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1.1. The object of this paper is to investigate some properties of
series which satisfy conditions of the form

(1.11) £<?> = 0
or

(1.12)

where 0 < p 52 p. 8%* denotes, as usual, the n-th Cesaro sum of order
^ ). I t is

n J
convenient to state here some properties of Sffl and A®* to which we
must constantly refer in the sequel.

LEMMA 1. The functions 8^ and A^ possess the following properties:

(1.13)
= 0
n

(1.14) S Sip) A%Lr = Sj f + t + 1 ) ,
v=0

(1.15) ""

where p is not a negative integer. If p is a negative integer A^ = 0
when n ^ — p.

These results are all well known.
The relations (1.11) and (1.12) may be regarded, from our point

of view, as simplified forms of the more extended relations

(1.16) S%» = sAW + 0

(1.17) 8%) = sAW -|

where 0 < p ^ p. More precisely we have the following lemma.
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LEMMA 2. / / the series So n satisfies (1.16) the series T,un, where

(1.18) «n = a n - 5 ^ (
n - 1 )

>

satisfies (1.11). / / Sa n satisfies (1.17) the series "Lvn, where

(1.19) vn = an-sA'-l)-XAi-"-l\
satisfies (1.12).

Let T^ be the n-th Cesaro sum of order p for the series S vn.
Then, by (1.13) and (1.14),

= £ ^ l f l r o , - s S ilj,"!, J ' - 1 1 - A S "
w = 0 f = 0 v -0

= o (»*-').

The proof of the first result is obvious.

1.2. It will be observed that series which satisfy (1.16) or
(1.17) are "more than" summable (C, p). Generally speaking, the
theorems of this paper may be regarded as analogues, for series which
are " more than " summable (C, p) of certain known1 theorems for
series which are " less than " summable (0, p). It is convenient for
purposes of reference to state these known theorems here.

THEOREM 1. / / *S<f» = 0 (np+p), 0>O, then the series Zn-*an is
summable (C, p) for any y> p.

THEOREM 2. If S^ = o (np+^), ft > 0, then the series 'Ln~pan is either
summable (G, p) or not summable by any Cesaro means.

THEOREM 3. / / the series ~Ln~^an is summable (G, p) and /? > 0 then
£(P> = 0 ( 7 1 " + " ) .

In each case the theorem is proved on the supposition that p is
a positive integer. Whenever necessary in the interests of simplicity
I shall impose the same restriction on p. All the results are probably
true when p is merely restricted to be positive, but their proofs,
in the general case, would, I imagine, follow broadly the lines of
Andersen's proof* of the Bohr-Hardy Theorem, and be quite as long
and difficult.

1 Hardy and Littlewood, 7, 432-435. Dr L. S. Bosanquet kindly pointed out this
connection to me, and his suggestion has enabled me to make this paper more
comprehensive.

8 Bohr, 2, 61. Hardy, 5. Andersen, 1, 47.
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It is clear that the most interesting cases of (1.16) or (1.17)
occur when 0 < p 5S 1. Indeed, if p > 1 these conditions are very
artificial and it would be difficult to find series to satisfy them,
although it is easy enough, as we shall see, to find series satisfying
the more extended conditions

(1.21)

(1.22) S™ = sA{*>
(7 = 1

where r = [p] ^ p, and 0 < p ^ p .
The theorems of this paper may be modified to apply to series

satisfying (1.21) or (1.22), but the presence of the terms involving
A1; A2, . . . . , Ar involves a considerable amount of tedious algebraical
work in their proofs. I have therefore considered it advisable to
confine myself to the case 0 < p ^ 1.

I t will be shown that Theorem 1 remains true when j3 < 0, but is
capable of generalisation, that Theorem 2 remains unaltered with
/? < 0, and that certain modifications have to be made in the case of
Theorem 3.

The paper concludes with some remarks on Tauberian Theorems
for series satisfying these special conditions.

2.1. I begin by proving two simple theorems for series which
satisfy (1.16) or (1.17).

THEOREM 4. / / (1.17) holds the series Sa n is summable (C,p — p) to
the sum s, while, if (1.16) holds S a , is bounded (G, p — p).

