curves and

K3 surfaces are Calabi–Yau varieties, we take polynomials in three variables defining

K3 surfaces. So we consider two families (Pk) and (Qk):

Pk = X +
1

X
+ Y +

1

Y
+ Z +

1

Z
− k

Qk = X +
1

X
+ Y +

1

Y
+ Z +

1

Z

+ XY +
1

XY
+ ZY +

1

ZY
+ XY Z +

1

XY Z
− k.

The families (Pk) and (Qk) are respectively generalizations of the modular families of

elliptic curves

X +
1

X
+ Y +

1

Y
− k and X +

1

X
+ Y +

1

Y
+ XY +

1

XY
− k
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studied variously by Bertin [2], Boyd [6], Lalin and Rogers [9], Rodriguez-Villegas

[13].

We recall the main results obtained in [3–5]. If Yk (resp. Zk) denotes the K3

surface defined by the polynomial Pk (resp. Qk) with transcendental lattice T(Yk)

(resp. T(Zk)) and L-series L(Yk, s) (resp. L(Zk, s)), then

m(P0) = d3 :=
3
√

3

4π
L(χ−3, 2),

m(P2) =
| T(Y2) |3/2

π3
L(Y2, 3) =

8
√

8

π3
L( f8, 3),

m(P6) =
| T(Y6) |3/2

2π3
L(Y6, 3) =

24
√

24

2π3
L( f24, 3),

m(P10) =
| T(Y10) |3/2

9π3
L(Y10, 3) + 2d3 =

72
√

72

9π3
L( f8, 3) + 2d3,

m(Q0) =
| T(Z0) |3/2

2π3
L(Z0, 3) =

12
√

12

2π3
L( f12, 3),

m(Q12) = 2
| T(Z12 |3/2

π3
L(Z12, 3) = 2

12
√

12

π3
L( f12, 3).

Here fN denotes the unique, up to twist, CM-newform, CM by Q(
√
−N), of weight

3 and level N with rational coefficients [15].

Other formulae of the same type are under preparation for m(P3) and m(P18).

All these results concern “singular” K3 surfaces, that is, K3 surfaces with Picard

number 20. The corresponding k were computed by Boyd.1 Very recently, Elkies and

Schütt [7] wrote an algorithm for finding “singular” K3 surfaces in a family of K3

surfaces of generic Picard number 19. Their computations agreed with Boyd’s and

gave only two extra values for k2 in the first family.

The reason why we may expect the Mahler measure m(P) to be related to L-func-

tions or modular forms is the following. Let P ∈ C[x, y, z] and define the differential

form η(x, y, z) on the surface S = {P(x, y, z) = 0} minus the set Z of zeros and poles

of x, y, and z

η(x, y, z) := log |x|( 1
3
d log |y| ∧ d log |z| − d arg y ∧ d arg z)

log |y|( 1
3
d log |z| ∧ d log |x| − d arg z ∧ d arg x)

log |z|( 1
3
d log |x| ∧ d log |y| − d arg x ∧ d arg y).

We can express the Mahler measure of P as

m(P) = m(P∗) − 1

(2π)2

∫

Γ

η(x, y, z),

1Personal communication.
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where P∗ is the leading coefficient of the polynomial P ∈ C[x, y][z] and

Γ = {P(x, y, z) = 0} ∩ {|x| = |y| = 1, |z| ≥ 1}.

In fact, η is a closed form on S\Z. But in our situation concerning polynomials Pk

and Qk, the form is not exact: the set Γ consists of closed subsets and the integral

can be computed by residues. We are led to instances of Beilinson’s conjectures that

produce special values of L-functions of surfaces. The fact that these L-functions are

also the Mellin transforms of CM-newforms of weight 3 [15] derives from Livné’s

theorem of modularity of “singular” K3-surfaces defined over Q [11, 17].

These examples and the future ones are extremely important to help us answer

the following question: for which class of polynomials in three variables defining K3

surfaces, can the Mahler measure be expressed in terms of the L-series of the variety

plus a Dirichlet L-series? How important are the faces of the Newton polyhedron of

the polynomial and the fact that the polynomial does not intersect the torus?

