EXISTENCE THEOREM FOR GROUPS

by C. G. CHEHATA (Received 18th June 1963)

1. Introduction

Given a partial automorphism of a group G, i.e. an isomorphic mapping μ of a subgroup A of G onto a second subgroup B of G, it is known (2, Theorem I) that there always exists a group H containing G and an inner automorphism of H which extends μ ; i.e. there exists an element t of H, such that the transform by t of any element of A is its image under μ .

Also it is known (2, Theorem II) that this result generalises to the case in which G possesses any number, finite or infinite, of partial automorphisms. These can be simultaneously extended to inner automorphisms of one and the same supergroup.

In (1) conditions are derived which are sufficient for extending two partial automorphisms of a given group to commutative automorphisms (inner ones) of an extension supergroup.

In this paper we consider a given group G and a set of partial automorphisms $\mu(\sigma)$ of G, where σ ranges over an index set Σ and derive conditions which are sufficient for $\mu(\sigma)$ to be all extendable to inner automorphisms t_{σ} of one and the same supergroup $G^* \supseteq G$ such that for a fixed $\alpha \in \Sigma$, t_{α} commutes with every t_{σ} . An obviously necessary condition for this is that $\mu(\alpha)$ commutes with every $\mu(\sigma)$, $\sigma \in \Sigma$.

The sufficient conditions obtained, though not necessary, are wide enough to give Corollaries (1) and (2) as special cases.

2. First step of the construction

Let A_{σ} and B_{σ} , where σ ranges over an index set Σ , be subgroups of a given group G, and assume that for every $\sigma \in \Sigma$, μ_{σ} is an isomorphic mapping of A_{σ} onto B_{σ} . Let α be a fixed element of Σ , such that

$(A_{\alpha} \cap A_{\theta})\mu_{\alpha} = B_{\alpha}$	$B_{a} \cap A_{\theta}, \ldots \ldots$	I)
---	---	----

 $(A_{\alpha} \cap B_{\theta})\mu_{\alpha} = B_{\alpha} \cap B_{\theta}, \qquad (2)$

 $(A_{\alpha} \cap A_{\theta})\mu_{\theta} = A_{\alpha} \cap B_{\theta}, \qquad (3)$

$$(B_{\alpha} \cap A_{\theta})\mu_{\theta} = B_{\alpha} \cap B_{\theta}, \qquad (4)$$

for all $\theta \neq \alpha \in \Sigma$,

for all $\theta \in \Sigma$ and whenever $g\mu_{\alpha}$, $g\mu_{\theta}$, $(g\mu_{\alpha})\mu_{\theta}$ and $(g\mu_{\theta})\mu_{\alpha}$ are defined.

Take a sequence of groups

$$\dots, G^{(-1)}, G^{(0)}, G^{(1)}, G^{(2)}, \dots$$

which are copies of the group G, i.e. each group $G^{(i)}$, $i = 0, \pm 1, \pm 2, \dots$ is isomorphic to G under a fixed isomorphic mapping γ^i :

 $G^{(i)} = G^{\gamma^i}.$

Lemma. $G^{(i)}$ contains, for every $\sigma \in \Sigma$, subgroups $A_{\sigma}^{(i)}$ and $B_{\sigma}^{(i)}$ which are isomorphic.

Proof. Each group $G^{(i)}$ contains, for every $\sigma \in \Sigma$, subgroups $A_{\sigma}^{(i)}$ and $B_{\sigma}^{(i)}$ which are images of A_{σ} , B_{σ} respectively under the mapping γ^{i} . Let μ_{σ}^{i} be the mapping defined as follows. If

$$\begin{aligned} a_{\sigma}^{(i)} &= a_{\sigma} \gamma^{i}, \quad a_{\sigma} \in A_{\sigma}, \\ b_{\sigma}^{(i)} &= b_{\sigma} \gamma^{i}, \quad b_{\sigma} \in B_{\sigma} \end{aligned}$$

and if

$$a_{\sigma}\mu_{\sigma}=b_{\sigma},$$

then we put

$$a_{\sigma}^{(i)}\mu_{\sigma}^{i}=b_{\sigma}^{(i)}.$$

This is the mapping,

$$\mu_{\sigma}^{i} = (\gamma^{i})^{-1} \mu_{\sigma} \gamma^{i}.$$

 μ_{σ}^{i} is an isomorphism of A_{σ}^{i} onto B_{σ}^{i} .

For any two integers *i*, *j* such that i < j, we define by induction a sequence of groups $P^{i,j}$ as follows.

We first form the free product of $G^{(i)}$ and $G^{(i+1)}$ amalgamating $B_{\alpha}^{(i)} \subseteq G^{(i)}$ with $A_{\alpha}^{(i+1)} \subseteq G^{(i+1)}$ by putting $b_{\alpha}^{(i)} = a_{\alpha}^{(i+1)}$ whenever

$$b_{\alpha}^{(i)} = b_{\alpha}\gamma^{i}, \quad b_{\alpha} \in B_{\alpha},$$
$$a_{\alpha}^{(i+1)} = a_{\alpha}\gamma^{i+1}, \quad a_{\alpha} \in A_{\alpha}$$

and

Thus the isomorphism underlying the amalgamation is $(\gamma^i)^{-1} \mu_{\alpha} \gamma^{i+1}$. This mapping is defined on $B_{\alpha}^{(i)}$; moreover it is the identical mapping on $B_{\alpha}^{(i)}$.

 $a_{\alpha}\mu_{\alpha}=b_{\alpha}$.