Suppose that (1.17) holds. Then, by (1.13) and (1.14),

n n n

v—0 f=0 v=0

-p) + XA(,f-2p) + o (n?-p)

The proof is similar when (1.16) holds.
When (1.16) is satisfied the series Sa n is bounded (G, p — p) and

also summable (G, p). I t follows, by a theorem1 due to Andersen,

1 Andersen, 1, 56.
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that San is summable (C, p — p + S) for every positive 8. It also
follows that the index of summability of series 2 ern, which satisfy
(1.16) or (1.17), is not greater than p — p.

2.2. THEOREM 5. / / (1.16) or (1.17) is satisfied for a given value
of p it is also satisfied when p is replaced by p + S for any positive 8.

Suppose that (1.17) is satisfied. Then, by Lemma 1,

0i-=0

= s £ Aip) A%I? + A £ Ato-tiA*!? + o{ £
* = 0 K=0 v=0

= sA%+t) +A 4f+a-p) + o { )

A similar proof holds in the case of (1.16).

2.3. As an illustration of these theorems and of some theorems
which will be proved later on, it is interesting to consider the simple
series 1 — 1 + 1 For this series, easy calculations show that

(2.31) Sn =

(2.32) sa) =

(2.33)

(2.34) ^ = ^ f + ^ . . . . +

Moreover, if 0 < § < 1, we see from (2.33) that

where

\E\<A 2 (v+ l)-s~2<A.
i/=0

Thus

(2.35) 5»+*> = I A«+s> + J A<? + 0 (1).

Similarly it may easily be shown that

(2.36) S«> = 1 ^ + 0 ( 1 ) .

3.1. In this section we consider the effect of the conditions of
§1 on the summability of the series "Ln?an and similar series. Through-
out, we shall denote by S(£p the m-th Cesaro sum of order p for the
series S nf an, and by T*%\ the n-th Cesaro sum of order p for either
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2 np un or S np vn. First of all we state a well known and easily
proved lemma which connects the Cesaro sums of the series S n an

and S an.

3.2. LEMMA 3. If p is positive we have

(3.21) S<P\ = (p + n+l) £{« - (p + 1) £<?+».

We now make some straightforward deductions from Lemma 3.

T H E O R E M 6. If l=p^p and S a n satisfies (1.17) then the series
2 nan is summable (C, p) to the sum —A.

From Lemma 3 and Theorem 5 we have

p + n

A similar, though simpler, proof suffices to prove the following
theorem.

THEOREM 7. If 1 = P <S p and S o n satisfies (1.16), then the series
S nan is bounded (G, p).

If S a,, is the particular series 1 — 1 + 1 — . . . . . we see from
(2.32) and Theorem 7 that HnaH is bounded (C, 1), while, from (2.33)
and Theorem 6, S nan is summable (C, 2) to the sum — J. Using
Andersen's Theorem1 we at once obtain the familiar result that the
series 1 — 2 + 3 — 4 . . . . is summable (G, 1 + §), to the sum -]-, for
every positive S.

3.3. We now prove two theorems similar to Theorems 6 and 7
for the case 0 < p < l . The proof of Theorem 8 may easily be
constructed from that of Theorem 9, so that it is only necessarv to
prove the latter. In the proof of this and some succeeding theorems

'Andersen, 1, 56.
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we employ a technique which was introduced1 and developed by
Andersen.

LEMMA 4. / / s is any positive integer and r is any real number2,
then

(3.31) S AJJJ e, 4 f r " = 2 ( A«<
J>=0 9 = 0 \ " /

where

LEMMA 5. / / r is any real number, and p is a positive integer, we have
n p + 1 / - _i_ 1

We have

n —/i

— y ,d(-J>-2> ,
0 T = 0

T = 0

V
T=0

— S ^
T=0

and, by Lemma 4, this is equal to

The essence of this result is contained in Andersen's dissertation,
but it is not quite stated in the form (3.32) which is most convenient
for our purpose. In these circumstances I considered it advisable to
insert the above proof.

