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GENERATORS AND RELATIONS OF REES MATRIX
SEMIGROUPS

by H. AYIK* and N. RUSKUC
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In this paper we consider finite generation and finite presentability of Rees matrix semigroups (with or
without zero) over arbitrary semigroups. The main result states that a Rees matrix semigroup M[S; I, J; P] is
finitely generated (respectively, finitely presented) if and only if S is finitely generated (respectively, finitely
presented), and the sets /, J and S\U are finite, where U is the ideal of S generated by the entries of P.

1991 Mathematics subject classification: 20M05.

1. Introduction and the main result

Rees matrix semigroups were first introduced by Rees [15], although they were
implicitly present in Suschkewitsch [19]. Since then, they have become one of the most
important semigroup constructions, with numerous applications, especially to the
structure theory of regular semigroups; for examples see [8, 9, 10, 11, 12, 14], and for a
survey see [13]. In this paper we give necessary and sufficient conditions for a Rees
matrix semigroup to be finitely generated or finitely presented.

Let S be a semigroup, let / and J be two index sets, and let P = (p,,);€/,,e/ be a
J x I matrix with entries from S. The set

I xSxJ = {(i, s,j) 11 € /, s e SJ € J)

with multiplication defined by

is a semigroup. This semigroup is called a Rees matrix semigroup, and is denoted by
M[S; I, J; P].

If S is a group, then T is a completely simple semigroup, and, conversely, every
completely simple semigroup can be obtained in this way; see [15] or [5]. There is
a similar construction for completely 0-simple semigroups; this is considered in
Section 5.
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Let A be an alphabet. By A+ we denote the free semigroup on A, consisting of all
non-empty words over A under concatenation. We also let A* = A+ U {£}, where e is the
empty word. A presentation is an ordered pair {A\R), where R c A+ x A+ is a set of
pairs of words. S is said to be defined by {A\R) if S = A+/p, where p is the congruence
generated by R. Thus we have a natural epimorphism KS : A

+ -> S such that
R c ker(ns). For two words wltw2 e A+, we write w, = w2 if they are identical words,
and we write w, = w2 if they represent the same element of S (i.e. if ns(wt) = ns(w2)). If
S can be defined by (A\R) with both A and R finite then S is said to be finitely
presented. Every finitely presented semigroup is finitely generated, but the converse is
not true.

Now we give the main result of this paper.

Main Theorem. Let S be a semigroup, let I and J be index sets, let P — {Pji)jeJ i6/ be
a J x / matrix with entries from S, and let U be the ideal of S generated by the set
{Pji \j € J,i e 1} of all entries of P. Then the Rees matrix semigroup M[S; I, J; P] is
finitely generated (respectively, finitely presented) if and only if the following three
conditions are satisfied:

(i) both I and J are finite;

(ii) S is finitely generated (respectively, finitely presented); and

(iii) the set S\U is finite.

Proof. The result for finite generation follows from Propositions 2.1 and 2.2, and
Corollary 2.4. The result for finite presentability then follows from Corollaries 3.5
and 4.5. •

2. Generators

The purpose of this section is twofold. In it we prove the part of the Main Theorem
concerning finite generation of the Rees matrix semigroup T = M[S; I, J; P]. In the
process we also construct certain natural generating sets for S and T, thus preparing
the ground for the considerations in Sections 3 and 4.

Proposition 2.1. Let T = M[S; /, J; P] be a Rees matrix semigroup, and let U be the
ideal of S generated by the entries of P. If T is finitely generated then I, J and S\ U are
finite sets.

Proof. Observe that, for any (i, s, j), (k, t,l) e T, we have (i, s, j)(k, t,l) = (j, spjkt, /)
and spjkt e U. Therefore every element of the set / x S\U x J is indecomposable (i.e.
not equal to the product of two elements from T), and hence belongs to every
generating set of T. Therefore, if T is finitely generated, each of /, J and S\U must be
finite, as required. •
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Next we describe a generating set for S, given a generating set for T.

