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ESTIMATING THE SIZE OF CONTEXT-FREE 
TILING LANGUAGES 

KENNETH HOLLADAY 

Tilings and grammars. The problem of counting polyominoes motivates 
this paper. We will develop a general question for study that has counting 
polyominoes as a special case. We generalize in two ways. Polyominoes are 
shapes on the tiling made of square tiles. We will consider shapes on other 
tilings. The set of all polyominoes can be generated by a context-free array 
grammar, but the size of this set is estimated by counting the words of 
certain subsets and supersets that are generated by more convenient 
grammars. Our general question is the problem of counting the words of a 
context-free array language on a periodic tiling. 

Counting polyominoes is a difficult problem that has not been 
completely solved yet. There are various techniques for roughly estimating 
the number of polyominoes of a given size. We will extend some of these 
techniques to our general question. In most cases, a given technique 
actually yields a sequence of increasingly accurate estimates at the cost of 
increasingly long calculations. Thus we could obtain better numbers by 
enlisting the aid of the computer. We will not do this here, but instead 
merely illustrate the techniques using straightforward examples. 

A tiling is a locally finite cover of the plane by topological disks which 
we will call tiles. We require that the interiors of the tiles be disjoint and 
that the intersection of two or more tiles be empty or a connected subset 
of the boundary of each of them. A nonempty intersection of 3 or more 
tiles is necessarily a single point, which is called a vertex. A nonempty 
intersection of two tiles which consists of more than one point is called a 
face of each of the tiles and the two tiles are said to be adjacent. Two tiles 
intersecting in a single point (which will be a vertex) are not adjacent; 
instead, they are said to be touching. We will be interested in polygonal 
tilings, which means that all faces are line segments. Note that it is 
possible for two or more consecutive faces of a tile to be colinear. Any set 
of tiles of a tiling is associated with a graph, called its face graph. There is 
a node of the face graph for each tile of the set and arcs joining nodes 
whose corresponding tiles are adjacent. A set of tiles is said to be 
connected if and only if its face graph is connected. Two tilings are of the 
same topological type if and only if the face graph of the set of all tiles of 
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the one tiling is graph isomorphic to the face graph of the set of all tiles 
of the other. 

Although the ideas of this paper can be easily extended to general 
periodic tilings, for simplicity, we will consider only the highly symmetri­
cal isohedral tilings. The symmetry group of a tiling is the group of all 
Euclidean isometries that send tiles to tiles. We will usually regard the 
symmetries as being permutations on the set of tiles and the set of edges 
and the set of vertices of the tiling. A tiling is periodic if and only if its 
symmetry group contains two independent translations. A tiling is 
isohedral if and only if its symmetry group is transitive on the set of tiles. 
See [4] for a classification of isohedral polygonal tilings. For the remainder 
of this paper, tiling will mean isohedral polygonal tiling. There are 
11 topological types of such tilings and we will use the notation in [3] 
for them. 

Isotonic array grammars were defined in [10], see also [11]. The set of 
symbols of a grammar is a finite set given as three disjoint subsets: the 
nonterminals, N; the terminals, T; and a single symbol, the blank, # . We 
write V = N U T. Given a fixed tiling, a word on these symbols is a map 
from the set of tiles to V U { # } such that the preimage of Kis finite and 
connected. Two words are congruent if and only if they differ only by 
composition with a symmetry of the tiling. An array rewriting rule (or rule) 
consists of a model, M, and two maps a and fi from M to V U { # }. The 
model is a finite connected set of tiles. A rule R = (M, a, /?) rewrites 
a word wx as a word w2 if and only if the following holds. There is a 
translation, G, of the tiling's symmetry group such that for any tile, t, 
either G(t) £ M and wx(t) = w2(t) or else G(t) <= M and wx(t) = a(G(t) ) 
and w2(t) = fi(G(t) ). We will want rules to preserve the connectedness of 
the preimage of V. The conditions given below for a context-free rule will 
assure this. An isotonic array grammar (or grammar) is a triple 

G = ( K U { # } , P, S) 

composed of a set of symbols V U { # } ; a finite set, P, of rules for these 
symbols and a start symbol S e N. 

The array language generated by a grammar can now be defined. A 
word w2 is derivable by G from a word w] if and only if either wx = w2 

or there is a finite sequence of words vz (from /' = 0 to / = n) such that 
v0 = W], vn = w2 and for every i from 1 to n, there is a rule of G that 
rewrites v^j as vt. We write w] —> w2(G). A word is terminal if and only if 
its range is T U { # } instead of all of V U { # } . Given a start symbol S 
and a tile, /, the start word at t (written St) is the word with St(t) = S and 
St(t') = # for all tiles f ¥= t. The language generated by G starting from t 
(written L(G; t) ) is defined as 
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L(G\ t) = {w terminal word | St —> w(G) }. 

If t' is translate of / then the words of L(G; tf) will be congruent to the 
words of L(G; t). We will say that the languages are the same. If f is not a 
translate of /, then L(G; /') may or may not be the same as L(G; t). We say 
that a word w is a sentential form of G starting from t if and only if 
St —> w(G). If the set, T, of terminal symbols of a grammar has but one 
element, we say that the language generated by the grammar is a language 
of shapes since the terminal only delineates a shape from the background 
of blanks. In this paper, we are primarily concerned with languages of 
shapes. We will often slightly misuse the term language as defined above. 
Instead of referring to L(G; t) as the language, we will speak the language 
as being the union of L(G; t) over all tiles /. If we say that a grammar, G, 
generates such a language, we mean that the language is obtained by first 
forming L(G; t) and then taking the union over all tiles /. 