1 Andersen, 1, 47.
2 Andersen, 1, 42.
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THEOREM 8. / / p is a positive integer and if £an satisfies (1.17), then,
for 0<8<pf^l^,p, the series S n?~h an is summable (C, p — 8) lo the
sum of the convergent series

(3.33) A 2 Al-*-1"1 vi—s + S r)l,AP+1v'-s,

where r]n denotes the error term in (1.17).

THEOREM 9. If p is a positive integer and if So n satisfies (1.16) then,
for 0<8<p^l^p, the series S» p " J a B is bounded (C, p — 8), and
summable (C, p — 8 + e), for any positive e, to the sum of the convergent
series

(3.34) S jS, A*+1 if-*,

where /3n denotes the error term in (1.16).

It should be observed that these theorems are also true when
8 = p and have already been proved as parts of Theorem 4. In this
case, of course, the sum of the resulting series, namely £ an, is s, so
that (3.33) and (3.34) do not apply.

For the series 2 un, defined as in (1.18), we have

and

x n, p — 8 —

= S

where

and

By Lemma 5, we may write

9=0 \ q
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where
n— p — 1

0
Since

we have

"£" V"5 (» -

if we suppose, as we may without loss of generality, that 0 < e < 8.

Again, if 1 ̂  q^p,

Fq = 0{ s^jf-'-a A^'ll-v} + 0
0

= 0 («!»-'),
since 0 < e < 8.

Finally
p i «—j>—I

_±^±1 y ft
4(p-& + t)— Aip-S + e) -^ P M
•"•n-p-1 -"-n-p-l f = 0

which, by the consistency theorem for Cesaro summability, tends to
the sum of the convergent series

2 ft, A**1 if-*.

The second part of the theorem now follows almost at once.
It has in fact been shown that

+t) S ft, AP+1 v>-» + 0 (WP-S),

and the first part of the theorem follows from this and Theorem 4.
It is interesting at this point to compare Theorem 9 with the

case of Theorem 1 when fi < 0. Translating Theorem 1 with
— 1 <)3 <0 into the notation of the present paper it would become:—

If S a s satisfies (1.11) then, for 0<8^p<l^p, where p is a
positive integer, the series Hn!>~san is summable (C,p).

It will be observed that Theorem 9 is more general than this
result.
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4.1. I t is easy to see that the hypotheses of Theorems 8 and 9
do not necessarily imply that S» ' a n is summable or bounded (C, p).
If, for example,

«« = ^ ' ,
we have

and the series £ »* an, being properly divergent, is neither summable
nor bounded (C, 1). The example indeed shows that, in general, it is
not possible to assert that if S a , satisfies (1.16), or (1.17), the series
S np an will be bounded, or summable, by some Cesaro means of
sufficiently high order. In this respect the cases 0 < p < 1 and
p = 1 of (1.16) and (1.17) present a marked contrast.

4.2. In view of these remarks the following theorems are of
interest.

THEOREM 10. If pis a positive integer, 0 < p < 1 <S p, and £ an satisfies
(1.16), then the series S w ' a , is either bounded (C, p) or not bounded by
any Cesaro means.

THEOREM 11. If p is a positive integer, 0 < p < 1 5S p, and £ an satisfies
(1.17), with A = 0, then the series ~Zn9 an is either summable (C, p) or not
summable by any of Cesdro's means.

I t is well known and, in any case, follows readily from Lemma 3
and the consistency theorem for Cesaro summability, that necessary
and sufficient conditions for a series S a , to be summable (C, p) are
that £ an should be summable by some Cesaro method and that the
sequence nan should be summable (C, p + 1) to zero. A similar
result holds for series to be bounded (C, p).

I t should be observed that, if we take the series £?;„ instead of
Sa,,, Theorem H corresponds exactly to the case of Theorem 2 when
— 1 < j8 < 0. Hardy and Litfclewood's proof extends to this case
without alteration but, for the sake of completeness, I give a brief
proof on the lines of the proof of Theorem 9. Theorem 10 may, of
course, be proved by the same method.

I t is sufficient to show that

Taking as our hypothesis
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we have

V=0 C=0

— 2 T) 2 ^ 4 W /4(~J)

— • " 7)i ^ - " n —x a i — (
)i = 0 v=7/i

By Lemma 5, the second term may be written in the form

where

Fq =" £ V ^»-M-« A" MP+\ g = 0, 1, 2, . . . . ,

Clearly Fo = 0 and, for 1 ^ g ^ p + 1,

^ = o {" £ 'A(^-Q

When Sa n satisfies (1.17) and A =j= 0 we have the following more
precise theorem.

