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Abstract
The continuous integration and verification of components is essential in distributed design
processes. Identifying the optimal integration and verification frequency, however, can be
challenging due to the complexity of product development. Especially the effect of human
decision-making in partially isolated development scenarios is difficult to consider. Thus, we
performed an experimental study based on the following three steps: first, an extension of
the existing parameter design framework, which is used to conduct experiments under
laboratory conditions, in which human subjects solve quantitative surrogate design tasks.
Second, a series of experiments in which 32 subjects divided into groups of two solved
229 parameter design tasks with a varying integration and verification frequency. And, third,
a statistical analysis of the results with respect to development time, coupling strength and
process costs. According to our results, development time can be reduced by up to 71%, if the
integration and verification frequency is doubled. If process costs are also considered, the
optimal frequency can be subject to a conflict of goals between reducing development time
and minimising process cost.
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1. Introduction
Complexity in product design poses a major challenge for companies that need to
maintain their market competitiveness (Lindemann, Maurer, & Braun 2008).
Developing high quality products on time may be complex for different reasons,
for example, many product variants, numerous contradictory and ambiguous
requirements, or strongly coupled components. Summers & Shah (2010) distin-
guish between complexity related to a design process, a design problem and a
product itself.

In particular, products with a high degree of technical complexity, like passen-
ger vehicles or airplanes, are normally decomposed into separate subsystems, like
engines or wings, that can then be designed by multiple distributed development
teams in parallel. This has two key benefits (Pimmler & Eppinger 1994). First,
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smaller design problems with fewer design variables, fewer quantities of interest
(physical measures describing the technical performance of a particular system)
and fewer physical dependencies are usually easier to solve. Second, design work
can be done simultaneously instead of sequentially. However, distributed design
also requires integration, that is, the assembly of components and sub(sub)systems
to a complete product realisation following a step-by-step procedure (VDI 2206
2004). Integration depends on a product’s decomposition (Pimmler & Eppinger
1994), for which there often exists a variety of architectural choices.

According to Haskins et al. (2006), integration and verification steps are also
part of the V-model – an established design methodology in product development.
An illustration of the V-model with its distinct design phases is shown in Figure 1.
Here, integration is about the (sequential) bottom-up aggregation of the separated
product components and verification is about the assessment of requirements on
different hierarchical levels based on the integrated components. Both processes
shed light on the fulfilment of important design objectives in situations in which
components evolve over time without continuous information exchange between
the different parties. Especially, if isolated design decisions on lower levels affect
multiple sub(sub)systems above, integration and verification provides important
information about the current status of a design project and undiscovered design
flaws. The left side of the V-model shows how such design flaws are then turned
into revised requirements on the sub(sub)systems and components below (during
requirement re-decomposition on the associated level).

During a single integration and verification step, designers perform a series of
individual development activities that require close collaboration and teamwork.
In early phases of product design, for example, the preprocessing of simulations
performed on the system level, which can be seen as an integration, includes data
collection, model setup and load case definition (Stanglmeier 2018; Stanglmeier
et al. 2018). The postprocessing afterwards then involves an analysis, evaluation
and interpretation of the results as those are compared to the given design targets.
This can be seen as a verification.

Integrating subsystems and assessing their performance with respect to given
design objectives usually require a tradeoff between cost (financial expenses and
effort) and benefit (knowledge gained regarding a product’s status). An economic
analysis of this question is performed by Stanglmeier et al. (2018), who suggests a
matrix-based framework to assess integration and verification processes in the
automotive industry from a financial perspective.

Computational and analytical models, like this, are widely adopted to examine
the effect of product integration and verification on different process performance
metrics, such as product quality or development time. An investigation conducted
by Yassine et al. (2003), for example, uses a so-calledwork transformation model to
analyse the design churn effect – a dynamic phenomenon related to integration
processes, in which individual participants hide design information. They reveal
that, among others, feedback delays between subsystem design teams and system
integrators contribute to oscillations in the project progress and, thus, play a key
role when determining the stability of distributed design processes. In a different
study, Mihm, Loch, & Huchzermeier (2003) propose an agent-based simulation
with an ‘NK’ model in the background that is capable of mimicking hierarchical
organisations facing coordination challenges. According to their results, hierarchy,
which implies that some sort of integration and verification at the system level
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takes place, improves the search dynamics if design decisions are distributed
among various designers. An agent-based model to simulate distributed design
processes with a hierarchical structure is also part of the work done by Wöhr et al.
(2020). In a parameter study, they are able to demonstrate that the rate of system
integration has a considerable effect on the process dynamics. A game-theoretic
approach to analyse distributed design is used by Lewis & Mistree (1997, 1998).
They show that the order of design decisions influences the final product quality.

Computational methods are a powerful tool to study large-scale and complex
design processes in which distributed designs need to be integrated at some point in
order to verify requirements on multiple hierarchical levels. Yet, they also have a
significant disadvantage: strong simplifications and assumptions that need to be
made, especially in terms of human behaviour and decision-making.

An alternative approach to conduct studies in engineering design is the use of
human subjects experiments in so-called model worlds (Szajnfarber et al., 2020),
where participants are supposed to solve surrogate design tasks that are abstracted
from reality. Depending on the research objective, this can be done individually or
in groups. In both cases, it allows a systematic analysis of scientific hypotheses
under controlled conditions (Panchal & Szajnfarber 2020). The optimal timing of
product integration and requirement verification, however, has not been studied
with this kind of approach yet. An investigation, in particular under consideration
of real human design behaviour, would, for the first time, illuminate the combined
effect of process-related and human-related factors in distributed design.

Thus, in this paper, we present the results of an experimental multi-actor study
in which 32 subjects in groups of 2 solved 229 parameter design problems, where
the duration between each integration and verification was varied. We analyse the
required completion times, the process costs and the effect of coupling strength.

Our results provide two kinds of insights: first, a better understanding of how
coordination mechanisms, like integration and verification processes, affect major
performance metrics (development time, cost) of product development processes.
And, second, we provide a database for the calibration of simulation models.

System

Subsystem

Subsubsystem

Component

Verification

Verification

Verification

Component
Design

Requirement
Definition

Product
Realization

Figure 1. The V-model illustrating integration and verification steps on different hierarchical levels.
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The remaining paper is arranged as follows: first, literature on human subjects
experiments in engineering design is reviewed and the research goal is expressed.
Then, the research methodology is presented, which includes established work in
parameter design, a new concept of how integration and verification processes can
be combined with it, the graphical user interface (GUI) and the experimental
procedure. Finally, the results are shown, analysed and discussed, and a conclusion
is drawn.

2. State of the art
This literature review examines quantitative studies in engineering design, which
focus on experiments where human subjects need to solve surrogate design tasks.
First, we will explore research on single-actor studies, that is, where only one
subject participates at a time, and thenmulti-actor studies, that is, where groups are
involved. Beforehand, an established stage-gate type process model is used to
outline what stages/phases of product development processes such experiments
cover.

2.1. Parameter design task in product development

Laboratory experiments in which human subjects need to solve parametric design
tasks only represent a limited period of time in product development. To illustrate
that, consider the process model shown in Figure 2 (Ulrich and Eppinger, 2015).

According to this stage-gate model, product development processes can be
divided into six sequential phases: (i)Planning: assessment ofmarket opportunities
and new technologies, (ii) Concept Development: identification of customer needs
and specification of product concept, (iii) System-Level Design: definition of
product architecture and decomposition of requirements, (iv) Detail Design:
specification of component geometries and materials, (v) Testing and Refinement:
assembly of prototypes and evaluation of performance and (vi) Production and
Ramp-Up: product launch and start of manufacturing.