The fundamental example of a language of shapes is the set of all 
connected shapes on a tiling. There are two reasonable definitions for this 
set, depending on whether the shapes are required to be simply connected 
or not. Terminology is not standardized, but for shapes on the usual tiling 
by squares, the trend is to use the word animal for shapes that are simply 
connected and polyomino for shapes that need not be simply connected. 
Extending this to a general tiling, we will call the set of simply connected 
shapes the language of animals and the set of connected shapes the 
language of poly tiles. The grammar for the polytiles is easier. There is one 
nonterminal, the start symbol, and, of course, one terminal. There is a 
group of rules for each translation orbit of tiles. For a given translation 
orbit of tiles there is one rule for each translation orbit of edges of the 
tiles. We pick one tile of the orbit and the model for a rule consists of 
the chosen tile and the tile on the other side of the chosen edge. In the a 
map, the chosen tile has the nonterminal and the other tile is blank. In the 
/? map, both tiles have the nonterminal. There is also a rule for each 
translation orbit of tiles that rewrites the nonterminal as the terminal. This 
grammar for the tiling P5 — 21 of type [33, 42] is illustrated in figure 1. 

The rules of the grammar for the animals of a tiling use blanks to assure 
that each addition of a tile preserves simple connectedness. There is one 
nonterminal, the start symbol, and one terminal. There is a group of rules 
for each translation orbit of tiles. As above, there is a rule for each edge of 
a sample tile from each orbit of tiles. Each rule tries to add the tile on the 
other side of the selected edge if it can do so while preserving simple 
connectedness. The rule's model will contain, in addition to the tile (call it 
x) with the nonterminal and the tile (call it y) to be added, several 
additional tiles that will get blanks in both the a and fi maps. These are 
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tiles that must not be part of the animal if the addition of y is to preserve 
simple connectedness. These tiles include all tiles adjacent to or touching 
y, with some exceptions. Of course x is not included. Also not included are 
any tiles that pass the following test. For any simply connected set of tiles 
containing the tile in question and JC, the addition of y always leaves the 
set simply connected. The a map of the rule gives x the nonterminal and 
the other tiles blanks. The yS map gives both x and y nonterminals and the 
rest blanks. In addition to the above rules, for each translation orbit of 
tiles there is a rule rewriting the nonterminal as the terminal. This 
grammar is illustrated in figure 2 using P5 — 21. 

The size of a word on some set of symbols is the number of tiles which 
are not blank. We define the size of a language L, written \L\, as follows. 
Let L(n) be the number of incongruent words in L of size n. Then 

\L\ = lim sup \/T(û)-

The size could also be defined as the reciprocal of the radius of 
convergence of the ordinary generating function of L(n). Note that in the 
definition of size, we may use either L(G; t) or the union over all tiles. 
Since L(n) is the number of incongruent words and a periodic tiling has a 

-^ 

Figure 1. A weak eontext-free grammar for the polytiles on P5 — 21 (of type [33.42] ). The 
start symbol and only nonterminal is S. The terminal is 1. Cells with blanks are left blank. 
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Figure 2. Half of a shape sensitive context-free grammar for the animals on P5 - 21 (of type 
[33.42] ). The other six rules are obtained by reflection in a horizontal axis. They apply to S in 
a pentagon of the other translation orbit. S is the start symbol and only nonterminal. 1 is the 
terminal. Tiles with blanks are left blank. 

finite number of orbits of tiles, the size will be the same whether we use 
L{G; t) or the union. The Klarner constant of a tiling r , written K{T), is 
defined as the size of the language of polytiles on T. It is not difficult to 
see that two periodic tilings of the same topological type must have the 
same Klarner constant. An interesting question is whether the size of 
the language of animals on a tiling can be strictly less than the Klarner 
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constant of the tiling. Note that a language with n terminals has size at 
most nK(T). Thus size divided by terminal set size is a normalized 
measure that is independent of the number of terminals. 

Context-free grammars. Isotonic array grammars are too general to 
really capture the notion of a purely locally defined shape, so we will now 
restrict our attention to the array analogs of context-free string grammars. 
The first such analog was defined in [2] and two others were defined in [7]. 
All array analogs restrict the a map of any rule to have a nonterminal 
value at one tile and blanks at all of the other tiles in the model. If this 
nonterminal value is the symbol A, we refer to the rule as an A-rule. The 
three analogs defined below differ in the extent to which blanks may be 
used as context. The freest use of blanks occurs with a shape sensitive 
context-free grammar (SSCFG). Each rule of a SSCFG must have fi~ (V) 
connected and containing the tile with the nonterminal a value. This 
allows the use of a tile t where a(t) = ft(t) = # . An ^4-rule might not be 
applicable to a tile with an A if the tile was not accompanied by the 
appropriate blanks. The grammar for the animals of a tiling is a SSCFG 
and it uses blanks as context to maintain simple connectedness. The 
language generated by a SSCFG is called a shape sensitive context-free 
language (SSCFL). 