Proposition 2.2. If X is a generating set for a Rees matrix semigroup T =
M[S; I, J; P], then the set

Y — {s e S | (i, s,j) € X for some i e I,j e J}D {p,, \jeJ,ie 1}

generates S.

Proof. Let s € S be arbitrary. By taking arbitrary i e I,j e J, and decomposing

(i, s , ; ) = (i,, s , , ; , ) . . . (im, sm, jm) = (i,, s,p,.1I2s2... pJm_timsm, jm)

into a product of generators (i,, s , , / , ) , . . . , (im, sm,jm) e X, we conclude that s =

st Ph ,-2 s2 • • • P;m_, imsm € < 7 ) , as required. D

In the next result, we construct a natural generating set for T, assuming that S is a
monoid.

Proposition 2.3. Let S be a monoid and let T = M[S:, I, J; P] be a Rees matrix
semigroup. Denote by U the ideal of S generated by the entries of P, and let Z be a set
generating U as a semigroup. Write an arbitrary element z € Z as s(z)p/(z),(r)s'(z), with s(z),
s\z)eS, j(z)eJ and i(z)el, and let H = {s(z),s'(z) | z 6 Z} U {1}. Then the set
X = Ix(H2US\U)xJgenerates T.

Proof. Take an arbitrary element (i, s, j) e T. U s & U, then (i, s, j) e X. Assume
that s e U, say s = zx • • • zm, where zt,..., zm e Z. Then we have

(i, s,;) = (i, z, • • • zm,;) = (i, s(z,)pKIl)j(ri)s'(z,) • • • s(zm)pKlM,m)s\zm), j)

= (i, 5(z,), y(z,))(i(z,), s'(z,Mz2). j(*2» • • • (i(O. s'foJ. j) 6 <̂ >-

completing the proof. •

Remark. If S is not a monoid, one can still construct a generating set for T along
the same lines, replacing H1 by the set [s(z), s'(z) | z e Z} U (s'(z)s(z) | z e Z}. However,
it is the generating set given in Proposition 2.3 which will prove useful in Section 4.
Alternatively, when S is not a monoid one may note that M[S; I, J; P] is a sub-
semigroup of M[Sl; I, J; P] (where, as usual, S1 denotes the monoid obtained from S
by adjoining an identity element if necessary), and then use the methods from [7] or [1,
2, 18] to obtain a generating set for M[S; I, J; P]. This idea is used in the following:

Corollary 2.4. In the notation of the Main Theorem, if I, J and S\ U are all finite and S
is finitely generated, then the Rees matrix semigroup M[S; I, J; P] is finitely generated.
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Proof. Since S is finitely generated and S\U is finite, it follows by [18, Theorem
1.1] that U is finitely generated as a semigroup. Therefore, by Proposition 2.3,
T = M[Sl; I,J; P] is also finitely generated. Finally, note that T\T c / x ( l ) x j is
finite, so that T is finitely generated by [18, Theorem 1.1]. •

3. Presentations (1)

In this section we construct a presentation for a semigroup S, starting from a
presentation for a Rees matrix semigroup T — M[S; I, J; P]. This presentation for S is
finite whenever the starting presentation for T is finite, and so we have a proof of the
direct part of the Main Theorem concerning finite presentability.

Let H = l(i(k),s(k),j(k))\ k e K} be a generating set for T = M[S; I, J; P]. If we
define Y = {s(k) \ k e K], then it is clear that the set X = I x Y x J contains H, and so
generates T. Moreover, by Proposition 2.1, X is finite if and only if H is finite.

Take an alphabet

A = {a(i,y,j)\iel,y€ YJeJ)

in one-one correspondence with X. Let (A\R) be a presentation for T in terms of X,
and let

nT : A+ -> T, a(i, y, j) ~ (i, y, j), (1)

be the natural projection. By Proposition 2.2, the set

YU{P)i\jeJ,ieI}

generates S. Take a new alphabet

C = {c(y)\yeY)U[dU,i)\jeJ,ieI),

and let

7 t s :C + ->S, c(y)^y, d{j, i) -> pM (2)

be the natural projection.
Next we define a mapping \p : A+ -> C+ by

<Ka('i. >-i. j\) • • • a(im, ym, jj) = cCy,)d(;,, i2)c(y2) • • • d(jm_x, im)c(ym), (3)

where i , , . . . , im e I, y , , . . . , ym e Y, and ; , , . . . , ;m e J. (Intuitively, i/f rewrites a word
w e A+ into a word from C+ which represents the middle component of the element
7TT(W) 6 T . )

