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MAPPINGS OF NONPOSITIVELY CURVED MANIFOLDS
SAMUEL I. GOLDBERG"

1. Introduction.

In recent papers with S. S. Chern [3] and T.Ishihara [4], the author
studied both the volume—and distance—decreasing properties of harmonic
mappings thereby obtaining real analogues and generalizations of the
classical Schwarz-Ahlfors lemma, as well as Liouville’s theorem and the
little Picard theorem. The domain M in the first case was the open ball
with the hyperbolic metric of constant negative curvature, and the target
was a negatively curved Riemannian manifold with sectional curvature
bounded away from zero. In this paper, it is shown that M may be
taken to be any complete Riemannian manifold of non-positive curvature.

THEOREM 1. Let f: M—N be a harmonic K-quasiconformal map-
ping of Riemannian manifolds of dimensions m and n, respectively. If
M is complete, and (a) the sectional curvatures of M are monpositive
and bounded below by a mnegative constant —A, and (b) the sectional
curvatures of N are bounded above by the constant —((m — 1)/(k —
1)kAK*, k = min (m,n), then f is distance-decreasing. If m =n and
(b) is replaced by the condition (b’) the sectional curvatures of N are
bounded away from zero by —AK:, then f is volume-decreasing.

Thus, even in the 1-dimensional case, that is, even when M is a
Riemann surface, the theorem is a generalization of Schwarz’s lemma.
P. J. Kiernan [8] assumed the ratio of distances attained its maximum
on M in order to achieve this.

By assuming f is a mapping of bounded dilatation of order K (see
[6]), a more general result may be obtained.

The concept of a K-quasiconformal mapping of equidimensional mani-
folds, m = n > 2, was introduced by Lavrentiev, Markusevic and Kreines
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in 1938, but it did not receive serious attention until the mid fifties.
This notion was subsequently extended in [5] to include the cases m # n.

The proof of the theorem is inspired by the technique used so suc-
cessfully to obtain the generalized Schwarz-Ahlfors lemma, as well as
the real analogues and generalizations of Liouville’s theorem and Picard’s
first theorem (see [5], §5), viz., the manifold M is exhausted by convex
open submanifolds defined in terms of the “distance from a point” funec-
tion. This function is continuous and, in fact, convex since the sectional
curvature of M is nonpositive.

2. Harmonic mappings and curvature.

We begin by reviewing the theory of harmonic mappings as found
in [3]. Let dsi and ds% be the Riemannian metrics of M and N, respec-
tively. Then, locally,

sy =l + -+ + %, dsy = + -+ 4+ o}

where the o, and o¥ are linear differential forms in M and N, respec-
tively. (In the sequel, the range of indices ¢,7,%k,--- =1,-.-,m, and
a,b,¢,--+ =1,...,n) The structure equations in M are

dw¢=;mj/\wﬂ,
do;; = Zk‘_' o N\ Oy — %; R jp0n N\ o .
The Ricci tensor R;; is defined by
R, = Zk} Rixsn
and the scalar curvature by
R = Zz; R .

Similar equations are valid in N, where we will denote the corresponding
quantities in the same notation with asterisks.
Let f: M — N be a C~ mapping, and

Srog =21 Afoy
7

where f* is the pull-back mapping, that is the dual of the tangent map-
ping fy. Ife,..--,e, and f,, ---,f, are orthonormal bases of the tangent
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CURVED MANIFOLDS 5
spaces T,(M) and T;,,(N), respectively, then
(fi)ee; = 2] Afel .
It is evident that
[ F 5l = :/_T (A

is an upper bound for the ratio function of distances on M and N,
respectively (see §3 for the definition of the norm).

Later on we will drop f* in such formulas when its presence is
clear from the context.

The covariant differential of A2 is defined by

@1 DA¢ = dA¢ + 35 Aloy, + 3 Alof, = 3, A, (say)
i J J

with

2.2) Az = A9, .

The mapping f is called harmonic if
2.3) 2 AL=0.

Taking the exterior derivative of (2.1), and employing the structure
equations in M and N, we obtain

1

2 b,c,d

2.4) DAY N o; = —l 21 AR 00 N\ 0 —
7 2 jiEe

b
‘41:IBZ‘<¢z,cda);k /\ (fo

where

DAY = dAY + ij Ao, + ; Ao + ; Afwpy = ;‘ Af o (say) .
From (2.4)
2.5) Ay — ALy = —g A¢Ryy — bZ AALARY, ., -

1,4
By (2.2) and (2.5), the laplacian
447 = Zk; Afy = ; Afy = z}; A + 22 AjR;; —‘bZd: kRz’!‘mAiAiA?
J 3Gy &y
is easily calculated. For a harmonic mapping

(2-6) AA? = Z A?Rji - Z R;kachIl;A?cAg .
7 b,0,d,k
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Put u = ||f«]|® Then

2.7 du = 3 U,
7
where
2.8) uy =23 AfAY .

Taking the exterior derivative of (2.7), we get

e
We may therefore set
—_ ; Uy = }Jj Ug ;05
where u;; = tz;. Thus, from (2.8),
Upy = 2 aZ,%A;.’,‘Ag, + 2 ; AzAL; .

For a harmonic mapping, (2.5) yields the laplacian

IH

2.9) % -;—; gy = Z: (A5)® + Zij-,A?A?