The next version of context-free is more restrictive. A rule may test a tile 
to see if it is blank, but it must then write a nonblank symbol into the tile. 
In a weak context-free grammar (WCFG) every rule has a connected model 
and all fi values in V. Thus we can still use blanks as context, since an 
,4-rule does not apply to an instance of A that is lacking the appropriate 
surrounding blanks. The grammar of the polytiles of a tiling is a WCFG. 
The polytiles of a tiling are a WCFL but the animals are not. The method 
of Proposition 2 of [7] can be used to show that no WCFG can generate 
exactly the animals of a tiling. Since every WCFG is also a SSCFG, the 
class of SSCFL's properly contains the class of WCFL's. 

The last and most restrictive form of context-free array grammar does 
not use blanks as context at all. In these grammars, we want the mere 
presence of a nonterminal in a word to already guarantee the presence of 
any blanks needed to apply any rule. We do require that the tiles to be 
rewritten by a rule applied to another tile's nonterminal indeed be blank. 
A nonblank cell must not be rewritten by a rule applied to another tile's 
nonterminal, even if the rule would correctly reproduce the tile's previous 
value. To obtain a formally isotonic rule, we introduce a "don't care" 
symbol; to enforce the above restrictions, we require that a grammar 
of this type, a strong context-free grammar (SCFG), be validated be­
fore it is said to generate a strong context-free language (SCFL). Let 
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^ £ (V U ( # } ) b e a new "don't care" symbol that matches any symbol 
of V U { # } . Write V^ = V U {^}. For each rule of a SCFG, we require 
that the a map take a nonterminal value at one tile and the value ^ at all 
remaining tiles of the model. The model must be connected and the f3 map 
must have all values in V. Since the f̂x's match anything, an yl-rule can be 
applied to any word with a tile containing A that is a translate of the 
model's tile that takes a value A. Given an .4-rule, a word w with a tile / 
such that w(t) = A and a translation a sending t to the tile of the rule's 
model M with a value A ; we say that the application of this rule to this 
instance of A does not conflict with w if and only if 

w(o~\{S G M| S ^ / } ) ) = { # } . 

A SCFG G is vtf/zV/ if and only if for any sentential form w of G and any 
nonterminal A of w, there is no 4̂ -rule of G whose application conflicts 
with w. A SCFL is the language generated by a valid SCFG. Thus, to show 
that a language is a SCFL, we must give a SCFG that generates it and a 
proof of the validity of this SCFG. The methods of Proposition 1 of [7] can 
be used to show that no valid SCFG can generate exactly the polytiles of a 
tiling. However, if the ^ ' s of a SCFG are simply replaced by blanks, we 
will obtain a WCFG that must generate exactly the same language as 
the SCFG did. Thus the class of WCFL's properly contains the class 
of SCFL's. 

At this point we prove a technical lemma that will be helpful in the next 
section. A single production is a rule whose /? map takes a nonterminal 
value for the tile where the a map is a nonterminal and takes the value 
blank for any other tiles of the rule's model. 

LEMMA 1. A grammar of any of the three context-free types can be 
modified so as to eliminate all single productions while still generating the 
same language and remaining the same context-free type. 

Proof. For WCFG's and SCFG's, a single production must have a one 
tile model. Thus we can eliminate single productions from these types by 
the same method as in the context-free string grammar case. See, for 
example, Section 4.3 of [6]. For SSCFG's, a single production may have 
more than one tile in the model. The above method must keep track of the 
accumulated tiles of blanks used as context. Suppose a sequence of single 
productions produces the nonterminal A from the nonterminal B. In the 
above mentioned method, after removing all single productions from 
the grammar, we add some new rules back. For each A -rule we add a 
corresponding 2?-rule with the B replacing the A. We modify this 
procedure by enlarging (if necessary) the new 5-rule's model by adding 
any tiles used as context in the derivation of A from B that do not have 
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something written in them by the yl-rule. Since there may be several ways 
of obtaining A from B that have different configurations of added tiles 
used as context, this means we may have to add several new 5-rules for 
each A -rule. 

As the last item in this section, we want to define what it means for a 
context-free grammar to be ambiguous. To do this we must define an 
analog of rightmost derivation. We will call them priority derivations, and 
they are defined as follows. For each rule of the grammar an arbitrary 
ordering is assigned to those tiles of the model given nonterminals by the 
fi map of the rule. During a derivation, it is possible that more than one 
rule will be applied to the same nonterminal in a given tile. Therefore we 
must also assign an arbitrary order to the set of rules itself. This done, 
we may define the priority order for applying rules by using a stack or 
last-in-first-out storage device. Each time a rule is applied, we push onto 
the stack, in the order prescribed by the rule, tokens representing each tile 
given a nonterminal by the rule. The next rule to be applied will be applied 
to the nonterminal in the tile whose token is popped off the top of the 
stack. If more than one rule is to be applied to this nonterminal, we pick 
the highest priority rule. A priority derivation is one that follows these 
rules at every step. A context-free grammar is ambiguous if and only if 
there is a word of the language it generates that has at least two different 
priority derivations. Notice that whether or not a grammar is ambiguous is 
independent of the various arbitrary choices made in defining a priority 
derivation. 