For a word w = a(i,, yx , ; , ) • • • a(im> ym, ; J e /1+ define A(w) = i, and p(w) = ;m. With
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this notation, the above definition of \ji has the following immediate consequence

), (4)

for all w,, w2 e A+.
If we let W = imty), then we have the following:

Lemma 3.1. For all y, y e Y, i e I, j e J, there exist words ((y, / ) , rj(j, i) e W such
that the relations

c{y)c(y') = tty,y'\ (5)

d(j, 0 = i/U, 0 (6)
hold in S.

Proof. Let w e C+, i0 e I, j0 e J be arbitrary, and consider the element
('o- ns(w)< Jo) 6 T- If we write

('o. ts(w), Jo) = (ii, yi. Ji) • • • O'm. ym, Jm),

a product of generators from X, we conclude that

For vv's c(y,)i(7,, i2)c(_y2)-• d(jm_,, im)c(_ym), we now have w'eW, and the relation
w — W holds in S. By putting in the above argument w = c(y)c(y) and w = d(j, i)
respectively, we complete the proof. D

For the remainder of this section, we consider the words {(y, y), tj(j, i) to be fixed
in accordance with Lemma 3.1.

Lemma 3.2. There exists a mapping a : C+ —>• W such that the relation w = <r(w) is
a consequence of the relations (5) and (6).

Proof. If w e W, then define a(w) = w. If w ̂  W then first apply (6) to obtain
a word c(y|)w,c(y2) containing no subword of the form d(jl,i2)d(j2,i1), and then
systematically apply (5) to eliminate all the subwords of the form c(y)c(y'). •

Intuitively, a rewrites an arbitrary word from C+ into a corresponding word in the
image of ip. We now use a to define a mapping <f>: C+ -*• A+, which will act as a kind
of inverse to i]/, as follows:

<p(w) = a(i0, yt, jt)a(i2, y2, j2) • • • a(im, ym, ;„), (7)
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where i0 e I and;0 e J are fixed, and where

a(w) = cfo)d(j], i2)c(y2) • • • d(jm-,, im)c(ym). (8)

Finally, we let \i: T -*• S, (i, s, j) >->s be the second projection. In the following
lemma, we establish certain connections between ns, nT, <p, ty and \i.

Lemma 3.3. (i) For any word w e C+, we have fiKT(j)(w) — ns(w).
(ii) For any word w e A+, we have nnT{w) = nsil/(w).

Proof, (i) If ff(vv) = c(y,)d(ji, i2)c(y2) • • • </(;«_,, im)c(ym), then

(w) = /i7tr(a(i0, y,, 7,)a(i2, y2, ; 2) • • • a(iM) ym, j0)) (by (7))

= n((jh, y\. ;i)(»2. ^2. h) • • • ('m. ym. ;'o)) (by ( l ))

^ • • • pjm-,imym, jo))

= "s°M (by (2))

= 7cs(w). (Lemmas 3.1, 3.2)

The proof of (ii) is similar. •

Now we can state and prove the main result of this section.

Theorem 3.4. Let T = M[S; I, J; P] be a Rees matrix semigroup and let {A\R) be a
presentation for T in terms of a generating set of the form I x Y x J, with Y c S. With
the above notation, S is defined by the presentation

(C | «K") = Hv) ((«= » )€*) (9)

<y)c(y) = CO'.3O ( y . y e r ) 00)
d(j,i) = ri(j,i) ijej.iel)) (11)

in terms of the generating set Y U {p,, | j e J, i e I}.

Proof. Since the relation u = v holds in T, it follows that nT(u) = nT(v), and so,
by Lemma 3.3 (ii), we have

%<K«) = f™T(u) = iinT(v) = KSII/(V).