Parametric or ‘parameter’ design, where the goal is to assign proper values to
some (predefined) design variables, corresponds to Detail Design and Testing and
Refinement. The definition of geometries and materials during Detail Design, for
example, refers to the assignment of values to the design variables by the subjects
during an experiment. The assembly and testing of prototypes during Testing and
Refinement, on the other hand, refers to the evaluation of a specific set of values
that the subjects of an experiment have assigned to the design variables.

In earlier phases of product development, the product architecture is unknown
or just about to be specified. In terms of parameter design, this wouldmean that the
design variables themselves and the technical dependencies between them are
unknown. Thus, parameter design does not represent this phase.

At the final stage of product development, the design is fully specified (fixed)
and only has to be manufactured. In terms of parameter design, this would mean
that the values of the design variables are ‘frozen’ and subjects cannot manipulate
them anymore. Thus, parameter design does not reflect this phase either.

In summary, parameter design only represents a limited (yet important) phase
of product development where the physical properties of components (geometry,
material, etc.) are to be specified such that the overall design targets are satisfied.
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The signposting simulation method proposed by Clarkson and Hamilton (2000)
andWynn et al. (2006) also focuses on those later phases of product development.
Compared to the research approach used in this paper, however, signposting is an
agent-based (computational) framework to investigate product design processes.

2.2. Literature on single-actor studies

A large amount of research focuses on the decision-making of individual subjects,
that is, how they probe their design variables if the performance function is
unknown and has to be explored through trial and error. The study of Borji & Itti
(2013), for instance, presents an experiment in which 23 subjects are asked to
identify the optimum of an arbitrary 1-D function by using experimentation. They
reveal that human search is similar to Bayesian optimisation based on Gaussian
processes. The impact of cost and task complexity on the decision-making of single
subjects is studied byChaudhari &Panchal (2019). Based on a similar experimental
setup, they are able to show that both factors only affect the decision when to stop
searching, not the actual search strategy itself. In a context-related study (where
specialised domain knowledge is required in order to solve the task), Yu, deWeck,
& Yang (2016) analyse the behaviour of 22 subjects who are asked to design a
seawater reverse osmosis plant by using 10 key design variables. Compared to
previous results, they reveal that the decision-making of top ranked subjects can be
compared to awell-tuned simulated annealing algorithm, which is ameta-heuristic
optimisation technique that applies exploration and exploitation. An analysis of
the task completion time with respect to the task size for parametric, context-free
design problems is done by Hirschi & Frey (2002). After introducing a concept
called parameter design, the authors conduct an experimental study with 12 sub-
jects that solve a series of coupled and uncoupled parameter design tasks with 2, 3,
4 and 5 design variables. It is shown that both the coupling and the task size have a
significant effect on the task completion time. For a context-related design prob-
lem, similar results are obtained by Flager, Gerber, & Kallman (2014). In their
study, subjects are asked to design a building by manipulating 2–6 design variables
that are inside of a user interface which also shows a graphical representation of the
object. It turns out that larger design tasks lead to a lower solution quality if the time
available to solve a design task is held constant.

The effect of varying response times, that is, delays between the moment
subjects manipulate an input variable and observe the effect, is investigated by
Goodman & Spence (1978). Based on their study, in which 30 subjects are allowed
to use 5 design variables in order to fit a curve into a predefined area, a response
time of 1.49 seconds can already cause an increase in task completion time of 50%.
This is further examined by Simpson et al. (2005), who, based on a set of
experiments where subjects need to manipulate 2, 4 or 6 design variables to find
an appropriate wing design, claim that the response time, which is varied during

Planning
Concept

Development
System-Level 

Design
Detail Design

Testing and
Refinement

Production
and Ramp-Up

Planning
Concept

Development
System-Level

Design
Production

and Ramp-Up

Figure 2. Generic (sequential) product development process according to Ulrich and Eppinger (2015).
Parameter design represents the development work during Detail Design and Testing and Refinement.
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the study, does not only affect the task completion time but also the design
effectiveness (i.e., the error between the submitted design and the optimum). In
their case, a 1.5 seconds response time induces a 150% error. Others, like Simpson
et al. (2007), even note a 280% decrease in design effectiveness for the same
response time. A variety of investigations, such as Simpson et al. (2007) or Egan
et al. (2015), also examine the graphical representation of parametric design tasks
(text-based versus graphical, static versus animated). Their conclusion is that rich
GUI’s increase the subjects’ performance.

In summary, research on parametric single-actor studies provides an extensive
body of knowledge on how individual designers act in complex design scenarios.
Yet, most products are not developed by a single person but by a whole group of
people who must collaborate. Studies on this issue are reviewed in the following.

2.3. Literature on multi-actor studies

It appears as if considerably less research revolves around quantitative multi-actor
studies than around quantitative single-actor studies. One for our work important
contribution, however, is the research undertaken by Grogan & de Weck (2016).
They perform a series of experiments in which 10 groups of 3 subjects each solve
42 coupled and uncoupled parameter design tasks which are defined according to
the approach suggested by Hirschi & Frey (2002). By varying the technical and
social complexity, that is, the number of variables and subjects involved, it is shown
that collaboration, which means the team work that is required when design tasks
are solved by more than one subject, increases the completion time significantly. If
three subjects are involved instead of one, for example, they note a 90% higher task
completion time. A further examination of the raw data obtained by Grogan & de
Weck (2016) is performed by Alelyani, Yang, & Grogan (2017). They suggest
multiple regression models for subject-specific performance metrics, like the total
number of design iterations or the number of design iterations during which the
distance to the target area is reduced, depending on complexity and gender. The
research of Austin-Breneman, Honda, & Yang (2012) deals with game-theoretic
experiments in which subjects in groups of 3 have to solve a parametric satellite
design task with design variables onmultiple hierarchical levels. According to their
results, subjects have difficulties to understand the connection between subsystems
as they often falsely assume that their design decisions are divisible and independ-
ent. The authors also mention that subjects normally focus more on the individual
subsystems than the system-level perspective. This, in fact, emphasises the import-
ance of coordinated integration and verification processes which allow to assess
product properties on the system level that are influenced by design variables on
lower levels, such as the different sub(sub)system levels and the component level.

Instead of investigating the influence of collaboration between subjects, some
studies also examine the effect of competition between multiple subjects by using
parametric multi-actor design tasks, for example, Sha, Kannan, & Panchal (2014).
In their work, subjects in groups of 2 compete against each other by minimising an
unknown, randomly generated function that depends on a single design variable,
while each trial, that is, change of the design variable, comes at a specific cost. The
authors state that, for example, the cost per trial has a significant effect on how
many times each subject probes its function. Similar findings are presented by
Panchal, Sha, & Kanna (2017). They additionally notice that individuals shift their
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search strategies from exploration to exploitation, which in some sense confirms
that human behaviour is similar to a well-tuned simulated annealing algorithm
(Yu et al. 2016), and that the solution subjects assume their opponent has is at least
as good as the real optimum of the function. Finally, McComb, Cagan, & Kotovsky
(2015) perform an experimental study in which 48 subjects in groups of 3 solve a
truss design problem where some requirements at the system level are modified
during the task. Based on their results, successful groups tend to use different
problem-solving techniques in a sense that they select more simple designs and
search focused areas of the design space.

3. Research objective
As shown, literature on single- and multi-actor studies in engineering design
covers a wide range of topics like human decision-making, collaboration, team
dynamics or competition. Coordination procedures, like integration and verifica-
tion phases, which are predefined in large-scale companies in order to synchronise
distributed design teams, have not been analysed regarding their effect on devel-
opment time and process cost. This has led us to define the following research
question:

What is the relative effect of a varying time interval between each integration and
verification on development time and cost in case of small design problems (that are
represented by surrogate design tasks)?