THEOREM 12. / / p is a positive integer, 0 < p < 1 ;£ p, and 2 an satisfies
(1.17), with A={= 0, then the series S?fa n is not summable by Cesaro
means of any order.

If k is any number S: p and •>?„, as usual, denotes the error term
in (1.17), we have, by arguments similar to those used in the proofs
of Theorems 9 and 11,

= A S Af_v Al->-» v" + n £ ^
y=0 H=0

v=0 v—p+1

where en -* 0 as n -> co . Now

where A and J5 are non-zero constants. Given e( < , we can
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192 J. M. HYSLOP

determine N (> p + 1), such that | e^p-n | < e for v ̂  N. Thus, since
A1*-"'1* < 0 for n ^ 1, we have

^ { | 4 A | — \B\e) 2 A^_vV-l-0{nk).

Since the series S^"1 is properly divergent, the result follows.

4.3 We have seen from Theorem 9 that, if 2 a n satisfies (1.16)
and 0<8^p<l^p, the series 2 «p~s an is summable (C, p — 8 + e)
for every positive e. Also, from Theorem 7, we know that, if 2a7,
satisfies (1.16) when p ^ p = 1, the series 2 nan is bounded (C, p). It
might be plausible then to suppose that the hypothesis of Theorem 7
would imply the summability (C, p + e) of 2 wan for every positive e.
Such a surmise however would be erroneous for it is possible to
construct a series 2a n , which satisfies (1.16) in the particular case
p —p = 1, and for which the series 2 nan is not summable (C, 1 + e)
for any positive e.

Consider, for example, the series 2 an for which

where An is the bounded function1

A,,= l, 22" ̂  n< 22"+!
= 0, 22"+1 ^ n< 22-+2.

As in the proof of Theorem 9, we have

= s A, 2 ^ (
n

2 i , ^ - 3

= 2 AM(3/t-2n).

I t is not difficult to show that
n l") n

w-1 2 AF-> r k n~2 2 /xA -̂>"l

according as w tends to infinity through the even or the odd powers
of 2. I t follows that

lim ^ i =
„_*«, A™ n-»« n2 - 4/loJ

' T h e series 2(Xn — A.n_!) possesses many interesting properties. See Hardy,
4, 6.

https://doi.org/10.1017/S0013091500002510 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002510


THE APPROACH OF A SEEIES TO ITS CESARO LIMIT 193

according as n tends to infinity through the even or the odd powers
of 2. Thus the series S nan is not summable (C, 2) and a fortiori is
not summable (C, 1 + e) for 0 < e < l . Moreover ~Lnan is not
summable (C, 1 + e) for e > 1, for, if it were, it would necessarily
be summable (G, 2) since, by Theorem 7, it is bounded (C, 1).

4.4. We may appropriately conclude this section by remarking
that, if we apply Theorem 9 to the series 1 — 1 + 1 . . . . , taking as
hypothesis the relation (2.32), we obtain the following familiar
result: For 0 < 8 ̂  1, the series

is bounded (C, 1 — S) and summable (C, 1 — 8 + e) for every
positive e.

5.1. We next consider the case of Theorem 3 when — 1 £S j8 < 0.
The problem discussed is the converse of the type of result which is
contained in Theorems 6, 7, 8 and 9; that is, we assume as hypothesis
the summability or boundedness (C, p) of the series Hnpan and the
conclusion involves a property of S a r One well known result in
this connection is that the summability (C, p) of £ np an implies the
summability (C, p — 8) of 'Lnp~san, where 0 < 8 ^ p ^ p, and the
results of this section may be regarded as generalisations of theorems
of this kind for the particular case 0 < S = p ^ 1.