Thus, all the relations (9) hold in S. That all the relations (10) and (11) hold in S
follows from Lemma 3.1.

To complete the proof of the theorem, we show that an arbitrary relation w, = w2

https://doi.org/10.1017/S0013091500020472 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020472


GENERATORS AND RELATIONS OF REES MATRIX SEMIGROUPS 487

(w,, w2 e C+) which holds in S is a consequence of (9), (10) and (11). We do this in
three steps.

Step 1: The relation $(w,) = <t>(w2) holds in T. Indeed, by Lemma 3.3 (i), (1) and
(7), we have:

w,), Jo) = O'o. is(w,), j0) = (i0, ns(w2),

= 0o. L"tT(f>(w2), jo) = nT<j>(w2).

Step 2: The relation ^0(w,) = \Jt<t>(w2) is a consequence of (9). From Step 1, we know
that 0(w2) can be obtained from $(w,) by applying relations from R. Without loss of
generality, we can assume that 0(w2) can be obtained from <Kwi) by one application of
one relation (u — v) e R, i.e. that

0(w,) = aw/? and <Kw2) = af/?,

for some a,)? € A*. If both a and /? are non-empty, then we have

(by (4))

= ^(a)d(p(a), A(«))^(i;)d(p(tt), A(/QW(/0 (relation (9))

(since u = » in T)

The case where at least one of a or ^ is empty is treated similarly.
Step 3: The relations ̂ 0(wn) — wk, k — 1, 2, are consequences 0/(10) ana* (11). Indeed,

by (3), (7), (8) and Lemma 3.2, we have

W(wt) = txK) = w, (k= l ,2 ) ,

a consequence of (10) and (11).
The proof of the theorem is now complete. •

Corollary 3.5. If T = M[S; I, J; P] is finitely presented, then so is S.

Proof. As explained at the beginning of this section, if T is finitely generated,
then it has a finite generating set of the form / x Y x J. Moreover, if T is finitely
presented, it can be defined by a finite presentation {A\R) in terms of this generating
set. An application of the previous theorem to (A\R) yields a finite presentation
for S. •
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4. Presentations (2)

Now we find a presentation for a Rees matrix semigroup T — M[S; I, J; P], given a
presentation for the ideal U of S generated by the entries of P. We do this in the case
where S is a monoid. Then we use the main result of [18] to extend this presentation
to the case where S is an arbitrary semigroup, and then to complete the proof of the
Main Theorem. The argument in this section is in outline similar to that of Section 3,
and is based on the idea of rewriting the given relations. However, the technical details
are different and slightly more complicated.

So let S be a monoid, let T = M[S; I, J; P] be a Rees matrix semigroup, and let U
be the ideal generated by the set {pjt \jeJ,ie 1} of all entries of P. Let Z c U be any
set generating U as a semigroup. As in Proposition 2.3, write an arbitrary element
z e Z as

z = s(z)pjmz)s'(z)

with s(z), s'(z) e S, i(z) € /, j(z) € J, and let

H = {s(z),s\z)\zeZ}U{\}.

Then, clearly, the set

Y = {hp^h \h,W e H, j eJJe 1}

contains Z, and hence generates U as a semigroup. Moreover, Y is finite, provided that
Z, / and J are all finite.

Now let

C = {c(h, j , i , h') \ h , K e H , j e J , i e 1}

be a new alphabet representing elements of Y, and let (C\R) be a presentation for U.
For technical reasons, we also introduce an alphabet

D = {d(s) | s € S\U)

representing elements of S\U. It is obvious that the set Yl)S\U generates S, and so
the natural homomorphism

TTS : (C U D)+ -»• S, cihJJ.hO^hpjih', d(s) >-> s (12)

is onto. By Proposition 2.3, the set

X= / x ( H 2 U S \ l / ) x J

generates T. Let
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A = {a(i, h', h, j) \iel, h', heHJeJ) and