We deliberately focus on small-scale design problems since they allow a better
understanding of the key mechanisms. It is possible that these effects also drive the
dynamics of real-world development processes.

Any answers obtained would be beneficial from a scientific point of view – but
also from an industrial perspective, since many organisations apply an integration
and verification strategy where the complete product is assembled and examined in
predefined time intervals, see Stanglmeier (2018) and Stanglmeier et al. (2018),
without being aware of what longer or shorter time spans would actually mean. In
fact, a ‘flexible’ integration of subsystems without fixed intervals, for example,
depending on the individual progress, could provide an additional alternative to
improve the efficiency of distributed design processes. Unfortunately, however, a
quantitative relationship between the integration and verification frequency and
development time is not known, which underlines the relevance of our research
question.

4. Research method
Our scientific approach is based on the parameter design framework (Hirschi &
Frey 2002; Grogan & deWeck 2016). We extend the theoretical foundation as well
as the software implementation of this framework to account for integration and
verification phases in distributed design processes.

4.1. Established groundwork in parameter design

Parameter design is a quantitative approach to investigate development processes
based on surrogate design tasks that are solved either by individuals or groups of
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subjects, while the required completion time is captured and evaluated regarding
different process performance metrics. Our notation is adopted from Grogan & de
Weck (2016). In each surrogate design task, a set of input variables, denoted as x,
can be altered in order to manipulate a set of output variables, denoted as y, for
which design goals (requirements) are specified. The mapping between input and
output variables, that is, the technical dependencies between them, is defined by the
coupling matrix M. Based on this, each system model can be described as:

y¼Mx: (1)

As in previous studies (Hirschi & Frey 2002; Grogan & deWeck 2016), we assume
linear dependencies between the input and output variables (note that this is a
strong assumption as real-world systems are often nonlinear). If the number of
input variables is N and the number of output variables is K , Eq. (1) becomes

y¼Mx)
y1
⋮
yK

2
64

3
75¼

m11 ⋯ m1N

⋮ ⋱ ⋮
mK1 ⋯ mKN

2
64

3
75

x1
⋮
xN

2
64

3
75: (2)

For simplicity, our analysis is restricted to N ¼K (i.e., same number of input and
output variables), which, as before, is in line with the procedure of former studies.
In uncoupled design tasks, only the diagonal elements ofM are nonzero numbers.
This means that each output variable yi only depends on the corresponding input
variable xj and the dependency mij. Fully coupled systems, on the other hand, are
characterised by coupling matrices M that include nonzero elements only, which
means that mij 6¼ 0∀i, j:

Tasks in parameter design are usually defined context free, which means that
no domain-specific expertise or expert know-how is needed in order to solve them.
This is essential for experimental studies in which the effect of special knowledge
shall be excluded, like in this paper.

An important measure to characterise the coupling strength of a system is the
design matrix trace, which, according to Hirschi (2000), compares the magnitude
of all diagonal elements to the Euclidean norm of all elements of the coupling
matrix if N ¼K (in our case, the coupling strength lies between 0.11 and 1.41):

tðMÞ¼
PN
i¼1

∣mii∣ffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i,j¼1

m2
ij

s : (3)

Note that this definition is not the same as the established mathematical definition
of a trace. In the following, any use of this term refers to Eq. (3).

The target values assigned to all output variables are denoted as y⋆ . A design
task is considered to be solved if the error function E, which we assume to be the
distance between each output variable and the corresponding target value, which
means

Ei ¼ jyi� y⋆
i j� �

, (4)

is less than or equal to the given error tolerance E⋆ , meaning that:

E y, y⋆� �
≤E⋆ : (5)
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By assigning an identical error tolerance to all output variables, that is, E⋆
i ¼ ε, the

problem statement for each surrogate design task can be formulated as:

findx, s:t:
���X

j

mijxj� y⋆
i

���≤ ε,∀i: (6)

In single-actor design scenarios, all input and output variables are assigned to the
same subject. Thismeans one actor controls all xj and, at the same time,monitors the
influence on all yi. In case ofmulti-actor design scenarios, however, input and output
variables are distributed among multiple subjects. Thus, one actor might observe a
change in its output variable yi, which is caused by a change of an input variable xj
that is controlled by a different actor. To formalise the assignment of input and
output variables, two binary matrices, I and O, can be used. The matrix I, with the
dimension n � N , where n represents the number of subjects, describes the
mapping of subjects to input variables. Each entry Isj is defined as:

Isj ¼
1, if  output j is assigned to subject s,

0, else:

�
(7)

In a similar way, the matrixO, with the dimension n�K , represents the mapping
of subjects to output variables. Each entry Osi is defined as:

Osi ¼
1, if  input i is assigned to subject s,

0, else:

�
(8)

4.2. Modelling integration and verification phases

In previous studies with a focus on multi-actor parameter design, such as the one
from Grogan & de Weck (2016), the flow of information between subjects was
assumed to be instantaneous. This means that any change in an input variable was
directly mapped onto all output variables. Real-world product design processes,
however, are usually characterised by phases in which stakeholders work isolated
from each other, without constant feedback on design changes until an integration
and verification takes place. This means that the information flow across domain
interfaces is blocked for some time during which stakeholders potentially rely on
obsolete design information.

In the automotive industry, for example, subsystems, like the engine, gear-box
or body, are developed by distributed design teams, who eventually do not receive
any design update from others for several weeks or even months. At some point,
these subsystems are then geometrically assembled and used as input for different
system simulations based on the finite element method (FEM), computational
fluid dynamics (CFD) ormultibody simulation (MBS), seeWöhr et al. (2020). This
is an integration. Once the simulations are completed, the results are compared to
the given requirements (e.g., some crash performance). This is a verification.

In order to incorporate these three phases, we extend the existing framework by
dividing each parameter design experiment into three phases that are repeated
periodically: (i) isolated design, (ii) integration and (iii) verification.

During isolated design, subjects manipulate their input variables to meet the
design targets (requirementsþ error tolerances) of their output variables, without
exchanging design information with other subjects. This means that, first, design
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changes related to the own input variables do not affect output variables assigned to
others, even if they depend on it. And, second, design changes related to input
variables that are assigned to other subjects do not affect the own output variables,
even if they depend on it. In essence, information flow across domain interfaces is
blocked during that time. To formalise this, we suggest amathematical extension of
the parameter design framework: for each subject there is a local representation of
the entire system model, consisting of xs ¼ xs1, …, xsN

	 

and ys ¼ ys1, …, ysK

	 

. Just

as before, xs and ys are related by:

ys ¼Mxs: (9)

Within xs and ys, a subject still only controls the input variables and monitors the
output variables that he or she is assigned to according to I andO. The remaining
entries are interim values that originate from the last integration and verification.

During integration, the latest status of all input variables is assembled based on
each local representation of x and the assignment of subjects to input variables
stored in I. First, each local representation is preconditioned (i.e., turned into ~xs),
such that only the entries a subject is responsible for remain:

~xsj ¼
xsj if Isj ¼ 1,

0 if Isj ¼ 0:

�
(10)

The most recent design, denoted as x0, is identified based on all ~xs:

x0 ¼
Xn
s¼1

~xs: (11)

The result x0 is then used to compute the most recent system performance y0, that
is, the current status of all output variables, based on Eq. (1).