Linear grammars. A linear grammar is a context-free grammar in which 
every rule's ft map gives at most one tile a nonterminal value. In this 
section we will give a method for counting the words of a given size in any 
linear unambiguous strong context-free grammar. The method gives upper 
bounds for the size of any linear context-free grammar. We actually count 
derivations rather than words. Thus an ambiguous grammar will be 
overcounted since different derivations can give the same final result. In a 
weak or shape sensitive context-free grammar, there may be an overcount 
because some derivations lead to conflicts and thus produce no result. The 
rules of a linear grammar produce a system of recursive equations relating 
the numbers of words of various sizes. We must then solve a homogeneous 
constant coefficients system of linear recursions. First we demonstrate 
how such systems can always be solved. 

Let Seq be the set of sequences of real numbers. If addition and scalar 
multiplication are defined componentwise, Seq is a real vector space. A 
linear operator is defined on Seq by (Ef)(n) = f(n + 1) for n = 1, 2, 
3, . . . . Let Seq(m) be defined as the real vector space of column vectors of 
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m elements of Seq. We define a system of linear recursions in the variables 
X: G Seq for y = 1 to m as follows. The degree of the system in the variable 
X: will be d(j). For / = 1 torn, let PJE) be a polynomial in E with degree 
less than d(j). The equation for x- is 

m 

EdU)
Xj = 2 P^{E)x, 

i = \ 

This system of equations in the JC- can be put in matrix form by defining 
two matrices whose entries are polynomials in E. Let the ijih entry of the 
matrix P be P•. D is a diagonal m X m matrix with zth diagonal entry 
E (l\ Let X e Seq(m) have the x- as its entries. The matrix form of the 
system is 

(1) DX = PX. 

The set of X satisfying (1) will be a d = 2 d(i) dimensional subspace of 
Seq(m), since any solution is completely determined by the d values 
of x (n) for n = 1 to d(j) and j = 1 torn. 

THEOREM 2. There is a fixed recursion of degree d that is satisfied by every 
component x- of every solution of(\). 

Proof There is a matrix C (the transpose of the cofactor of D — P) 
whose entries are polynomials in E and that satisfies the equation 

C(D -P) = (det(Z) - P) )Im 

where Im is the m X m identity matrix [1]. Multiplying a solution vector X 
of (1) by both sides of this equation yields 

0 = C(D - P)X = (det(Z) - P) )ImX = (det(Z) - P) )X. 

Thus det(Z) — P), a polynomial in E, annihilates every component of X. 
Det(Z) — P) is not identically zero and is easily seen to be monic of degree 
d. We will use a corollary of this theorem. Let Qj be a polynomial in E for 
j = 1 to m. 

COROLLARY 3. The sequence 

m 

y = 2 Qj(E)Xj 
7 = 1 

satisfies the same recursion as all of the xt do. 

Note that such a y could also satisfy other recursions of degree lower 
than d. 

https://doi.org/10.4153/CJM-1987-066-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-066-4


1422 KENNETH HOLLADAY 

Counting derivations in a linear grammar produces a system like (1). 
Initially we assume a SCFG with no single productions. We define an 
element of Seq for each nonterminal of the grammar. If A is a 
nonterminal, the associated sequence A(n) gives the number of sentential 
forms of size n containing A as the unique nonterminal. Each rule of the 
grammar with a nonterminal in the fi map will contribute a term to 
the recursion for that nonterminal's sequence. For example, if an ,4-rule 
writes terminals into k tiles and the nonterminal B into one tile, the 
recursion for B(n) will contain a term A(n — k). If a nonterminal other 
than the start symbol never appears as a value of a ft map of any rule, then 
that nonterminal will never appear in any derivation of the language and it 
may be dropped from the grammar. If the start symbol never appears as a 
value of a /? map, then the start symbol's sequence is just S(\) = 1 and 
S(n) = 0 for n > 1. Otherwise all the sequences appear in nontrivial 
equations. Since there are no single productions, the equations will be 
proper recursions. 

By Theorem 2, there will be a fixed recursion, which we will write as 
P(E)A = 0, satisfied by every nonterminal's sequence. P(E) is a 
polynomial in E of degree d. The number of words of size n, which we 
write as L(n), in the language generated by the grammar can be expressed 
in terms of the various nonterminal's sequences. Each rule with fi map all 
terminals and blanks contributes a term to the formula for L(n). If an 
,4-rule writes terminals into k tiles, there is a term A (n — k) in the formula 
for L(n). Applying Corollary 3 to the sequence L(n), we find that it too 
satisfies the recursion P{E)L = 0. Now, by the standard theory of 
solutions of a linear homogeneous constant coefficients recursion (see 
[5] ), we can give the largest real root of P(x) = 0 as an upper bound for 
the size of the language. As noted after Corollary 3, it is possible that L(n) 
might also satisfy a recursion of degree less than d. In this case the 
minimal recursion for L(n) will be a divisor of P(E) and the size of 
the language may be a smaller root of P(x) = 0. For WCFG's and 
SSCFG's this count of derivations overcounts the actual words; so again, 
the size of the language might be smaller than the largest root of P(x) = 0. 
But in any case we do obtain an upper bound. 