B = {b(i, s, j) \iel,se S\U, j e J)

be two alphabets, and let

nT:(A\J B)+ -> T, a(i, K, h, j) i-> (i, h'h, j), b(i, s, j) ~ (i, s, j) (13)

be the natural projection.
Next, we define a mapping ((>: I x H x C+ x H x J -+ A+ by

<KU h', w, h, j) = fl(i, h', fc,, jMh, >i', • *2, J2) • • • «(<«> ̂ , ft. i) (14)

where w = c(huju i,, /i',) • • • c(hm, j m , im, h'm) e C+. Intuitively, <p(i, h', w, h, j) is a word in
A+ representing the element (i, /j'7ix(w)h, _/) 6 T. Immediately from the above definition
of 4>, it follows that

<P(i, V, w,c(fc,,;,, i,, * > 2 I fc,;) = 0(f, K, w,, fc,, ;,)0(i,, /J',, w2, fc, j) (15)

for all i,ixG.I,j,jx&J,h,hl,hi,h\sH and all wx,w2 e C", where we introduce the
convention that <f)(i, h', e, h, j) = a(i, h', h, j).

We also need a mapping ( i U B ) + - ^ ( C U D ) + , which would rewrite a word
w e (A U B)+ into a word representing the middle component of nT(w). To this end, we
let

W = {<t>{i, 1, w, l,j) |i € /, w e /4+,7 e 7},

and then establish certain relations allowing us to transform words from {A U J3)+ into
words from W.

Lemma 4.1. For arbitrary i, i", i" e I, j , j ' , j " e J,h,h' e H ands',s" e S\U, there exist
words C(i, H, h, j) e W U B, r}[i', i", j ' , j " , s', s"), 6(i, i', j , j ' , h, h', s'\ X(i, i', / , ; ' , h, ti, s') e W
such that the relations

a(i,h',h,j) = C(i,h',h,j), (16)

b(i', s', j')b(i", s", j") = ¥}'.'". j ' , j " , 5'. s"), (17)

b(i', s', j')a(i, h', h, j) = 6(i, i:, j , f, h, h', s'), (18)

o(i, h', h, j)b(i', s'J') = k(i, V, j , j ' , h, h', s') (19)

hold in T.

Proof. Let w e (A U B)+ be arbitrary, and write nT(w) = (i0, s,j0). If s e S\U then
define w' = b(i0, s, j0). Otherwise, if s e U, then we can write
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a product of generators from Y, and then define

W = a(iQ, 1, h,, ; , )a ( i , , /i',, h2, j2) • • • a(im< h'm, 1, j0) e W.

With this choice we have we W U B, and the relation w = w' holds in T. The proof
of the lemma is completed by letting w = a{i, k, h, j), w = b{i', s', j')b(i", s", j"),
w = b{i', s', j')a(i, h', h, j) and w = a(i, h', h, j)b(i', s', j") respectively, and noting that in
the last three cases we cannot have w e B. •

For the remainder of this section, we consider the words £. r\, 0 and k to be fixed.

Lemma 4.2. There exists a mapping a : (A U B)"1" -*• W U B SMC/I /Aaf /Ae relation
w = cr(vv) w a consequence of relations (16)—(19) ybr every word w e (A U B)+.

Proof. Let we(/ lUB)+ . First replace each a(i,h',h,j) in w by the corresponding
£(i, /J', h, j). If the resulting word is b(i', s', j') define CT(VV) = b(i', s', j ' ) . Otherwise, use
(17), (18) and (19) to eliminate systematically all symbols b(i', s',j'), and define CT(W) to
be the resulting word. •

Now we define the required mapping ift : (A U B)+ ->(CU D)+ as follows

d(s) if (T(W) = b(i, s, j)

cQiujuiuh\).--c{hm,jm,im,h'm) (20)

We also let, as before, fx: T -*• S, (i, s, j) >-* s, be the second projection.

Lemma 4.3. (i) For all w e (AU B)+, we have nsij/(w) = nnT(w).
(ii) For all w e C+, i el.je J, h, H e H, we have nnT(j>(i, h', w, h, j) = h'ns(w)h.