5.2. First we establish a lemma which serves to simplify the
proofs of the theorems which follow.

LEMMA 6. If y > 0 and

(5.21) </>m (y, a) = 2 {A™ - A ^ } *„ ̂ ~a~\ % -* 0>

then
— o(my-a) , 0 < a < 1,

(5.22) <f>m (y, a) = o (my~1 log m), a = 1,

We have
m m

</>m(y,a)= S ^ M - 0 - 1 S 4 Y ~ n

n = l T=m+1—ix
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Given e, there exists N such that, for /x S; N, \ e^ \ < e. Thus

— N m

T = 1 \L=m + \— T T=nt+2—JV

Hence, if 0 < a < 1,
m+l

(y, a) = o{ S ^ t^ 1 '

= o

while, if a > 1,
^m (y, a) = 0{ £ ^ ^

T = l

4m

0

- T)-} + 0

= o{m-" S ^ - " j + oOnv-i s T"«} + 0 (my-1)
r = l T = 1

= 0 (TO*"1).

Finally, if a = 1,

<t>m(y, a) = o{m-1 S ^ " " l
T = l

0{m"'-1 2 T" 1

T = l

= o (TO^-1) + o (rwi'-i log m) + 0 (my

= o (m?~x logm).

5.3. THEOREM 13. If p is a positive integer, 0 < p < 1 <I
series E wpan is bounded (C, p), that is,

then S a 8 satisfies (1.16), where

s =a 0 + S

THEOBEM 14. If p is a positive integer, 0 < p < 1 -^ p, and the series
an is summable (C, p), that is,

then S an satisfies (1.17), where A = 0 and
P + l

! 2 )
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We shall prove only Theorem 14 since the proof of Theorem 13
is similar.

We have

2

n v
— a 0 ̂ l n -+• a ZJ An-Vv <• { Zu Av-y. -a.^ ^-v

n n

~i ^ ^(i M

say. Clearly
p+i

P+i
= - a A%> 2 v-p Al~*-2> + o

Also, by Lemma 5, we have

= o (n"-") + 2

( )

where

^ = " 2 ^ M ^ ^

Now Fo = 0, and, for q = 1, 2, , #,

^ = o { 2 94(f-"-«) ^Jfr^J = o

Also we may write

= ^Jfi,.! 2 e ^ A r + V - ' - ^ f V i S
(i = l p.=n-p

= -®2, 1 — -®2, 2 — -^2, 3)
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say. Now

,! = A™ £ eM y? AP+1 fi-r + 0

Ez, 2 =

and

where A is a definite non-zero constant and e*->0. It follows, by
Lemma 6, that

E2i3 = o (nP-p) + 0 (w^-1) = o (TIP-P).

The theorem is therefore proved.

5.4. We now discuss the analogues of Theorems 13 and 14 when
p = 1, and we shall see that there is a slight difference between this
case and the case 0 < p < 1.

THEOREM 15. If p is a positive integer and the series I! nan is bounded
(C, p), that is,

then the series S an satisfies the relation

(5.41) S™ = sA™ + 0 («*-i),

where

s = ao+ S r^y

THEOREM 16. / / <Ae seri&s S nan is summable (C, p), p a positive
integer, to the sum a, that is

then the series 2 a,n satisfies the relation

(5.42) S™ = sA™ + \A%~1) + o (ft*"1),

where

S i (—j) — 2) l i v 1

A = - a.

It will be observed that the enunciations of Theorems 15 and
16 are practically the same as those of Theorems 13 and 14. I have
thought it worth while to state the two former theorems in full for
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the purpose of comparison. Moreover the details of the proofs of the
two pairs of theorems are essentially different, the case p = 1 con-
taining complications which are absent when 0 < p < 1. I t is sufficient
to prove Theorem 16 since the proof of Theorem 15 is similar.

As in previous arguments we have

lK = l

S A'^v-1 £ Ai~J~2)oAf-o 2
K = l ( 1 = 0 l . = l

X = l f» = l

J> + 1 n n

= a0 ^
(
n
p) - a 2 A<*Lr v-1 Ai-p-*> + S e ^ » S

Now

whence

+ £ w* i AT-rAt-J-Vv
p + 1

= {a0 - a S ^«-"-« ,-i} AT - c^Sr1' + o

where

^ = { s + "T1

where
n—p — l

Now -Fo = 0 and, for I <^, q <L p — 1,

0

so that

K =
We now write

Fp + o

= G1 — Go~ G3,
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where

="T *
Clearly

#1 = 4^ 1
and

= o {?i» S fi-2} = o

Thus

8^ = sA™ - {o + (p + 1) 2

where

n—J) —1

['"-
( n - 1 -

p\

where jSrj s is a constant independent of n and

Pp, 0 = fip-1,1 = 0;
a n d

We now write

where

l ) !l ) !
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the summation in H*p extending over all values of r and 5 for which
O^r ^p — 2, 0 <J s <S p, r +s^p.