As an application of this method, we consider a linear language of 
shapes that can be defined on any tiling. The Hamiltonian language of a 
tiling consists of all polytiles whose face graph contains a Hamiltonian 
path. A WCFG for this language can be easily obtained by modifying the 
grammar for polytiles given above. In a typical rule with a two tile model, 
we change the fi map. The tile that had the nonterminal in the a map now 
gets a terminal in the new rule's /? map. If each tile has S edges then this 
grammar gives the upper bound S for the size of the Hamiltonian 
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language. The upper bound can be easily reduced to S — 1. The grammar 
to show this is a refinement of the grammar just given. There is a subset of 
nonterminals for each translation orbit of tiles. There is one nonterminal 
in the subset for each edge of a fixed tile in the given translation orbit. The 
edge indicated by the nonterminal is interpreted as the edge shared with a 
tile that joined the word at an earlier step in the derivation. There is a rule 
rewriting this nonterminal for each edge of the tile except the indicated 
edge. The rule's model has two tiles, the fixed tile and the tile on the other 
side of the rule's selected edge. In the a map, the fixed tile has its 
nonterminal and the other tile has a blank. In the /? map, the fixed tile has 
a terminal and the other tile has the appropriate nonterminal. There are 
rules rewriting any nonterminal as the terminal. The start rules just write a 
suitable nonterminal into a blank tile. 

Better upper bounds for the size of the Hamiltonian language of a tiling 
are obtained by two methods for extending the ideas used in the grammar 
of the previous paragraph. In one of these methods, each rule adds several 
new tiles instead of just one. This method increases the number of rules. In 
the other method, each nonterminal records several preceding tiles instead 
of just one. This method increases the number of nonterminals and implies 
an increase in the number of rules. This is because if the nonterminals 
record the preceding K tiles, we will want the rules to add at least K new 
tiles. Table 1 gives the upper bounds for some tilings that are obtained by 

T A B L E 1 

Some upper bounds for the size of the Hamiltonian language of several isohedral tilings. The 

second column gives the number of previous tiles recorded by a nonterminal. The third column 

gives the number of tiles added by each rule. The fifth column gives the polynomial resulting from 

the recursion produced by the grammar. In the two cases marked by *, this polynomial factors over 

the integers. 

1 2 3 4 5 
Tiling Number Number Upper Polynomial yielding 
type recorded added bound upper bound 

[3.122] 2 2 1.76929 .v6 - 4A-4 4- 4.x2 - 4 * 

[4.82] 2 2 1.92595 A 6 - 4 A 4 + 4 

[63] 3 3 1.96104 A-6 - 7.v3 - 4 

[3.6.3.6] 2 2 2.73205 A 4 - 8 A 2 + 4 

[44] 1 3 2.92402 A 3 - 25 

[44] 1 4 2.90278 A 4 - 71 

[44] 2 2 2.89118 A 4 - 8A 2 - 3 

[36] 1 2 4.79583 A 2 - 23 

[36] 1 3 4.68755 A 3 - 103 

[36] 2 2 4.63361 A 6 - 2 2 A 4 + ll.v2 + 8 
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TABLE 2 

Some lower bounds for the size of the Hamiltonian language of several isohedral tilings. The third 
column gives the polynomial resulting from the recursion produced by the grammar. In the case 
marked by *, this polynomial factors over the integers. 

1 2 3 
Tiling Lower Polynomial yielding 
type bound lower bound 

[3.122] 1.56302 A-6 - 3x2 - 4A - 1 

[4.82] 1.74067 A8 - 4A-5 - 2A4 - 2 

[63] 1.73205 A2 - 3 

[3.6.3.6] 2.26953 A3 - A2 - 2A - 2 

[44] 2.41421 A2 - 2A - 1 

[36] 3.30278 A4 - 3A3 - 3A - 1 

various combinations of these methods. We see that increasing the number 
of tiles added does not yield as much improvement as increasing the 
memory of nonterminals. However, increasing the number of nontermi­
nals greatly complicates finding the recursion. The number of variables 
can be reduced and the recursion simplified by combining nonterminal 
variables into more symmetric variables. As an example of this, we will 
consider the usual tiling by squares P4 — 56. Let the nonterminals record 
the two preceding tiles and the rules add two new tiles. To find a 
recursion, let A(n) be the sum of the variables for the 4 nonterminals 
where the last tile and the two preceding tiles form a straight row. Let 
B(n) be the sum of the variables for the 8 nonterminals where the last tile 
and the two preceding tiles form an L shape. If T(n) = A(n) + B(n) is the 
total, then 

A(n + 2) = 3A(n) + 3B(n) = 3T(n), 

B(n + 2) = 6A(n) + 5B(n) = 5T(n) + A(n), 

T(n + 4) = 8 7 > + 2) + 3T(n). 

We can obtain lower bounds for the size of the Hamiltonian language of 
a tiling by constructing subsets that are unambiguous SCFL's. Since we 
can make an exact count for this kind of subset, we get a lower bound for 
the size of the whole language. To get a valid SCFG, words can not be 
allowed to grow freely in all directions. The grammar in figure 2 of [7] is 
an example. In that grammar words can grow left, right or up but not 
down. The languages generated by such grammars are reasonably large 
and give nontrivial lower bounds. Table 2 lists some lower bounds 
obtained in this fashion. 

The lower bounds of Table 2 are also lower bounds for the Klarner 
constants of the respective tilings. Other linear languages larger than the 
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Hamiltonian languages give even bigger lower bounds. But it seems to be 
difficult to produce a really large (relative to the Klarner constant) linear 
language with a manageable set of rules. We now turn to the nonlinear 
boardpile languages, which have manageable grammars and large sizes. 