Proof, (i) If ff(vv) = b(i, s, j) then

ns\]/(w) = ns(d(s)) = s = (i((i, s, j)) = nnT(b(i, s, j)) = nnTa(w) = finT(w)

by (20), (12), (13), and Lemmas 4.1 and 4.2, while if

<7(w) = a ( i , l , h l t j ] ) a ( i l , h ' l , h 2 , j 1 ) - - - a ( L i m , h ' m , \ , j ) e W,

then
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7ts<Kw) = n s ( c ( h t , U,<,,/»',)••• c(hm, j m , im, h'J) (by (20))

= hxPhhK-hmpjmiah'm (by (12))

= KQ> KPhix K-- hmPjmimh'm, j))
= HKT(a(i, I,hi,ji)a(h,h\,h2,j2)--a(im,h'm, 1,;)) (by (13))

= ltnT(w). (Lemmas 4.1, 4.2)

(ii) is proved similarly. •

Now we state and prove the main result of this section.

Theorem 4.4. Let S be a monoid, let T — Ai[S; I, J; P] be a Rees matrix semigroup,
and let U be the ideal of S generated by {Pj,\j e J,i e /} . If (C\R) is a presentation for U
in terms of a generating set Y — {hpj,h' | h, h' 6 H, j e J,i e 1} with 1 e H c S, then, with
the above notation, the presentation with generators A U B and relations

<K«, h\ u, h, j) = <P(i, h', v, h, j), (21)

a(i,h',hj) = i;(i,h',h,j), (22)

b(i', 3', j')b{i", s",;") = i,(i', i", j ' , j " , s', s"), (23)

b(i', s', j')a(i, h', h, j) = 0(i, i'f j , j ' , h, h', s'), (24)

a(i, h', h, j)b{i', s', j') = A(i, i', j , j ' , h, h', s'), (25)

where (u = v) e R, i, i', i" e I, jJ'J" € J, h, H 6 H, s', s" e S\U, defines T in terms of
the generating set X — I x (H2 U S\U) x J.

Proof. Note that by (13), (14) and Lemma 4.3 (ii), we have

nT<t>(i, h', u, h, j) — (i, )inT^{i, h, u, h, j), j) — (i, h'ns(u)h, j) — (j, h'ns(y)h, j)

= (i, nnT<f>{i, h, v, h, j), j) - nT<p(i, h', v, h, j),

and thus all the relations (21) hold in T. That all the other relations (22)-(25) hold in
T we proved in Lemma 4.1.

To complete the proof of the theorem, we show that any relation w, = w2

(w,, w2 6 (A U B)+) holding in T is a consequence of the relations (21)-(25). Recall that
ff(\V|), <T(W2) e WUB. Note that the words from W represent decomposable elements
of T, while the letters from B represent indecomposable elements of T. Therefore, we
have CT(W,) e B if and only if a{w2) e B. Also note that distinct letters from B represents
distinct elements of T by (13). Thus, if a(wl),a(w2) e B, then we must have
ff(w,) = <T(W2), and then we have w, = ff(w,) = CT(W2) = vv2 as a consequence of the
relations (22y-(25), by Lemma 4.2.

For the remainder of this proof, we consider the case where CT(W,), CT(W,) e W. We
proceed in three steps.
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Step 1: The relation ^(w,) = \j/(w2) holds in S. Indeed, by Lemma 4.3 (i), we have

Step 2: The relation $(i, 1, ̂ (w,), 1, j) = <j)(i, 1, i/'(w2), 1, j) is a consequence of the
relations (21). From Step 1, it follows that ^(w2) can be obtained from \J/(wt) by
applying relations from R. Without loss of generality, we may assume that it can be
obtained by one application of one relation from R, say

^(w,) = aw/3 and iA(w2) = txvfi,

where a, ft e C*, (u — v) e R. If both a and /? are non-empty we can write
a == a,c(/i,,;,, i,, h\) and /S s c(^2, j2, i2, /i'2)j3,, and then we have

,oi,c{huu, ix,h\)uc(h2, j 2 ,

1, a,, h,, ;,)^(i,, *',, «, fc2.