The result obtained in the following theorem is the second example where the

Mahler measure of a polynomial defining a K3 surface is expressed only in terms of

a Dirichlet L-series, that is, only in terms of the measure of faces.

Theorem 1.1 With the above notations we get m(Q−3) =
8
5
d3.

In this theorem, the evaluation of the modular part needs the use of Serre–Livné’s

criterion [10], since we must compare two l-adic representations, and also recent

results about Dirichlet L-series [19].

2 Some Facts

The polynomial Q−3 belongs to the family of polynomials Qk whose Mahler measure

has been studied in a previous paper [3].

Theorem 2.1

Qk = X +
1

X
+ Y +

1

Y
+ Z +

1

Z
+ XY +

1

XY
+ ZY +

1

ZY
+ XY Z +

1

XY Z
− k.

Let k = −(t + 1
t
) − 2 and define

t =
η(3τ )4η(12τ )8η(2τ )12

η(τ )4η(4τ )8η(6τ )12
,

where η denotes the Dedekind eta function

η(τ ) = e(πiτ )/12
∏

n≥1

(1 − e2πinτ ).
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Then

m(Qk) =
ℑτ

8π3

{

∑ ′

m,κ

(

2
(

2ℜ 1

(mτ + κ)3(mτ̄ + κ)
+

1

(mτ + κ)2(mτ̄ + κ)2

)

− 32
(

2ℜ 1

(2mτ + κ)3(2mτ̄ + κ)
+

1

(2mτ + κ)2(2mτ̄ + κ)2

)

− 18
(

2ℜ 1

(3mτ + κ)3(3mτ̄ + κ)
+

1

(3mτ + κ)2(3mτ̄ + κ)2

)

+ 288
(

2ℜ 1

(6mτ + κ)3(6mτ̄ + κ)
+

1

(6mτ + κ)2(6mτ̄ + κ)2

)

)}

.

Let us now recall the following results.

Given a normalised Hecke eigenform f of some level N and weight k = 3, we can

associate a Galois representation [8, 14] ρ f : Gal(Q̄/Q) → Gl(2, Ql).

To a normalised Hecke newform f can also be associated an L-function L( f , s) by

L( f , s) := L(ρ f , s) (the L-series of the Galois representation ρ f ). Equivalently, if f

has a Fourier expansion f =
∑

n bnqn, then L( f , s) is also the Mellin transform of f

L( f , s) =

∑

n

bn

ns
.

Moreover, the series L( f , s) has a product expansion

L( f , s) =

∑

n≥1

bn

ns
=

∏

p

1

1 − bp p−s + χ(p)pk−1−2s

where χ(p) = 0 if p | N.

Concerning the comparison between l-adic representations, Serre’s and Livné’s

result can be found, for example, in [12, 17].

Lemma 2.2 Let ρl, ρ
′
l : GQ → Aut Vl two rational l-adic representations with

Tr Fp,ρl
= Tr Fp,ρ ′

l
for a set of primes p of density one, i.e., for all but finitely many

primes. If ρl and ρ ′
l fit into two strictly compatible systems, the L-functions associated

with these systems are the same.

Then the great idea in [10] is to replace this set of primes of density one by a finite

set.

Definition 2.3 A finite set T of primes is said to be an effective test set for a rational

Galois representation ρl : GQ → Aut Vl if the previous lemma holds with the set of

density one replaced by T.

Definition 2.4 Let P denote the set of primes, S a finite subset of P with r elements,

S ′
= S ∪ {−1}. Define for each t ∈ P, t 6= 2 and each s ∈ S ′ the function

fs(t) :=
1

2

(

1 +
( s

t

))

and if T ⊂ P, T ∩ S = ∅, f : T →
(

Z/2Z
)r+1

such that f (t) = ( fs(t))s∈S ′ .
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Theorem 2.5 (Livné’s criterion) Let ρ and ρ′ be two 2-adic GQ -representations which

are unramified outside a finite set S of primes, satisfying

Tr Fp,ρ ≡ Tr Fp,ρ ′ ≡ 0 (mod 2) and det Fp,ρ ≡ det Fp,ρ ′ (mod 2)

for all p /∈ S ∪ {2}.