Boardpile languages. A stratification of a tiling is a partition of the tiles 
into an infinite number of subsets called layers. Each layer is connected as 
a set of tiles. There is a translation symmetry of the tiling that 
simultaneously fixes all of the layers as sets. The symmetry group of 
the tiling is transitive on the set of layers. It is easy to see that any periodic 
tiling, isohedral or not, has many stratifications. We are mostly interested 
in thin stratifications, for which no layer contains as a proper subset a 
layer of another stratification. Given a stratification, we will visualize the 
tiling as oriented so that the translation fixing the layers is a horizontal 
translation. Then the layers will be stacked vertically. Two layers are 
adjacent if and only if a tile of one is adjacent to a tile of the other. 

LEMMA 4. Every layer is adjacent to exactly two other layers. 

Proof. By taking the union of its tiles, each layer can be considered as a 
set of points in the plane. We want to look at the boundaries of these sets. 
These boundaries are polygonal curves. None of these boundaries can 
contain a bounded component since layers are connected and a bounded 
set can not be fixed by a translation. The translation fixing the layers must 
send the components of the boundary of a layer into themselves. If we 
look at a boundary point and its translate, it must be possible to join the 
two points by a path in the layer on one side of the boundary and by a 
path in the layer on the other side. Thus the boundary also connects the 
two points. Each component of the boundary of a layer is the intersection 
of exactly two layers (which are adjacent). If not, there would be a 
point of the boundary that was contained in at least two other layers. By 
applying the translation that fixes all the layers, we obtain another point 
contained in the boundaries of the same three layers. There would be 
paths joining these two points that are internal to each of the three layers 
except at the endpoints. Since they do not cross except at the endpoints, 
one of the paths would be between the other two. The layers are supposed 
to be face connected, but the part of the layer containing the middle path 
would be either bounded or else cut off from the rest of the layer. Thus 
the boundaries are intersections of pairs of layers and they are all fixed 
by a certain translation. Since the layers are connected, it is clear they 
must each consist of the tiles in the strip between two consecutive 
boundaries. 
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The set of layers has a transitive symmetry group. How many 
translation orbits of boundaries can there be? Consider the symmetry 
sending a layer into the layer just above it. Two cases occur. Either the 
bottom boundary of the lower layer goes to the bottom of the upper layer 
and the top to the top. Or else the boundary between the layers is sent to 
itself and the bottom of the lower layer goes to the top of the upper. In the 
first case all boundaries will be translates of each other. If the second case 
occurs but the first does not, then there are two translation orbits of 
boundaries that are interlaced, each layer having one boundary from each 
orbit. If the first case occurs, we say the stratification has symmetric layers. 
If the first case does not occur (and so the second case applies), we say the 
stratification has asymmetric layers. 

We can now define the boardpiles of a stratification. A board is a 
connected set of tiles contained in a single layer. A boardpile is a polytile 
whose intersection with every layer of the stratification is either empty or 
a board. The boardpile language for a stratification is the set of all 
boardpiles of the stratification. Note that boardpile languages are never 
linear. We can construct T shaped boardpiles with each of the three arms 
being arbitrarily long. However, boardpile languages can be given by valid 
unambiguous SCFG's. If the usual tiling by squares is given the obvious 
stratification into rows, we obtain the boardpile language studied by 
Klarner in [8]. Figure 3 gives a valid unambiguous SCFG for this case. To 
give a grammar of this type for any stratification on any periodic tiling, we 
would need a valid unambiguous linear SCFG for boards of the 
stratification. We will not give a general construction for such a grammar 
here, but note that it is easily accomplished for any specific instance 
that arises. 

Boardpile languages are notable for having large sizes compared to 
other strong context-free languages. In [8], Klarner showed that the 
boardpile language on squares mentioned above has size about 3.205569. 
He also showed that the obvious stratification of the regular hexagon 
tiling into straight rows gives a boardpile language with size about 
3.863131. Klarner's formula can not be directly applied to the expressions 
counting boardpiles in most stratifications. In a few cases we can get 
upper or lower bounds. For example, the pentagonal tiling P5 — 21 has a 
stratification with asymmetric layers where one boundary is like the 
boundary for squares and the other boundary is like that for hexagons (see 
figure 4). We conclude that the resulting boardpile language has size 
between the two numbers mentioned above. To obtain exact sizes of 
boardpile languages requires evaluating more complicated expressions 
than that of equation (7) of [8]. In that equation, each composition 
contributed one product to the sum. For most boardpile languages, each 
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Figure 3. A strong context-free unambiguous grammar for a boardpile language on P4 — 56 
(Type [44] ). S is the start symbol. N = {S, flO, fl, LO, L}, T = {1} and * is the "don't care" 
symbol. 

composition will contribute several products to the sum. And for 
stratifications with asymmetric layers, instead of one function / (m, n), 
there will be two such functions that alternate in each product. 