During verification, the most recent system performance is then compared to
the design targets, see Eqs. (4) and (5), in order to evaluate whether the design task
is solved. If this is the case, the experiment is terminated. If it is not the case, each
local representation of x and y is updated based on the most recent design (x0) and
the most recent system performance (y0), which means that:

xs ¼x0f g∀s, (12)

and:

ys ¼ y0� �
∀s: (13)

After this, the next isolated design phase begins.
Note that subjects are not actively involved during integration and verification,

that is, the computations during both phases are performed automatically without
any interference or intervention. In reality, this might be quite different, as
integration and verification phases usually require intense human effort and
additional labour in order to process all of the design information (see description
of detailed design work during each integration and verification step in introduc-
tion of this paper). For simplicity, we neglect the specific activities performed
during both phases.

Each phase, that is, isolated design, integration and verification, has a prede-
fined duration: tiso,tint and tver. In our case, both the integration and verification
occur instantaneously (i.e., tint ¼ tver ¼ 0s). The duration of isolated design, on the
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other hand, is varied between 0, 3, 6, 9 and 12 seconds. Note that in case of
0 seconds, each design change, that is, update of xs and ys, performed by any of the
subjects is automatically followed by an integration and verification phase. This
means each local design modification triggers a system assembly and requirement
evaluation. The setup tiso ¼ tint ¼ tver ¼ 0s corresponds exactly to the information
exchange conditions used by Grogan & deWeck (2016).We associate lower values
of tiso with higher integration and verification frequencies (and vice versa).

Surrogate design tasks and the assignment of variables can be visualised with
attribute dependency graphs (or ADGs), see (Zimmermann et al. 2017; Rötzer et al.
2022). According to this concept, physical properties of a technical system, such as
the input and output variables in parameter design, are shown as vertices and the
dependencies between them, such as the linear functions that we assume, are
shown as edges. The colours reveal who controls and monitors which variable.
Figure 3a, for example, shows a simple single-actor design task with two input and
two output variables which are controlled andmonitored by the same subject. This
is representative for the research of Hirschi & Frey (2002). A multi-actor design
taskwith two input variables and two output variables that are split amongmultiple
subjects is depicted in Figure 3b. This is representative for the research of Grogan&
de Weck (2016). By contrast, the setting of this work is visualised in Figure 3c. In
this case, it is not possible to represent a design task by using a single ADG because
the current state of design is controlled by various subjects who (partially) work
isolated from each other.

4.3. Software implementation and user interface

Our new approach (for the investigation of integration and verification processes)
is integrated into an existing open-source software devised by Grogan (2019). In its
original state, the software, which contains a front-end and back-end, supports
parameter design experiments that are focused on single- and multi-actor settings
with varying degrees of technical and social complexity. For this study, we added an
algorithm to the back-end which organises the three recurring phases: isolated
design, integration and verification. It is set up in a way that allows the duration of
isolated design to be varied independently.

The unmodified front-end, or GUI, of the software architecture for a subject
who controls one input variable and monitors one output variable is depicted in
Figure 4. It contains two sliders: a vertical one for the input variable and a
horizontal one for the output variable. The relative position of both equals the

(a) (b) (c)

Figure 3. Attribute dependency graphs (ADGs) representing different design tasks
which are used in: (a) Hirschi & Frey (2002), (b) Grogan & de Weck (2016) and
(c) this work.
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status of xs and ys. Adjusting the output slider (during isolated design) is only
possible bymanipulating the input slider which, in turn, can be controlled by drag-
and-drop or by clicking the buttons on the top or bottom. As in previous studies,
changes made to the input slider (during isolated design) are instantly mapped
onto the output slider (of the own GUI) without a delay. Two small lines below the
output slider show the target area. If a subject reaches that area during amulti-actor
experiment, however, it does not automatically mean that the overall design task is
solved, as others may still try to reach their design goals. Yet, those might be
unachievable due to the latest input variables they received. Whether or not the
local design goals of a subject are currently satisfied is shown by a green tick or a red
cross on the right-hand side of the interface. A maximum duration is specified for
each design task after which an experiment is terminated. The time remaining to
solve a design task is displayed in the upper right corner. Note that each subject is
only permitted to observe his or her own GUI. The aim of this is to simulate the
communication barriers and limited information exchange inherent to distributed
design processes.

During isolated design, only the subjects themselves can cause a movement of
their output slider by manipulating their input slider. This allows them to probe
different designs in order to anticipate the dependency between xs and ys without
receiving constant feedback (possible disturbance) resulting from design changes
made by others. During each integration phase, the output sliders of all subjects are
then updated based on the latest y0. The new positions of all output sliders are then
compared to the target intervals during each verification phase. Again, note that
both of these phases occur instantaneously and the subjects are not involved. It can
be assumed that time delays caused by network latencies are small and so have no
impact on the results.

Figure 4. Graphical user interface of the open-source software from Grogan (2019).
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In an attempt to establish the same boundary conditions as in previous studies
(see Hirschi & Frey (2002) as well as Grogan & de Weck (2016)) subjects are not
informed about the dependencies between the input and output variables (M), the
assignment of subjects to input and output variables (I,O) and the numeric values
of the own input and output variables during an experiment. The GUI includes all
the information that subjects are aware of in the course of an experiment. The aim
of this is to prevent any reverse engineering that might allow subjects to solve
design tasks analytically.

4.4. Design of experiments and procedural setup

Selection of design tasks
Based on the theoretical foundation, we conduct two series of experiments: first,
a single-actor study with the goal to replicate previous results obtained by
Hirschi & Frey (2002) and Grogan & de Weck (2016). This step allows us to
confirm earlier findings and, thus, approve the reliability of our setup. As in both
of those studies, we use design tasks with 2, 3 and 4 input and output variables
that are all assigned to the same subject. This can be expressed as n¼ 1 (number
of subjects) and 2⩽N , K ⩽ 4 (number of input and output variables). All of the
three design scenarios in the first experimental series, for which the original
parameter design framework and initial open-source software is used, are shown
in Figure 5a–c. In a second multi-actor study, we then analyse the effect of
varying time intervals between each integration and verification by using design
tasks with two input variables, two output variables (N ,K ¼ 2) and two subjects
(n¼ 2). Each subject is responsible for one of the input and output variables.
This scenario is illustrated in Figure 5d. At this point, we apply the extended
parameter design framework and the adjusted open-source software outlined
above to vary the time span between each integration and verification between
0, 3, 6, 9 and 12 seconds.

Design task generation
In order to be consistent with the practice of Grogan & deWeck (2016), we use the
same concept to generate design tasks, which implies randomising M and y⋆ .
With respect to the coupling matrixM, this means establishing orthonormal bases
of vectors, whereby the entries are chosen from a uniform distribution 0, 1ð Þwhile
assuming mi,j ∈ �1;1½ �. This ensures an appropriate relation between input and
output variables and guarantees uniquely determined design tasks with one exact
solution. The target vectors y⋆ are also established by composing an orthonormal
basis of vectors that are drawn from a uniform distribution 0, 1ð Þ; here the entries
are y⋆

i ∈ �1;1½ � and the Euclidean norm of each vector is ky⋆ k¼ 1. This setup
ensures a standardised distance to the solution for all design tasks. Furthermore,
we define the range of possible inputs as xj ∈ �1;1½ � and the initial conditions as
x0¼ y0¼ 0. It is guaranteed that the starting position is not directly an acceptable
solution. To fully comply with the study of Grogan & de Weck (2016), we use an
error tolerance of ε¼ 0:05 and choose surrogate design tasks which are fully
coupled, that is, mij 6¼ 0∀i,j.
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Subjects and procedure
A total of 34 subjects from an automotive manufacturing company participated
in the experiments, which were conducted virtually via an online communica-
tion platform. All subjects, whose demographic data are shown in Table 1,
received an email containing basic information about the study together with
an invitation to take part on a voluntary basis. None of them received compen-
sation. All subjects were divided into groups of 2 and then assigned to a 90minute
time slot (session), arranged based on their availability. At the beginning of each
session, each group was introduced to the user interface (GUI), familiarised with
the objective of the study and informed about the rules. Rules contained two
major requests: first, not to use any external tool, such as pen and paper, or a
calculator (even if numeric values were not displayed) to further reduce the risk
of reverse engineering and, second, not to engage in any form of communication,
for example, talking or messaging, since we observed in a preliminary study that
conversations among subjects can affect the dynamics of experiments consid-
erably, especially if individual subjects dominate others and attempt to
coordinate the decision process. Finally, multiple training rounds were per-
formed to enable the subjects to become accustomed to the experimental setup
and the given rules.