Any finite set T of rational primes disjoint from S with f (T) = (Z/2Z)r+1\{0} is an

effective test set for ρ with respect to ρ′.

The K3 surface X̃ defined by the polynomial Q−3 has been studied by Peters, Top

and van der Vlugt [12]. In particular they proved the theorem.

Theorem 2.6 There is a system ρ = (ρl) of 2-dimensional l-adic representations of

GQ = Gal(Q̄/Q) ρl : GQ → Aut H2
trc(X̃, Ql). The system ρ = (ρl) has an L-function

L(s, ρ) =
∏

p 6=3,5

1

1 − Ap p−s +
( p

15

)

p2 p−2s
.

This L-function is the L-function of the modular form f +
= gθ1 ∈ S3(15, ( .

15
)), where

θ1 =

∑

m,n∈Z

qm2+mn+4n2

g = η(z)η(3z)η(5z)η(15z)

and η is the Dedekind eta function. The Mellin transform
∑

bn

ns of f + satisfies bp = Ap

for p 6= 3, 5, where Ap can be computed as follows.

• If p ≡ 1 or 4 mod 15, find an integral solution of the equation x2 + xy + 4y2
= p.

Then Ap = 2x2 − 7y2 + 2xy.
• If p ≡ 2 or 8 mod 15, find an integral solution of the equation 2x2 + xy + 2y2

= p.

Then Ap = x2 + 8xy + y2.

3 Proof of Theorem 1.1

The proof follows from three propositions.

Proposition 3.1

m(Q−3) =
3
√

15

π3

∑ ′

m ′,κ

( 15k2 − m ′2

(m ′2 + 15κ2)3
+

−5k2 + 3m ′2

(3m ′2 + 5κ2)3

)

+
( 1

2

2m ′2 + 2m ′κ − 7κ2

(m ′2 + m ′κ + 4κ2)3
+

1

2

m ′2 + 8m ′κ + κ2

(2m ′2 + m ′κ + 2κ2)3

)

+
6
√

15

π3

∑ ′

m ′,κ

( 1

(m ′2 + 15κ2)2
− 1

(3m ′2 + 5κ2)2

)

+
( 1

(2m ′2 + m ′κ + 2κ2)2
− 1

(m ′2 + m ′κ + 4κ2)2

)

.
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Proof Define D jτ = (m jτ + κ)(m jτ̄ + κ). So

m(Qk) =
ℑτ

8π3

∑ ′

m,κ

[

2
(m(τ + τ̄ ) + 2κ)2

D3
τ

+
−2

D2
τ

− 32
(2m(τ + τ̄ ) + 2κ)2

D3
2τ

+
32

D2
2τ

− 18
(3m(τ + τ̄ ) + 2κ)2

D3
3τ

+
18

D2
3τ

+ 288
(6m(τ + τ̄ ) + 2κ)2

D3
6τ

− 288

D2
6τ

]

If k = −3, then τ =
−3+

√
−15

24
and

Dτ =
1

24
(m2 − 6mκ + 24κ2) =

1

24
(m ′2 + 15κ2) with m ′

= m − 3κ,

D2τ =
1

6
(m2 − 3mκ + 6κ2) =

1

6
(m ′2 + m ′κ + 4κ2) with m ′

= m − 2κ,

D3τ =
1

8
(3m2 − 6mκ + 8κ2) =

1

8
(3m ′2 + 5κ2) with m ′

= m − κ,

D6τ =
1

2
(3m2 − 3mκ + 2κ2) =

1

2
(2m2 + mκ + 2κ ′2) with κ ′

= κ − m.

Thus

m(Q−3) =

√
15

24 × 8π3

∑ ′

m ′,κ

(A1 + A2 + A3 + A4).

Now A1 can be written

A1 = (24)2
( −m ′2 + 15κ2 − 30m ′κ

(m ′2 + 15κ2)3
+

2

(m ′2 + 15κ2)2

)

and
∑ ′

m ′,κ

A1 = (24)2
∑ ′

m ′,κ

( 15k2 − m ′2

(m ′2 + 15κ2)3
+

2

(m ′2 + 15κ2)2

)

.