Upper bounds. In this final section we will discuss a method for 
obtaining upper bounds on the Klarner constant of a tiling. This method, 
given in [9], relies on a technique for estimating the radius of convergence 
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Figure 4. A thin stratification for P5 — 21 (Type [33.42] ). The numbers 1 to 8 in the tiles 
indicate layer number. Note that this is an asymmetric stratification since the two 
components of a layer's boundary are not the same. 

of the diagonal of a double power series representing a rational function. 
In the simplest version of the method, we have a context-free grammar for 
the poly tiles of a tiling that has only one nonterminal. Each rule, R, is 
given a weight, w(R), that is a monomial with numerical coefficient 1 in 
the variables x and y. The power of JC is the number of tiles that are blank 
in the a map of the rule and not blank in the ft map. The power of y is the 
number of tiles given the terminal by the /? map. Given a priority 
derivation of the grammar, we form a product with a factor of its weight 
for each time a rule is used in the derivation and also one additional factor 
of x to account for the original start symbol. A derivation producing a 
terminal word must have product xnyn, where n is the size of the word. 
Consider the double power series 

(2) x 1 " 2 w(Rt) 2J x 
k=0 

2 HRi) 

where the sums in / are over the rules of the grammar. Each contribution 
to the coefficient of xnyn in this series comes from a sequence of rules 
that is a possible priority derivation of a terminal word of size n. Hence 
the coefficient is an upper bound on the number of such words and the 
reciprocal of the radius of convergence of the diagonal series gives an 
upper bound on the size of the language generated by the grammar. Since 
some sequences of rules give derivations with conflicts, we obtain in 
general only an upper bound and not an exact value. If needed, the 
technique of Section 3 of [9] is used to estimate the radius of convergence 
of the diagonal. 
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Our first upper bound is a general one. Suppose that each tile of our 
isohedral tiling has exactly S edges. 

PROPOSITION 5. The Klarner constant of the tiling is less than or equal 
to 

(S - \)s~] 

(S ~ 2f~2' 

Proof. To use the version of the method sketched above, we must extend 
our notion of symbol. We would need the symbol to record orientation 
information about any tile it was written in. In our case, the single 
nonterminal of the grammar would distinguish one edge of any tile it was 
written in. The distinguished edge would indicate the adjacent tile from 
which the nonterminal was first written into the tile. Given a tile with the 
nonterminal in it, there are rules of the grammar that write nonterminals 
into any subset of adjacent tiles that does not contain the distinguished 
adjacent tile. The tile itself is given a terminal. A rule writing nonterminals 
into k adjacent tiles would have weight xky. 

This extended notion of symbol does not cause any real difficulties but 
we can avoid it by slightly elaborating our method. We have a nonterminal 
for each edge of one tile from each translation orbit of tiles. Again the 
nonterminal's edge distinguishes the adjacent tile that is not to be added 
by any rule. We use essentially the same rules for each nonterminal. A rule 
adds a subset of adjacent tiles at positions defined relative to the 
distinguished edge. A given rule determines which adjacent tiles will have 
the appropriate nonterminals written in them by counting edges 
proceeding clockwise from the distinguished edge. Then, instead of a 
priority derivation giving a sequence of exact rules, it would just give 
a sequence of relative rules. 

For both approaches, the sum of weights in (2) is >>(1 + x)s~]. The 
coefficient of x"y" is the binomial coefficient 

and the proposition follows by an easy calculation. 

The upper bound of Proposition 5 also applies to tilings that are not 
isohedral if we define S as the maximum number of edges of any tile. In 
the proof, if a derivation calls for a rule to be applied to a tile with an 
insufficient number of edges, then that derivation produces no result. If 
the tiling has one orbit of tiles with many more edges than the other orbits 
of tiles, then the estimate above will be rather poor. In general, this 
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estimate seems to get worse with increasing S. The upper bound of 4 for 
the Klarner constant of a triangulation seems to be the best case. 

The upper bound of Proposition 5 can be reduced by a technique 
analogous to forming the sets of twigs E(k) in [9]. For a fixed individual 
tiling, it is more efficient to find a better first grammar before beginning 
the construction of the higher order E(k). For our first example, we 
treat the case of the regular hexagon tiling. So that the neighbors of a tile 
will be in specific directions, we regard the tiling as being oriented so that 
each hexagon has a pair of horizontal edges. In order to be able to make 
any polytile, a grammar must be able to write into any neighbor of a tile 
with a nonterminal. In the grammar of Proposition 5, this was assured 
since one neighbor had already been written in and there were rules that 
could write into any of the other five neighbors. However, we can get to all 
the neighbors without needing rules to directly write into all of them. We 
now give a grammar that can directly write into only three neighbors. 
We will describe the rules for a hexagon that was first written in from the 
hexagon directly below it; the other cases are rotations of this case and we 
are using relative rules again as in the proof of Proposition 5. As in that 
proof, we use either a single orientable nonterminal that can distinguish 
the neighbor it was written in from or else a whole set of non-orientable 
nonterminals that convey this information. There are rules writing the 
appropriate nonterminal into any subset of the three adjacent hexagons 
that are to the upper left, directly above and to the upper right of the given 
hexagon. We show that this set of rules is sufficient by induction on the 
length of the derivation from the start tile to our given tile. In this 
grammar, the start tile will always be a bottommost tile of the polytile 
generated. All polytiles have bottommost tiles so we have not lost any. For 
a start tile we use the nonterminal that distinguishes the tile directly 
below. Thus, since start tile was a bottommost tile, the three neighbors of 
the start tile that are not covered by the rules will be blanks in the final 
polytile. Proceeding to our given hexagon as the induction step; we note 
that, by induction, all neighbors of the hexagon below it can be written in. 
This includes all three lower neighbors of the given hexagon since a 
derivation would have reached them before reaching our given hexagon. 
Since the rules allow us to write into the remaining three upper neighbors, 
we are done. Computing the sum of weights for this grammar, we obtain 
the same sum as the set of twigs in figure 3 of [9]. Therefore, 6.75 is an 
upper bound for the Klarner constant of the regular hexagon tiling. 
Proposition 5 gives a bound of about 12.2 for this tiling. 