As n -> oo we clearly have

H™ = AT"(P + 1) S ^
and if we write

where Z/Jf'1' contains all terms for which s = 0 , 0 : _ r ^ p — 2,
#<P> those for which 5 = 1 , O^,r<Lp — 2 and #<f'3) those for which
2 ^ 5 ^ p, 0 5S r £S 2> — 2, r + s ^ p , then

27®' " = o { S n ' S ^-2} = 2 o (nr) = o (n*-2),

i?(
n

2'2) = o{ S n ' S p-1} = I, o(nr log n) = o(n*-1),

and

flP' = o { S ) i ' S /xs~2}= So(n '+8-1) = o(«,^-1).

The theorem is therefore proved.

5.5. We conclude this section by considering briefly the truth
or falsity of the following theorem.

THEOREM 17. A necessary and sufficient condition for the series 2 an to
satisfy a relation of the form (1.17), where p is a positive integer and
0 < p =̂  1, is that the series S W an should be summable (C, p).

That this theorem is true for the case p = 1 follows a t once from
Theorems 6 and 16. When 0 <p < 1 we see, from Theorem 14, that
the sufficiency part of Theorem 17 is true and also tha t the A of
relation (1.17) is zero. When A=j=O, Theorem 12 shows that the
necessity part of Theorem 17 is false. I t is natural therefore to
examine the following assertion.

/ / 0 < p < 1. p is a positive integer and the series S an satisfies the
relation

then the series ~Lnpan is summable (G, p).
An examination of the proof of Theorem 9 shows tha t the t ruth

or falsity of this assertion depends, in the last resort, on whether or
not the expression

tends to a definite limit; that is, it depends on whether or not the
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series S ^ Ap+1 p? is summable (G, p). It is clear that this series
need not be summable (C, p). Indeed, if

" lOg (/X + 1)

it is properly divergent. Hence the necessity part of Theorem 17 is
not true for 0 < p < 1 even when A = 0. In other words, either of the
alternatives in the conclusion of Theorem 11 may occur.

6.1. It is natural to expect that series which satisfy (1.16) and
(1.17) should have a less restrictive Tauberian condition than
an = O (n~y). It was proved1 by Hardy that series, for which

are summable by Borel's method. Hence a sufficient Tauberian
condition for such series is

an=0(n-i).

More generally3, it has been proved3 recently that, if the series £ an

satisfies (1.17) with A = 0, it is summable by Valiron's method4 of
order 1 —p/p, where 0< p<p. An examination of the argument used
in the proof of this theorem shows at once that the theorem remains
true when So(l satisfies (1.17) with A=|=0. Now the Tauberian
condition for summability (V, a), where 0 < a < 1, is known6 to be

an = 0 (n-a).

Hence we have the theorem.

THEOREM 18. / / S a , satisfies (1.17), where y is a positive integer,
and 0 < p < p, 0 < p ^ 1, and if

an = O {n'

the series £ an is convergent.
This theorem may be proved directly by making use of an

argument due to Hardy and Littlewoods, and the same type of

1 Hardy, 3.
I Hyslop, 8.
3 Hyslop, 9.
t Valiron, 10.
5 Valiron, 10.
6 Hardy and Littlewood, 7, 428.

https://doi.org/10.1017/S0013091500002510 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002510


THE APPROACH OF A SERIES TO ITS CESARO LIMIT 201

argument may also be used to prove an analogous theorem for series
satisfying (1.16).

THEOREM 19. / / S o , satisfies (1.16), where p is a positive integer and
0 < p < p, 0 < p ^ 1, and if

an = o

the series 2 an is convergent.
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