Then we get

A2 = (24)2
( m ′2 + 16m ′κ + 4κ2

(m ′2 + m ′κ + 4κ2)3
− 2

(m ′2 + m ′κ + 4κ2)2

)

Now with the change of variable κ = κ ′ − m ′ we make the denominators of A2

symmetric with respect to m ′ and κ ′. So

A2 = (24)2
( −11m ′2 + 8m ′κ ′ + 4κ ′2

(4m ′2 − 7m ′κ ′ + 4κ ′2)3
− 2

(4m ′2 − 7m ′κ ′ + 4κ2)2

)

,
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that is,

A2 = (24)2
( 1

2

−7m ′2 + 16m ′κ ′ − 7κ ′2

(4m ′2 − 7m ′κ ′ + 4κ ′2)3
− 2

(4m ′2 − 7m ′κ ′ + 4κ2)2

)

and coming back to variables m ′ and κ,

A2 = (24)2
( 1

2

2m ′2 + 2m ′κ − 7κ2

(m ′2 + m ′κ + 4κ2)3
− 2

(m ′2 + m ′κ + 4κ2)2

)

.

The same way we obtain,

A3 = (24)2
( 3m ′2 + 30m ′κ − 5κ2

(3m ′2 + 5κ2)3
− 2

(3m ′2 + 5κ2)2

)

or

A3 = (24)2
( 3m ′2 − 5κ2

(3m ′2 + 5κ2)3
− 2

(3m ′2 + 5κ2)2

)

.

Finally, using the same tricks as for A2, we obtain

A4 = (24)2
( 1

2

m2 + 8mκ ′ + κ ′2

(2m2 + mκ ′ + 2κ ′2)3
+

2

(2m2 + mκ ′ + 2κ ′2)2

)

.

From Proposition 3.1, we notice that the Mahler measure is expressed as a sum of

a modular part

3
√

15

π3

∑ ′

m ′,κ

( 15k2 − m ′2

(m ′2 + 15κ2)3
+

−5k2 + 3m ′2

(3m ′2 + 5κ2)3

)

+
( 1

2

2m ′2 + 2m ′κ − 7κ2

(m ′2 + m ′κ + 4κ2)3
+

1

2

m ′2 + 8m ′κ + κ2

(2m ′2 + m ′κ + 2κ2)3

)

and a part related to a Dirichlet L-series

+
6
√

15

π3

∑ ′

m ′,κ

( 1

(m ′2 + 15κ2)2
− 1

(3m ′2 + 5κ2)2

)

+
( 1

(2m ′2 + m ′κ + 2κ2)2
− 1

(m ′2 + m ′κ + 4κ2)2

)

.

To prove that the modular part is 0, we observe first that

L( f1, s) =
1

2

∑ ′

r,s

5r2 − 3k2

(3r2 + 5k2)s
and L( f2, s) =

1

2

∑ ′

r,s

r2 − 15k2

(r2 + 15k2)s
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are the Mellin transforms of the two weight 3 modular forms

f1 =
1

2

∑

r,s∈Z

(5r2 − 3k2)q3r2+5k2

f2 =
1

2

∑

r,s∈Z

(r2 − 15k2)qr2+15k2

.

Then using Theorem 2.6, we know that

∑ ′( 1

4

2m ′2 + 2m ′κ − 7κ2

(m ′2 + m ′κ + 4κ2)s
+

1

4

m2 + 8mκ ′ + κ ′2

(2m2 + mκ ′ + 2κ ′2)s

)

= L( f +, s)

is the L-series attached to the modular K3-surface X̃.

Proposition 3.2

∑ ′

m,k

( −15k2 + m2

(m2 + 15k2)3
+

5k2 − 3m2

(3m2 + 5k2)3

)

=

∑ ′

m,k

( 1

2

2m2 + 2mk − 7k2

(m2 + mk + 4k2)3
+

1

2

m2 + 8mk + k2

(2m2 + mk + 2k2)3

)

.