For the remaining examples, the rules will treat small groups of tiles 
instead of single tiles as above. We use the following terminology. The tiles 
of a tiling will be partitioned into sets called aggregate tiles. If the original 
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tile boundaries in the interior of the aggregate tiles are ignored, the 
aggregate tiles themselves form a tiling. In our examples this aggregate 
tiling will be one of the three regular tilings. The first example of this kind 
is the triangulation of type [3.122]. Here each aggregate tile is formed by 
three triangles whose 120° angles meet at the center of the aggregate tile. 
Each rule determines what symbols are to be written in all of the tiles of 
an aggregate tile. There is a nonterminal for each of the six translation 
orbits of original tiles. Each of these nonterminals has its version of a set 
of nine relative rules. A given rule will terminalize the tile with the a map 
nonterminal and possibly one or both of the other tiles in the aggregate 
tile. The rule may also write an appropriate nonterminal into the 
neighboring tile of either or both of the adjacent aggregate tiles that are 
not adjacent to the tile with the a map nonterminal. We need not write 
into the aggregate tile adjacent to the tile with a map nonterminal since, 
except at the start, a rule applied to this aggregate tile is what originally 
wrote the a map nonterminal. To complete the grammar, we need a start 
nonterminal and six rules to rewrite it as an appropriate nonterminal of 
the type defined above. We also need six additional start rules that rewrite 
the start symbol as an appropriate nonterminal and also write a terminal 
into the adjacent tile that is in a different aggregate tile. Without these 
additional start rules, we could not generate those polytiles whose 
boundary contained no segments that were aggregate tile boundaries. 
(There would be no place to start.) Since the start rules are only applied 
once, at the beginning, they may be ignored in the counting procedure and 
thus they do not effect the size estimate. This grammar gives as an upper 
bound for the size, the real root of x3 — 4x — 4, about 2.382976. 

The triangulation P3 — 10 of type [4.82] allows a similar construction. 
The aggregate tiles are the squares formed by the four triangles having a 
common vertex for their 90° angles. This time there are 25 relative rules 
for each of four nonterminals and eight start rules for the start symbol. 
We get an upper bound of about 3.187013 for the Klarner constant of 
the tiling. 

The next example is the quadrilateral tiling of type [3.6.3.6]. The 
aggregate tiles are regular hexagons formed by groups of three quadrila­
terals. There are three translation orbits of quadrilaterals but each 
quadrilateral could be entered from either of two faces, so we need six 
nonterminals. We will describe the set of fifteen relative rules for a 
quadrilateral with a horizontal base, leaning to the right, and entered from 
the tile directly below. This quadrilateral's aggregate tile is adjacent to six 
other aggregate tiles. The lower three are assumed already written in. In 
addition to terminalizing some quadrilaterals of the a map nonterminal's 
aggregate tile, the rules can write appropriate nonterminals into some of 
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the adjacent quadrilaterals of the three upper neighboring aggregate tiles. 
Note that the quadrilateral above the a map nonterminal's tile is adjacent 
to two of these neighboring aggregate tiles but the quadrilateral to the left 
of the a map nonterminal's tile is adjacent to only one of these 
neighboring aggregate tiles. This grammar does not need additional start 
rules, six are sufficient. The resulting upper bound for the Klarner 
constant of the tiling is about 3.3357041. 

In our last three examples, an aggregate tile is adjacent to two original 
tiles in each of the neighboring aggregate tiles. A rule that terminalizes 
tiles of a given aggregate tile needs to write in at most one original tile of 
any neighboring aggregate tile. One original tile with a nonterminal is 
sufficient for the entire aggregate tile. This allows us to omit rules that 
write into two different tiles of the same neighboring aggregate tile. One of 
these examples is the tiling P4 — 41 of type [3.4.6.4]. An aggregate tile is 
an equilateral triangle composed of three quadrilaterals whose 120° angles 
share a vertex. There are six translation orbits of quadrilaterals and each 
quadrilateral can be entered from either of two faces. Each of the twelve 
nonterminals has a version of the set of twenty one relative rules. This 
grammar gives an upper bound of about 4.546892 for Klarner constant of 
the tiling. Another example is the equilateral triangle tiling itself. We 
group sets of four triangles into larger equilateral triangles. The aggregate 
tiling is of the same type as the original tiling. There are two translation 
orbits of tiles and a triangle could be entered from either of two faces. 
Note that the center triangle of an aggregate tile never gets a nonterminal. 
The sets of relative rules have twenty rules each. This grammar gives an 
upper bound of about 3.097276 for the Klarner constant of the tiling. Our 
last example is the triangulation of type [4.6.12]. An aggregate tile is an 
equilateral triangle composed of six triangles whose 60° angles meet at a 
common vertex. There is one nonterminal for each of the twelve 
translation orbits of original triangles. Each set of relative rules has 69 
rules. The resulting upper bound for the Klarner constant is about 
2.965690. 
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