1, a,, hx,umi,,h\,v, h2,j2)4>{i2, h'2,
1, a,c(h,, j , , iuh\)vc(h2, j2,

by using (15) and (21). The case where at least one of a or j? is empty is treated
similarly.

Step 3: The relations wk = 0(i , 1, *j/(wk), I, j), k=l,2, are consequences of (22)-
(25). To prove this, it is enough to note that, by (14) and (20), we have
4>(i, 1, i//(wk), \,j) = ff(wt), and then apply Lemma 4.2.

The proof of the theorem is now complete. •

Corollary 4.5. Let S be a semigroup, let T — A4[S; I, J; P] be a Rees matrix semi-
group, and let U be the ideal of S generated by {pjt \ j e J,i e I}. If S is finitely presented
and if all 1, J and S\U are finite, then T is finitely presented as well.

Proof. If S is finitely presented then so is U by [18, Theorem 4.1]. As explained at
the beginning of this section, U can be generated (as a semigroup) by a finite set
Y — {hpjjh' | h, h! e H,j e J,i e 1} where 1 e H C S 1 . Moreover, U can be defined by a
finite presentation (C\R) in terms of Y. From the previous theorem, it follows that
T — M[SK,I, J; P] is finitely presented. Finally, note that T'\T c / x {1} x J is finite,
and hence T is finitely presented by [18, Theorem 4.1]. •

5. Rees matrix semigroups with zero

One common variant of the Rees matrix construction is as follows. Let S be a
semigroup with zero, and let T — M[S; I, J; P] be a Rees matrix semigroup. The set
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/ x {0} x J is an ideal of T. Hence it is possible to form the Rees quotient
T'/(I x {0} x J) to obtain a new semigroup. This semigroup is called a Rees matrix
semigroup with zero, and is denoted by T = M°[S; I, J; P]. It is well known that if
S = G° is a group with a zero adjoined, and if P is regular, then T is a completely
0-simple semigroup, and that all completely 0-simple semigroups can be obtained
in this way (see [15] or [5]).

Our main result of this paper remains valid for this new construction.

Main Theorem (for Rees matrix semigroups with zero). Let S be a semigroup with
zero, let I and J be index sets, let P = (p;-,-);«y ,-6j be a J x I matrix with entries from S, and
let U be the ideal of S generated by the set {pjt \jeJ,ie I) of all entries of P. Then
the Rees matrix semigroup M°[S; I, J; P] is finitely generated (respectively, finitely
presented) if and only if the following three conditions are satisfied:

(1) both I and J are finite;

(2) S is finitely generated (respectively, finitely presented); and

(3) the set S\U is finite.

Proof. If we let T - M[S; I, J; P], then we can think of T as being T with all the
elements of / x {0} x J being equal (and denoted by 0).

(=>) Assume that T is finitely generated. As in Proposition 2.1, we can prove that /
and J are finite. Therefore the ideal / x {0} x J is finite and so T is finitely generated
as well. It follows by the Main Theorem that S is finitely generated and that S\U is
finite. Moreover, if T is finitely presented, then so is T (as an ideal extension of a
finite semigroup by a finitely presented semigroup). Again the Main Theorem implies
that S is finitely presented.

(•<=) If S is finitely generated and all I,J and S\U are finite, then by the Main
Theorem, T is finitely generated. Since T is a quotient of T, it follows that T is
finitely generated as well. Moreover, if S is finitely presented then so is T by the Main
Theorem. Since the ideal / x {0} x J is finite, it follows that T = T'/(I x {0} x J) is also
finitely presented. •

6. Final remarks

Finite presentability of Rees matrix semigroups has already been investigated in
certain special cases. Thus, Howie and Ruskuc in [6] proved the converse part of
the main theorem in the case where S is a monoid and P contains at least one
invertible entry. Also, an immediate application of the Reidemeister-Schreier type
rewriting technique developed in [1] proves the direct part of the Main Theorem in
the case of completely (O-)simple semigroups. Finite generation and ranks of Rees
matrix semigroups (in the completely (O-)simple case) have been considered in [4]
and [17].

https://doi.org/10.1017/S0013091500020472 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020472


494 H. AYIK AND N. RUSKUC

This paper is a part of wider research into finite presentability (and other finiteness
conditions) of various semigroup constructions; see [3], [6], [16], [18]. A common
feature in all these results is that of a rewriting mapping (mappings i/> and <p in
Sections 3 and 4). It is interesting to note that, unlike in other constructions
considered so far, no rewriting mapping defined in this paper is a homomorphism.
This is because, in general, S is neither a subsemigroup nor a homomorphic image of
T = M[S; I, J; P].