Then, the main part of each session began. This included a set of single-actor
experiments done individually and simultaneously, along with a set of multi-actor
experiments, done in pairs. A list of all design tasks presented to the subjects is
given in Table 2. In both studies, the order of tasks was randomised to prevent any
learning or adaptation of behaviour during the experiments. There were, however,
two exceptions: the 4 � 4 design tasks were not presented at the beginning of the
single-actor study, and the design tasks with 12 seconds between each integration
and verification were not presented at the beginning of the multi-actor study. This
was done in order not to overstress, confuse or demotivate the subjects by giving
them a challenging task right away. It can be assumed that these exceptions had a
negligible effect and that the randomisation negated any influences thatmight have
been caused by the order of the design tasks. Each set of repetitions (three per task
size and three per interval) was performed together.

Before each experiment in the multi-actor study, the subjects were informed
about the current time interval between each integration and verification to enable
them to anticipate when design information is to be shared (like in reality). After
each session, a qualitative evaluation sheet was sent to the subjects, in which they
could give feedback and explain their decision-making.

(a) (b) (c) (d)

Figure 5.Attribute dependency graphs (ADGs) representing different design tasks in our experimental study:
(a), (b), (c) single-actor study and (d) multi-actor study.
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Table 1. Demographic data of the subjects who took part in the single- and multi-actor study. Data was reported by the subjects themselves. Note
that only 32 of the 34 subjects participated in the multi-actor study

Category Option Number Percentage Category Option Number Percentage

Overall 34 100 Employment status Intern 11 32.35

Industry Automotive 34 100 Writing thesis 2 5.88

Gender Male 26 76.47 Working student 1 2.94

Female 8 24.24 PhD candidate 1 2.94

Age 18–24 12 35.29 Senior employee 19 55.88

25–29 6 17.65 Work experience in None 9 26.47

30–34 7 20.59 a technical field 1–2 years 6 17.65

35–39 4 11.76 3–4 years 8 23.53

40–44 2 5.88 5–6 years 4 11.76

45þ 3 8.82 7þ years 7 20.59

Nationality German 29 85.29 Frequency of Never 17 50

Other 5 14.71 interaction with Once 1 2.94

Education High school 8 23.53 other subject Rarely 8 23.53

Bachelor’s degree 9 26.47 Monthly 2 5.88

Master’s degree 12 35.29 Weekly 3 8.82

Doctoral degree 5 14.71 Daily 3 8.82
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5. Results
This section presents the results of the single- and multi-actor study by illustrating
the data graphically and describing the observed effects.

We also employ a number of statistical methods to compare our results with
those of Grogan& deWeck (2016) (single-actor study) and to evaluate whether the
time interval between each integration and verification has a significant effect on
the task completion time (multi-actor study).

5.1. Single-actor study

Table 3 shows the descriptive data of the single-actor study regarding the effect of
different task sizes on the task completion time compared to the results obtained by
Grogan & de Weck (2016). Of the 291 design tasks shown to the subjects, 8 have
been omitted due to connection issues and time overruns. Thus, 283 samples
remain.

Graphical representation
Figure 6 shows the results of the single-actor study compared to the data obtained
by Grogan & de Weck (2016). The size of a box represents the interquartile range
(IQR), which is defined as the distance between the first quartileQ1 (median of the
lower half of a data set) and the third quartileQ3 (median of the upper half of a data
set), that is, IQR¼Q3�Q1. The lower and upper whisker represent the minimum
andmaximum values of each data set, that is,Q1�1:5IQR andQ3þ1:5IQR, if the
outlier (shown as plus signs) are excluded. The horizontal bar within each box
illustrates the median.

Description of results
The data indicates that both experimental series match each other well not only
when comparing them regarding a specific task size but also when analysing their
trend regarding an increase in task size. In general, larger design tasks have two
significant consequences: first, on average, more time is needed in order to solve
them as themean andmedian increase exponentially with the task size and, second,
the distance between the minimum and maximum times needed increases along

Table 2. Experimental procedure of the single- and multi-actor study. 2 � 2 design tasks have 2 input
variables and 2 output variables, 3 � 3 design tasks have 3 input variables and 3 output variables and
4 � 4 design tasks have 4 input variables and 4 output variables

Single-actor study Multi-actor study

Task size Repetitions Max. time tiso Repetitions Max. time

2 � 2 3 per subject 2 minutes 0 seconds 3 per pair 15 minutes

3 � 3 3 per subject 4 minutes 3 seconds 3 per pair 15 minutes

4 � 4 3 per subject 10 minutes 6 seconds 3 per pair 15 minutes

9 seconds 3 per pair 15 minutes

12 seconds 3 per pair 15 minutes
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with the number of design variables as the IQR and the distance between the lower
and upper whiskers increase. In fact, compared to design tasks with two input and
two output variables, design tasks with three and four input and output variables
also display more outliers.

Table 3. Statistical properties of task completion times obtained for the single-actor study compared to
Grogan & de Weck (2016)

Our results Grogan & de Weck (2016)

Task size 2 � 2 3 � 3 4 � 4 2 � 2 3 � 3 4 � 4

Min (seconds) 5.38 8.68 24.18 3.76 5.77 18.29

Q1 (seconds) 9.77 29.05 62.66 8.96 29.13 59.92

Median (seconds) 12.96 42.08 92.24 14.36 39.95 110.20

Q3 (seconds) 19.49 64.64 150.33 20.81 59.05 151.31

Max (seconds) 38.44 188.86 527.33 39.98 201.94 368.03

Mean (seconds) 15.36 53.40 121.10 15.85 56.09 118.29

Std. dev. (seconds) 7.85 36.74 90.91 8.20 44.50 78.74

Total tasks 99 101 91 60 60 60

Omitted tasks 0 3 5 9 9 19

2 x 2 3 x 3 4 x 4
0

100

200

300

400

500

600

Our results
Grogan and de Weck (2016)

Figure 6. Results of the single-actor study compared to Grogan & de Weck (2016).
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Statistical analysis
As the correlation between task size and task completion time is already well
known (Hirschi & Frey 2002; Grogan&deWeck 2016), we do not attempt to prove
a significant relationship between these two variables. To evaluate the reliability
and repeatability of our setup, we apply a statistical test which compares our data to
the data obtained by Grogan & deWeck (2016) for the 2� 2, 3� 3 and 4� 4 task
sizes. Therefore, it is necessary to analyse whether or not the associated data is
normally distributed. A Shapiro–Wilk test (Shapiro & Wilk 1965; Royston 1992)
performed on each sample (see Table 4) reveals that the p-value is considerably
smaller than the given significance level. Hence, our hypothesis (data is normally
distributed) can be rejected for every sample.

Based on the results of the Shapiro–Wilk test and the fact that the two samples
are independent for each task size, the Mann–Whitney U test (Mann & Whitney
1947) can be applied in order to evaluate whether there is a significant difference
between each of these pairs. The results of the test for each task size are presented in
Table 5. It can be seen that in all three cases the resulting p-value is larger than the
given significance level of 0:05. This means that our hypothesis for each task size
(no significant difference between both samples) must be retained.