Proof Let a be a rational integer and denote θa =
∑

n∈Z
qan2

the weight 1/2 modular

form for the congruence group Γ = Γ0(4). Denote f1 := [θ5, θ3], f2 := [θ1, θ15] the

Rankin–Cohen brackets which are modular forms of weight 3 for Γ.

Recall that if f and g are modular forms of respective weight k and l for a congru-

ence subgroup, then its Rankin–Cohen bracket is the modular form of weight k+ l+2

defined by [g, h] := kgh ′ − lg ′h.

Thus we get the two weight 3 modular forms

f1 =
1

2

∑

r,s∈Z

(5r2 − 3k2)q3r2+5k2

f2 =
1

2

∑

r,s∈Z

(r2 − 15k2)qr2+15k2

.

So to compare L( f1, s) + L( f2, s) =
∑ A1(n)

ns and L( f +, s) =
∑ A2(n)

ns we apply Livné’s

criterion.

First we determine an effective test set T for the respective representations

T = {7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 53, 61, 71, 73, 83}.

Then we compute the corresponding A1(p) and A2(p).

p 7 11 13 17 19 23 29 31 41 43 53 61 71 73 83

A1(p) 0 0 0 -14 -22 34 0 2 0 0 -86 -118 0 0 154

A2(p) 0 0 0 -14 -22 34 0 2 0 0 -86 -118 0 0 154

This achieves the proof of the proposition.
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Proposition 3.3

6
√

15

π3

∑ ′

m,k

1

(m2 + 15k2)2
− 1

(3m2 + 5k2)2

+
1

(2m2 + mk + 2k2)2
− 1

(m2 + mk + 4k2)2
=

8

5
d3

Proof We denote L f (s) := L(χ f , s) the Dirichlet’s L-series for the character χ f at-

tached to the quadratic field Q(
√

f ). The proof follows from a lemma.

Lemma 3.4

∑ ′

m,k

( 1

(2m2 + mk + k2)s
+

1

m2 + mk + 4k2)s

)

= 2ζ(s)L−15(s)(3.1)

∑ ′

m,k

( 1

(3m2 + 5k2)s
+

1

(m2 + 15k2)s

)

= 2
(

1 +
1

22s−1
− 1

2s−1

)

ζ(s)L−15(s)(3.2)

∑ ′

m,k

( 1

(m2 + mk + 4k2)s
− 1

2m2 + mk + 2k2)s

)

= 2L−3(s)L5(s)(3.3)

∑ ′

m,k

( 1

(m2 + 15k2)s
− 1

(3m2 + 5k2)s

)

= 2
(

1 +
1

22s−1
+

1

2s−1

)

L−3(s)L5(s)(3.4)

Proof Assertion (3.1) follows from the result [18]

∑ ′
(

1

(2m2 + mk + k2)s
+

1

m2 + mk + 4k2)s

)

= ζQ(
√
−15)(s)

and the formula ζQ(
√
−15)(s) = ζ(s)L−15(s). Assertion (3.2) follows from results of K.

Williams [16] and Zucker [19]. Using Williams’s notation, we set φ(q) :=
∑+∞

−∞ qn2

and get

φ(q)φ(q15) + φ(q3)φ(q5) = 2 +
∑

n≥1

an(−60)
qn

1 − qn
,

where

an(−60) =

8

>

<

>

:

0 if n ≡ 0, 3, 5, 6, 9, 10 (mod 60),

2 if n ≡ 1, 4, 8, 14, 16, 17, 19, 22, 23, 26, 31, 32, 47, 49, 53, 58 (mod 60),

−2 if n ≡ 2, 7, 11, 13, 28, 29, 34, 37, 38, 41, 43, 44, 46, 52, 56, 59 (mod 60).