REFERENCES

1. C. M. CAMPBELL, E. F. ROBERTSON, N. RUSKUC and R. M. THOMAS, Reidemeister-
Schreier type rewriting for semigroups, Semigroup Forum 51 (1995), 47-62.

2. C. M. CAMPBELL, E. F. ROBERTSON, N. RUSKUC and R. M. THOMAS, On subsemigroups
of finitely presented semigroups, J. Algebra 180 (1996), 1-21.

3. C. M. CAMPBELL, E. F. ROBERTSON, N. RUSKUC and R. M. THOMAS, Presentations for
subsemigroups - applications to ideals of semigroups, J. Pure Appl. Algebra, to appear.

4. G. M. S. GOMES and J. M. HOWIE, On the ranks of certain finite semigroups of
transformations, Math. Proc. Cambridge Philos. Soc. 101 (1987), 395-403.

5. J. M. HOWIE, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).

6. J. M. HOWIE and N. RUSKUC, Constructions and presentations for monoids, Comm.
Algebra 22 (1994), 6209-6224.

7. A. JURA, Determining ideals of given finite index in a finitely presented semigroup,
Demonstratio Math. 11 (1978), 813-827.

8. M. V. LAWSON, Abundant Rees matrix semigroups, /. Austral. Math. Soc. 42 (1987),
132-142.

9. M. V. LAWSON, Rees matrix semigroups, Proc. Edinburgh Math. Soc. 33 (1990), 23-37.

10. D. B. MCALISTER, Regular Rees matrix semigroups and regular Dubreil-Jacotin
semigroups, J. Austral. Math. Soc. 31 (1981), 325-336.

11. D. B. MCALISTER, Quasi-ideal embeddings and Rees matrix covers for regular semi-
groups, J. Algebra 152 (1992), 166-183.

12. J. MEAKIN, Fundamental regular semigroups and the Rees construction, Quart. J. Math.
Oxford (2) 36 (1985), 91-103.

13. J. MEAKIN, The Rees construction in regular semigroups, in Semigroups (Colloquia
Mathematica Societatis Janos Bolyai Vol. 39, North-Holland, Amsterdam, 1985), 115-155.

14. F. PASTIJN and M. PETRICH, Rees matrix semigroups over inverse semigroups, Proc.
Royal Soc. Edinburgh 102A (1986), 61-90.

15. D. REES, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400.

16. E. F. ROBERTSON, N. RUSKUC and J. WIEGOLD, Generators and relations of direct
products of semigroups, Trans. Amer. Math. Soc. 350 (1998), 2665-2685.

17. N. RUSKUC, On the rank of completely 0-simple semigroups, Math. Proc. Cambridge
Philos. Soc. 116 (1994), 325-338.

https://doi.org/10.1017/S0013091500020472 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020472


GENERATORS AND RELATIONS OF REES MATRIX SEMIGROUPS 495

18. N. RUSKUC, On large subsemigroups and finiteness conditions of semigroups, Proc.
London Math. Soc. 76 (1998), 383-405.

19. A. SUSCHKEWITSCH, Uber die endlichen Gruppen ohne das Gesetz der eindeutigen
Umkehrbarkeit, Math. Ann. 99 (1928), 30-40.

MATHEMATICAL INSTITUTE
UNIVERSITY OF ST ANDREWS
ST ANDREWS KYI6 9SS
SCOTLAND
E-mail address: ayik@dcs.st-and.ac.uk, nik@dcs.st-and.ac.uk

https://doi.org/10.1017/S0013091500020472 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020472