In summary, both the visual inspection and the statistical analysis show that
there is no significant difference between our results and those of Grogan & de
Weck (2016) for the single-actor study.

5.2. Multi-actor study

The experimental results of the multi-actor study are analysed in three ways: first,
the time interval between each integration and verification is assessed regarding its
effect on the task completion time. Then, the coupling strength between actors is
analysed on whether it influences the occurrence of high task completion times.
And finally, the time interval between each integration and verification is studied
regarding its simultaneous effect on the task completion time and process cost.

Effect of time interval between each integration and verification
Table 6 presents the descriptive statistics of the multi-actor study when comparing
different time intervals between each integration and verification in terms of their
effect on the task completion time. Of the 229 design tasks shown to the subjects,
4 have been omitted due to connection issues and time overruns. Figure 7 shows
the associated data graphically based on the same type of diagram used before in
the single-actor study.

Description of results. Increasing the time span between each integration and
verification has multiple effects on the task completion time. For one, the average
time required to solve a design task increases continuously as can be seen by the
median values between 0 and 12 seconds. Doubling the time span from 3 to
6 seconds, or from 6 to 9 seconds, results in a 40–71% increase in task completion
time. Furthermore, the difference between the shortest and the longest time
required to find a good design can also be seen to increase when observing the
range between 0 and 6 seconds. This is evidenced by the growth of both the box and
the distance between the two whiskers. However, between 6 and 12 seconds, this
trend cannot be confirmed. Instead, the variance of the distribution remains
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roughly the same and between 6 and 9 seconds, it even decreases. Between 6 and
12 seconds, the vertical position of the box stabilises and between 9 to 12 seconds, it
even drops slightly even though the median continues to increase, as stated above.
The duration between each integration and verification does not seem to effect the
number and intensity of outliers.

Table 4. Shapiro–Wilk test (Shapiro & Wilk 1965; Royston 1992) for the single-actor study, with a
significance level of α¼ 0:05

Our results Grogan & de Weck (2016)

Task size 2 � 2 3 � 3 4 � 4 2 � 2 3 � 3 4 � 4

df 99 98 86 51 51 41

Wstat 0.8919 0.8355 0.7762 0.9405 0.7889 0.8638

p-value <0.001 <0.001 <0.001 <0.015 <0.001 <0.001

Table 5. Mann–Whitney U test (Mann & Whitney 1947) for the single-actor study, with a significance
level of α¼ 0:05

Task size Umin μU σU z-value p-value

2 � 2 2330 2475 249 –0.583 0.56

3 � 3 2423 2474 248 –0.204 0.83

4 � 4 1752 1763 194 –0.058 0.95

Table 6. Statistical properties of task completion times obtained in multi-actor study

Time interval between each integration and verification (tiso)

0 seconds 3 seconds 6 seconds 9 seconds 12 seconds

Min (seconds) 5.27 9.00 12.00 27.00 12.00

Q1 (seconds) 10.42 18.00 30.00 49.50 48.00

Median (seconds) 14.94 30.00 42.00 72.00 84.00

Q3 (seconds) 28.81 73.50 111.00 126.00 120.00

Max (seconds) 697.03 174.00 444.00 621.00 364.00

Mean (seconds) 50.74 51.47 81.87 109.00 98.05

Std. dev. (seconds) 119.39 46.48 86.06 111.42 67.05

Total tasks 48 45 45 47 44

Omitted tasks 1 0 0 2 1
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Statistical analysis. Applying a statistical test to prove that the time intervals
between each integration and verification significantly affect the task completion
time again depends on whether the corresponding data is normally distributed. A
Shapiro–Wilk test is performed on each sample, that is, for all task completion
times obtained for a specific time interval between each integration and verification
(see Table 7). It can be seen that the p-value for all samples is below the significance
level, that is, the critical threshold. This means that our hypothesis, that is, that the
data obtained is normally distributed, must be rejected for each sample.

According to the outcome of the five Shapiro–Wilk tests and the circumstance
that all of the samples are dependent, a Skillings–Mack test (Skillings &Mack 1981;
Chatfeld & Mander 2009) is used to assess whether there is a significant relation-
ship between the time span between each integration and verification and the task
completion time. This statistical test is an extension of the more familiar Friedman
test. It is used when data is missing, whether by design or by accident. In our case,
the test results in a p-value of < 0:001 with χ 2ð4Þ¼ 73:97, which is considerably
smaller than the significance level of 0:05. This means that there is a significant
relationship between the time interval between each integration and verification
and the task completion time.

Effect of technical coupling strength between subjects
Asmentioned previously, the aim of generating design tasks based onGrogan & de
Weck (2016) is to create a randomised (individual) coupling matrix and target
vector for each experiment. This ensures that the findings are valid for any linear
set of equations with a balanced relationship between input and output variables,
and not just for one specific design task.When assigning technical responsibility to
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Figure 7. Results of the multi-actor study.
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different subjects (see I andO), however, randomised coupling matrices result in a
different setting each time regarding how strongly the design decisions of one
subject (variation in input variable) influence the system performance of another
subject (variation in output variable).

To illustrate this, consider the 2� 2 systemmodel used in themulti-actor study
with the coupling matrixM, the output variables y1 (assigned to subject A) and y2
(assigned to subject B) and the input variables x1 (assigned to subject A) and x2
(assigned to subject B):

y1
y2

� �
¼ m11 m12

m21 m22

� �
x1
x2

� �
: (14)

Here, the randomly defined entries of the coupling matrix determine how strongly
a change made by subject A to x1 influences subject B’s variation of y2 and how
strongly a change made by subject A to x1 influences its own output variable, and
vice versa.

The (design matrix) trace t Mð Þ is an essential quantity for characterising the
coupling strength of a system. In our case, it also measures how strongly subjects
influence their own output variable compared to the overall dependency strength,
see Eq. (3). Applied to Eq. (14), the trace can be written as:

tðMÞ¼ ∣m11∣þ ∣m22 ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

11þm2
12þm2

21þm2
22

p : (15)

A large trace indicates that both subjects influence their own output variable more
than they do the output variable of the other subject. A small trace, in comparison,
indicates that both subjects influence the output variable of the other subject more
than their own one. In this study, the trace therefore represents relative measure,
which compares the dependencies within an area of responsibility to the sum of all
the dependencies at play.

We will now examine all task completion times of the multi-actor study under
consideration of all trace values that can be determined for each experiment based
on the corresponding coupling matrices. Again, note that the trace values are not
directly controlled like an independent variable but result from the generation of
design tasks according to the procedure of Grogan & de Weck (2016). Figure 8
shows the associated data.

Table 7. Shapiro–Wilk test (Shapiro & Wilk 1965; Royston 1992) for the multi-actor study, with a
significance level of α¼ 0:05

Time interval between each integration and verification (tiso)

0 seconds 3 seconds 6 seconds 9 seconds 12 seconds

df 47 45 45 45 43

Wstat 0.3654 0.8008 0.7077 0.5887 0.8312

p-value <0.001 <0.001 <0.001 <0.001 <0.001
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Description of results. Overall, lower values of the design matrix trace cause higher
task completion times as, for example, 14 design tasks with a trace of less than one,
that is, t Mð Þ< 1, are completed in over 200 seconds, whereas only 1 design task
with a trace of more than one, that is, t Mð Þ> 1, is solved in over 200 seconds
(which corresponds to a ratio of 93% to 7%). Furthermore, 16 of the 18 (88:89%)
design tasks that are either outliers or not completed have a trace of less than one.
Hence, the task completion time changes considerably depending on the coupling
strength of a system, as can be seenwhen assessing the data as awhole. Now, wewill
analyse the different time intervals between each integration and verification
separately. This allows two major observations. First, for time intervals of 3, 6,
9 and 12 seconds, the average task completion time and the statistical variance
increase at a roughly constant rate, if the trace is reduced. Second, for time intervals
of 0 seconds, the task completion time remains approximately constant between
t Mð Þ≈ 0:7 and t Mð Þ≈ 1:4 and increases between tðMÞ≈ 0:7 and tðMÞ≈ 0:1.