Let

$$P^{i, i+1} = \{G^{(i)} * G^{(i+1)}; B^{(i)}_{a} = A^{(i+1)}_{a}\},\$$

and inductively

$$P^{i, j} = \{P^{i, j-1} * G^{(j)}; B^{(j-1)}_{\alpha} = A^{(j)}_{\alpha}\}.$$

We then form the union

$$P^* = \bigcup_{n=1}^{\infty} P^{-n, +n}$$

and define the mapping μ_{α}^* as follows. For any $x \in P^*$, i.e. $x \in G^{(i)}$ for some suitable *i*, let $x(\gamma^i)^{-1} = g \in G$, $g\gamma^{i+1} = y$; then we put

$$x\mu_{\alpha}^{\ast}=y,$$

292

which means that on $G^{(i)}$, μ_{α}^{*} is the mapping $(\gamma^{i})^{-1}\gamma^{i+1}$.

Now we have the following result.

Theorem 1. The group G is embedded in the supergroup $P^* \supseteq G$ which possesses an automorphism μ_{α}^* extending μ_{α} and for every $\theta(\neq \alpha) \in \Sigma$, P^* contains the subgroups

$$A_{\theta}^{*} = \{..., A_{\theta}^{(-1)}, A_{\theta}^{(0)}, A_{\theta}^{(1)}, ...\}$$

and

$$B_{\theta}^{*} = \{..., B_{\theta}^{(-1)}, B_{\theta}^{(0)}, B_{\theta}^{(1)}, ...\}$$

which are isomorphic under a mapping $\overline{\mu}_{\theta}$ such that for any $x \in A_{\theta}^*$,

 $x\bar{\mu}_{\theta}\mu_{\alpha}^{*} = x\mu_{\alpha}^{*}\bar{\mu}_{\theta}.$ (6)

The proof of this theorem follows the same lines as that of lemmas 5-9 in (1). What is true there for μ holds here for μ_{α} and what is true there for ν holds here for every μ_{θ} , $\theta(\neq \alpha) \in \Sigma$.

3. Second step of the construction

Now we form the group

$$\widetilde{P} = \{P^*, t_a\}$$

generated by P^* and an element t_a and define

$$t_{\alpha}^{-1}p^{\ast}t_{\alpha}=p^{\ast}\mu_{\alpha}^{\ast}$$

for all $p^* \in P^*$.

Thus t_{α} induces an inner automorphism of P and equation (6) gives

$$t_{\alpha}^{-1}(x\bar{\mu}_{\theta})t_{\alpha} = (t_{\alpha}^{-1}xt_{\alpha})\bar{\mu}_{\theta}$$

which shows that the inner automorphism induced by t_{α} commutes with every $\bar{\mu}_{\theta}, \theta \neq \alpha \in \Sigma$.

For every $\theta(\neq \alpha) \in \Sigma$, define

thus $\bar{\mu}_{\theta}$ becomes an isomorphism of

$$\widetilde{A}_{\theta} = \{A_{\theta}^{*}, t_{\alpha}\}$$

$$\widetilde{B}_{\theta} = \{B_{\theta}^{*}, t_{\sigma}\}$$

which also commutes with the inner automorphism induced by t_{α} .

Applying Theorem II, (2) we can embed G in a group G^* containing a group T freely generated by a set of elements t_{θ} , $\theta(\neq \alpha) \in \Sigma$, such that for any $\theta(\neq \alpha)$ in Σ the transform by t_{θ} of an element in A_{θ} is its image $\bar{\mu}_{\theta}$, i.e.

for any $\tilde{a}_{\theta} \in \tilde{A}_{\theta}$.

This means that t_{θ} induces an inner automorphism of G^* which extends $\bar{\mu}_{\theta}$ and thus extends μ_{θ} also.

E.M.S.---U

Putting $\tilde{a}_{\theta} = t_{\alpha}$ in (8) and making use of (7) we get

$$t_{\theta}^{-1}t_{a}t_{\theta}=t_{a}\bar{\mu}_{\theta}=t_{a};$$

thus t_{α} commutes with every t_{θ} . This completes the proof of the following theorem.

Theorem 2. For the existence of an extension group G^* containing G and inner automorphisms t_{σ} of G^* extending μ_{σ} for every $\sigma \in \Sigma$ such that t_{α} commutes with every t_{σ} it is sufficient that relations (2.1)-(2.5) hold.

4. Special cases

From Theorem 2, the following are immediate consequences.

Corollary 1. With the previous notation, it is sufficient for the existence of an extension group with the required property that together with (2.5) the relations

$$A_{a} \cap A_{\theta} = A_{\theta} \cap B_{a} = A_{a} \cap B_{\theta} = B_{a} \cap B_{\theta} = \{e\},\$$

hold for all $\theta(\neq \alpha) \in \Sigma$; where e denotes the unit element of the group. For then the conditions of Theorem 2 will be trivially satisfied.

Corollary 2. Again, with the same notation, if A_{σ} coincides with B_{σ} for every $\sigma \in \Sigma$, i.e. if μ_{σ} maps A_{σ} onto itself then for the required extension to be effected, it is sufficient together with (2.5) that

$$(A_{\alpha} \cap A_{\sigma})\mu_{\alpha} = (A_{\alpha} \cap A_{\sigma})\mu_{\sigma} = A_{\alpha} \cap A_{\sigma}$$

for every σ in Σ .

REFERENCES

(1) C. G. CHEHATA, Commutative extension of partial automorphisms of groups, *Proc. Glasgow Math. Assoc.*, 1 (IV) (1953), 170-181.

(2) G. HIGMAN, B. H. NEUMANN and H. NEUMANN, Embedding theorems for groups, J. London Math. Soc., 24 (1949), 247-254.

FACULTY OF SCIENCE THE UNIVERSITY ALEXANDRIA, EGYPT

294