As explained in [19], often we may get

Q(a, b, c; s) =

∑ ′ 1

(am2 + bmn + cn2)s
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in terms of L±h when expressing them as Mellin transforms of products of various

Jacobi functions θ3(q) for different arguments. More precisely,

Q(1, 0, λ; s) =
1

Γ(s)

∫ ∞

0

t s−1
∑ ′

e−(m2t+λn2t) dt =
1

Γ(s)

∫ ∞

0

(θ3(q)θ3(qλ) − 1) dt,

where e−t
= q and θ3(q) = 1 + 2q2 + 2q4 + 2q9 + · · · ; thus writing θ3(q)θ3(qλ) − 1

as a Lambert series
∑

n≥1 an
qn

1−qn , very often the integral is given in terms of L-series.

So we get

Q(1, 0, 15; s) + Q(3, 0, 5; s) =
1

Γ(s)

∫ ∞

0

t s−1(θ3(q)θ3(q15) + θ3(q3)θ3(q5) − 2) dt

=
1

Γ(s)

∫ +∞

0

t s−1
(

∑

n≥1

an(−60)
e−tn

1 − e−tn

)

dt.

Since

Γ(s) =

∫ +∞

0

e−y ys−1 dy

making the change variable nt = y, it follows that

1

Γ(s)

∫ +∞

0

t s−1 e−tn

1 − e−tn
dt =

∫ +∞

0

( y

n

)s−1 e−y

1 − e−y

dy

n

=
1

Γ(s)

1

ns

∫ +∞

0

ys−1

ey − 1
dy =

1

ns
ζ(s).

Thus

Q(1, 0, 15; s) + Q(3, 0, 5; s) = ζ(s)
∑

n≥1

an(−60)
1

ns
.

But

L−60(s) =
1

1s
− 1

7s
− 1

11s
− 1

13s
+

1

17s
+

1

19s
+

1

23s
+

1

31s

− 1

37s
− 1

41s
− 1

43s
+

1

47s
+

1

49s
+

1

53s
− 1

59s
+ · · · (mod 60)

and

L−15(s) =
1

1s
+

1

2s
+

1

4s
− 1

7s
+

1

8s
− 1

11s
− 1

13s

− 1

14s
+

1

16s
+

1

17s
+

1

19s
− 1

22s
+ · · · (mod 15).
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So,

1

2

∑

n≥1

an(−60)
1

ns
= L−60(s) +

1

2s
(−1 +

1

2s
+

1

4s
+

1

7s
+

1

8s
+

1

11s
+

1

13s
− 1

14s

+
1

16s
− 1

17s
− 1

19s
− 1

22s
− 1

23s
− 1

26s
− 1

28s
+

1

29s
+ · · · ) (mod 30).

Let us define

L−15(s) :=
∑

n≥1

χ−15(n)

ns
= L+(s) + L−(s),

where

L+(s) =

∑

n≥1
n pair

χ−15(n)

ns
L−(s) =

∑

n≥1
n impair

χ−15(n)

ns
.

Obviously,

L+(s) =
1

2s
L−15(s), L−60(s) = L−(s), L−15(s) = L−(s) +

1

2s
L−15(s).

Thus,

1

2

∑

n≥1

an(−60)

ns
= L−(s) +

1

2s
(L+(s) − L−(s)) =

(

1 +
1

22s−1
− 1

2s−1

)

L−15(s).

From this last equality we deduce formula (3.2). From [20] we get

Q(1, 1, 4; s) = ζ(s)L−15(s) + L−3(s)L5(s).

So from formula (3.1) we obtain formula (3.3). Equality (3.4) derives from a formula

by Zucker and Robertson [20] giving

Q(1, 0, 15; s) =

(

1 − 1

2s−1
+

1

22s−1

)

ζ(s)L−15(s) +
(

1 +
1

2s−1
+

1

22s−1

)

L−3(s)L5(s).

So, thanks to formula (3.2)

Q(1, 0, 15; s) − Q(3, 0, 5; s) = 2Q(1, 0, 15; s) − (Q(1, 0, 15; s) + Q(3, 0, 5; s))

= 2(1 +
1

2s−1
+

1

22s−1
)L−3(s)L5(s).

By subtracting (3.3) from (3.4) for s = 2 and using [19]

L5 =
4π2

25
√

5
,

we get the proposition.
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The proof of Theorem 1.1 is just a combination of the three propositions.
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