Relationship between task completion time and theoretical cost
Different time intervals between each integration and verification might affect
not only the task completion time but also other metrics that are used to
characterise the performance of development processes. Here, we specifically
analyse the cost that would be incurred if subsystems are integrated and verified
more frequently.

In order to determine the theoretical process cost of an experiment, we assign a
nondimensional cost factor to each integration and verification (civ) and to each
iteration (cit), by which we mean each design change (update of xs, ys) performed
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Figure 8. Results of the multi-actor study evaluated with respect to coupling strength
and task completion time for different time intervals between each integration and
verification.
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by any of the subjects. Based on the number of integrations and verifications (niv)
and the number of iterations (nit), both of which are tracked during an experiment
and a generic (linear) cost model suggested by Wöhr et al. (2020), the total costs
(ctot) can be determined as follows:

ctot ¼ nit citþniv civ with : κ¼ cit
civ

: (16)

While the cost of each integration and verification might be thought of as the
monetary expense of assembling a complete product based on a number of
computer-aided design files or performing a system analysis, the cost of each
(local) iteration can be seen as the financial expense incurred by each stakeholder
individually when a component design is modified and evaluated with respect to
the given requirements without informing others about it.

We study the tradeoff between task completion time and theoretical cost based
on two illustrations: Figure 9a, which shows all the task completion times and
associated costs for κ¼ 0:1, meaning that each assembly costs 10 times as much as
each local design change – a reasonable assumption when compared to reality.
Figure 9b illustrates the centre of each data cluster, that is, the median of all task
completion times versus the median of all theoretical costs, when the costs are
computed for three different scenarios (κ¼ 0:1,κ¼ 1,κ¼ 10). Each scenario is
additionally approximated by a first-order polynomial regression. The subjects
were not informed about any costs or cost analysis performed afterwards.

Description of results. In Figure 9a, the samples for each time interval form
separate clusters at different locations inside the parameter space spanned by
the task completion time and theoretical process costs. While design tasks with
little time between each integration and verification are characterised by relatively
high costs and low task completion times, those with long time intervals between
each integration and verification display relatively low costs and high task
completion times. Besides the location of the clusters, their shape reveals another
important finding. In case of 0 seconds time intervals, for example, the data is
spread over a rather broad area, whereas for intervals of 3, 6, 9 and 12 seconds, the
data points approximate a straight line.

The centres of gravity of the clusters (pairs of median values) shown in
Figure 9a are depicted in Figure 9b (shown as plus signs). Both their location
and the first-order polynomial regression (for κ¼ 0:1) confirm the previous
observations. The slope of the regression model depicts the tradeoff between
development time and cost for a varying integration and verification frequency.
Its negative incline shows that both performance measures are subject to a conflict
of goals (each one can only be improved at the expense of the other).

With an increasing cost ratio κ, the regression model and the tradeoff between
development time and cost change significantly. A tipping point can be observed at
about κ ¼ 1. In this case (where each integration and verification costs as much as
each local design iteration), development time can be reduced at constant cost if the
integration and verification frequency is increased. For even higher values of κ, the
regression model has a positive slope. This means that both development time and
process costs can be reduced simultaneously if the time interval between integra-
tion and verification is shortened. Thus, in this case, there exists no conflict of goals.
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6. Discussion
In this section, we discuss the methodical research approach and the experimental
results. At first, we interpret the outcome of the single- and multi-actor study and
suggest possible causes for the observed effects. Then, we present the limitations of
our work. And finally, we outline the implications for academia and industry.

6.1. Interpretation of the results

The following explanations for the results of the single- and multi-actor study are
based on logical reasoning and the analysis of a survey which subjects responded to
after each session. Direct quotes are translated from German into English.

Single-actor study
Based on the high level of agreement between our experimental data and the data
from Grogan & de Weck (2016), two major findings can be presented: first, the
impact of task size on task completion time for design tasks with two, three and
four input and output variables, for which Grogan & de Weck (2016) provide a
statistical correlation, is confirmed. In this sense, our work might be considered a
replication study that verifies some of the earlier findings in this field. Second, our
experimental setup (GUI, back-end and subject selection) is found to be reliable
and produces similar results as previous studies conducted under the same
boundary conditions.

The minor deviations between our data and the data from Grogan & de Weck
(2016) might be attributed to the slightly different GUI (e.g., buttons above and
below the input sliders), the demographics of the subjects (e.g., work experience,
average age) and the network delays due to the virtual format of the study.
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Figure 9. Influence of varying time interval (between each integration and verification) on task completion
time and theoretical cost for: (a) a fixed ratio of κ ¼ 0:1 and (b) median values and first-order polynomial
regression for a varying κ.
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Multi-actor study
The outcome of the multi-actor study provides numerous insights. First of all, we
are able to confirm that varying the frequency of integration and verification has a
significant impact on the task completion time. On average, shorter time intervals
between each integration and verification allow subjects to solve the design tasks
faster (40–71% reduction of task completion time if the time interval is cut in half).
This effect could be due to the rapid information exchange, as any update of an
input variable is instantly mapped onto all other output variables and only little
time is ‘lost’ by waiting for design changes that subjects require to reach the own
target area. For low integration and verification frequencies, one subject, for
example, noted that: ‘I frequently had to wait for a long time until I could see the
effect of my partner’s input variable’. Fast feedback on design changes is found to be
an important factor influencing the task completion time as another subject added:
‘Late feedback made it harder to find a solution’.

Some also tried to anticipate the decision-making of others while observing the
impact of their actions on the own output variables. Here, frequent integration and
verification also made it easier for subjects to understand the actions of their
counterpart. One subject, for example, mentioned: ‘With a time delay, it is more
difficult to grasp the behaviour of the other person’.

Frequent integration and verification, however, can, in some cases, also lead to
long task completion times, as evidenced by outliers and uncompleted tasks. This
might be because some subjects are irritated and stressed by the rapid and at times
unpredictable movements of their output slider as the other subject randomly tests
different locations of their input slider. One subject stated: ‘With a time delay, it
was significantly more comfortable as it made the collaboration calmer, with no
hectic back and forth movements of the sliders – way more transparent’. Another
subject said: ‘Without any time delay, it almost felt like we were fighting against each
other’. Hence, high integration and verification frequencies can also induce diffi-
culties for subjects, which may even lead to higher task completion times. We
expect this effect to be even stronger in case of larger (and more complex) design
tasks that represent real-world development problems more accurately. Feedback
from designers of an automotive company revealed that design teams sometimes
even refuse to incorporate new design information provided to them so that they
can optimise their subsystem without disturbance.

Besides the integration and verification frequency, other factors also influence
the task completion time. Our results suggest two additional factors of influence:
first, the composition of the test groups, that is, the allocation of subjects into pairs,
which always combines two specific decision-making strategies. If these provoke
some kind of self-excited oscillations, it might favour high task completion times.
One of our test groups, for instance, is responsible for 2 of the 14 outliers and 3 of
the 4 uncompleted tasks, which corresponds to 28% of the 18 design tasks that are
either outliers or uncompleted. This effect, however, has not been statistically
examined. The second factor is the coupling strength of a system, which appears to
have a considerable influence on the task completion time.We are able to show that
low trace values favour high task completion times, that is, it takes considerably
longer to solve a design task when subjects influence the output variables of other
subjects more than their own one. This seems reasonable, as subjects who have a
greater effect on others than on themselves can create considerable disturbances
when moving their own input slider and, thus, induce additional design iterations.
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An exception is the time interval of 0 seconds between each integration and
verification. In this specific case, the task completion time neither increases nor
decreases when the trace is varied (if the trace is generally high). Hence, a frequent
information flow appears to stabilise the task completion time even when the
coupling strength of a system rises or falls. This might be because subjects receive
immediate feedback on their design decisions and notice that their behaviour is
causing difficulties for others. However, no subject mentioned any experiences
related to this.

Our results also highlight the relationship between task completion time and
theoretical cost when varying the integration and verification frequency. We show
that the tradeoff between both metrics is greatly dependent on the assumed cost of
each local design iteration and each integration and verification. In particular, a
conflict of goals between short task completions times and low cost emerges, if each
integration and verification costs significantly more than each local iteration. This
is because, in this scenario, the overall costs are dominated by the integration and
verification steps, which occur frequently and induce high specific costs each time.
Each additional integration and verification therefore significantly increases the
accumulated cost, while also allowing a reduction in the task completion time. If
each local design iteration costs as much as (or more than) each integration and
verification, this conflict of goals resolves as each integration and verification step
has less influence on the overall cost. Thus, in such situations, more frequent
integration and verification results in shorter task completion times and constant
(or even lower) costs.

6.2. Limitations and constraints

Unfortunately, our research approach is also subject to certain limitations. One is
the parameter design framework itself, which greatly simplifies design processes, as
it neglects several factors of influence, such as domain-specific know-how and
teamwork. In addition, subjects are uninformed about the technical dependencies
between their input and output variables. In reality, however, designers often use
analytical formulas and surrogate models in order to comprehend the behaviour of
their system, whichmay enable them tomore quickly identify a proper design. This
might also be supported by direct communication (talking, messaging, etc.)
between subjects, which we did not permit.

Another limiting factor is the size and structure of the surrogate design tasks
used in both studies. Even though small-scale application problems, like the 2� 2,
3 � 3 and 4 � 4 design tasks, allow transparency and traceability, they only
represent reality to a certain degree, as real-world design problems contain more
design variables and quantities of interest. Usually, they also include product
properties on multiple hierarchical levels instead of just two, for example, x, y
and z where y¼ f xð Þ, z¼ f y

� �
. This means that, in terms of their responsibility,

subjects are positioned side by side as well as above and below each other. Finally,
note that the physical dependencies between product properties are not always
linear (as assumed in our case) but can also be nonlinear, whichmightmake design
tasks more difficult to solve. Therefore, it is difficult to assess the degree to which
our findings can be generalised to larger and more complex design tasks, which
might more precisely reflect actual development processes.
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In reality, complex systems also require integration and verification processes
that are more advanced than the ones for which we provide a theoretical approach.
Often times, for example, subsystems are assembled asynchronously rather than
synchronously, which means that some parts of the complete product are merged
more frequently than others, for example, because many design changes occur or
because each integration and verification comes at a low cost. The framework we
suggest, however, only considers synchronous product integration. In real-world
product design scenarios, integration and verification phases also have a specific
duration, that is, tint 6¼ 0 and tver 6¼ 0. For the sake of simplicity, we did not
take this into consideration.

A final limitation concerns the generic cost model, which we use to study the
tradeoff between the task completion time and the process costs. This is a strong
simplification of the actual costs that arise during real-world product development
processes, in particular, because it combines many of the typical cost factors and
assumes a linear relation between the independent variables and the overall cost.

6.3. Implications and relevance

Our work contributes to the field of engineering design by applying an established
framework (parameter design) to a new research problem (influence of integration
and verification frequency on task completion time and costs). In the following, we
differentiate between the implications of this study for academia and industry.

Academia
In terms of its scientific contribution, our work may provide progress in two ways:
first, it enhances the understanding of coordination processes like integration and
verification in distributed design, since we explore the benefits and limitations of
different process configurations quantitatively. In this respect, our insights along
with findings of future studies based on our theoretical approach could be useful.
And second, our experimental data provides a basis for analytical processmodels to
be calibrated with. This could be significant asmany analytical process models lack
empirical validation due to the absence of objective data.

Industry
In terms of its practical contribution, our study might be beneficial to those who
manage integration and verification processes in large-scale companies. Here, we
provide three helpful guidelines (assuming that integration and verification itself
takes no time): first, if the only goal is to reduce development time, the integration
and verification frequency should be as high as possible. Second, if process costs are
also considered and each integration and verification costs much more than each
local design iteration, the integration and verification frequency is typically subject
to a conflict of goals between reaching a low development time and a low overall
cost. This means that the integration and verification frequency should be chosen
carefully based on the desired development time and the available budget. And
third, if each integration and verification costs as much as or much less than each
local design iteration, higher integration and verification frequencies should yield
lower development times at constant or even lower costs. Thus, in this case, the
shortest interval between each integration and verification should be chosen.
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The dynamic tradeoff between development time and cost might be significant
for organisations that are about to implement digital methods in their engineering
design processes, in particular because those methods usually reduce the specific
cost of each integration and verification (causing a change in κ from low to high).
Thus, the adoption of digital andmodel-basedmethodsmay (at some point) lead to
a tipping point at which higher integration and verification frequencies are better
not only regarding development time but also regarding cost.

7. Conclusion
In this paper, we presented an empirical study on the effect of different integration
and verification frequencies in distributed design processes. For this purpose, we
extended the established parameter design framework of Hirschi & Frey (2002)
and Grogan & de Weck (2016) to account for three distinct phases that subjects
pass through iteratively as they take part in a multi-actor experiment. Those three
phases are isolated design, integration and verification.

A single-actor study to validate our methodical approach was conducted with
34 subjects who solved 291 coupled parameter design tasks with 2, 3 and 4 input
and output variables. This study confirmed previous findings in this field (Grogan
&deWeck 2016) as well as the reliability of our setup. A second (multi-actor) study
required the same subjects (in groups of 2) to solve 229 coupled parameter design
tasks with 2 input and 2 output variables, whereby the time between each integra-
tion and verification was varied between 0, 3, 6, 9 and 12 seconds. This led to the
following three insights: first, on average, higher integration and verification
frequencies allowed subjects to solve design tasks significantly faster. Doubling
the time interval between each integration and verification, for example, resulted in
an increase in task completion time of about 40–71%. Second, the coupling
strength of a system, which in our study also marked the extent to which a subject
affected his or her own output variable compared to the overall coupling strength,
also had a considerable influence on the task completion time. At high integration
and verification frequencies, however, this effect seemed to disappear. And third,
when taking into consideration potential process cost, a conflict of goals emerged
between attaining a short task completion time and a low cost if the specific cost of
each integration and verification step was significantly higher than that of each
local design iteration. However, if the specific cost of each local design iteration was
significantly higher than that of each integration and verification step, we did not
detect any conflict of goals and higher integration and verification frequencies
resulted in both shorter task completion times and lower overall costs.

Note that considerable limitations exist which might affect the generalisability
and validity of our results.

8. Outlook
Future work in this field could have three goals: first, to analyse our experimental
data in more detail, that is, on the level of individual design decisions represented
by the movements of the input sliders. This would allow more conclusions
regarding the design behaviour of the individual subjects. Second, to repeat our
study using different boundary conditions (e.g., larger design tasks, nonlinear
dependencies, asynchronous integration and verification phases). Third, to extend
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the parameter design approach even further to enable the investigation of design
tasks with three ormore hierarchical levels in which subjects are positioned side by
side as well as above and below each other in terms of their assigned responsibility.
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