— 2. RELAFASAATG.

a,d

Let Ae = (4%,...,A2) and A; = (4}, -.-,A?) be local vector fields in
M and N, respectively. Then, locally, > ||A%|F = A = |IflP. If M
is pinched, that is, if there are constants C, and C, such that

C, < sectional curvature of M < C,,
then it is easily checked that
(m — DO | Flf < 20 RiAFAG < (m — DG, |1 f P -

Let ||A; A\ 4,| denote the area of the parallelogram spanned by A; and
A, at each point. Then,

ZIAA A = ATl -

The last term in formula (2.9) may be expressed as

2 R ATATAAS = 2 5T R¥ (A, A | A N Ayl°

i<j
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where R*(A;, A;) denotes the sectional curvature of N along the section
spanned by 4; and A; at each point. Hence, if the sectional curvature
of N is bounded above by a nonpositive constant —B, we obtain

"Z R;kbchgAg'AgA(Jl' = 2B ” /\Zf*llz .

3. K-quasiconformal mappings.

Let V, and V, be Euclidean vector spaces over the reals of dimen-
gions m and mn, respectively, and let A: V,— V, be a linear mapping.
Let e, ---,e, and f,, -+, f» be orthonormal bases of V, and V,, respec-
tively. If p < min(m,n), A may be extended to the linear mapping
NPA: N?V,— APV, given by

/\PA(eil/\ e A eip) _—_Agil/\ e /\Aeip
where 1 <4, <4, < ... <1, < m.

Denoting the dual space of V, by V¥, A? A may be regarded as an
element of A?V*¥® APV, the space of AP V,-valued p-forms. Set
Ae;, = JAfy, put I =@y, ---,14,) wWith 1 <4, <4, <. <i, <m,J = (a,
s, ap) With 1<, <.+ <a,<n, and let D] denote det (A7), where the
i, are the components of I and the a, are the components of /. Moreover,
let

er==¢€, N\ - Ne,, Jr=Fa, N oo N e, O =6"N --- \NO*
where 6, ---,60™ is the dual basis of e, ---,e,. Then,
NPA =3 Di0"&®F,
the sum being taken over all possible I and J.

The inner products on V, and V, induce an inner product {, > on
AN? V@ A?V, and a norm ||A? A| is then defined by

[ATAIF= 2P Alen), N? Ale)) .

I

Set G =!AA. Then,
IA? A|? = trace A? G, p < min (m, n) .

In the sequel, we assume rank A = k. Then, k¥ < min (m,n) and
rank G=Fk. Let ,>24,> - >4 > 41 = +++ = An = 0 be the eigen-
values of G. If p <k, trace A?G is the p-th elementary symmetric
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function of the positive eigenvalues of G, that is

k
trace A?G = >, A, -2, .

i1 <ip

From Newton’s inequalities, we therefore obtain

@y [inrar/ (;f)]/ > [incar/ (’q‘"’)]’ , 1<p<q<k.

Assume now that A has maximal rank k. By an orthogonal trans-
formation A is transformed to a diagonal matrix with entries y; = 42,4
=1,..-,k. Let S*!be the unit sphere of dimension £k — 1 in V,. Then
A(S*Y) is an ellipsoid of dimension £ — 1 in V,. For a given constant
K >1, A is said to be K-quasiconformal if the ratio of the largest to
the smallest axes of the ellipsoid A(S*7!) is less than K. Sincey, > .-
> 7, >0, A is K-quasiconformal if and only if y,/ys < K or 4,/2; < K-
As |[A? A|f is the p-th elementary symmetric function of 4, > --- > 4,
>0,p <k, we then obtain

[inrar/ (’;)]’ <k|incar/ (’;)]’ , l<p<qg<k

if A is K-quasiconformal.

Let f: M — N be a C° mapping. Then, the norm ||A? f,| may be
regarded as the “ratio function of intermediate volume elements” of M
and N. In particular, | A* f,| is the ratio of volume elements when
k =m = n, where k = rank f. If rank f, = k everywhere, then

@2 [Inerr / (’;)]’ > [inesare/ (’;)]’ , l<p<aq<k.

Let f be a C~ mapping of maximal rank and K > 1. Then, f is
K-quasiconformal if at each zeM, (f,), is a K-quasiconformal linear
mapping of T,(M) into T, (N).

LEMMA 3.1. If f is K-quasiconformal, then

[iazrae /()] < &finerae /()] 1< <asi.
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4. Proof of Theorem 1.

Let ds?, be a Riemannian metric on M conformally related to dsy.
Then, there is a function p > 0 on M such that ds% = pids%,. Let 4 =
2’(/1;?‘)2 = p~23(A%?, and let 4 be the laplacian associated with d3%,. Then

Sl =3 Ay + 3 A,

=X Ay + X B At Ay — 3 R, Ar A A A
+ 97t 2 AHAS, — 2450, + (m — 2)Ap;
+ (m — 2) A, — 2p;p,)]
where p,; is given by dlogp = > p,w;, and p;; = p;; is defined by
4.1 2. Piy0; = dp; — 2 D@y -
If f is harmonic with respect to (ds%, ds}), then

S =31y + 3 Ry Ay — ¥ ReuAe By Acs

+ (m — 2p~ [ AtAyp; + 21 AFAS(Dy; — 2p0))] .
Let # attain its maximum at x. Then at =z,

di = 2p~* S ArAY — p; 35 (AD%Ne; =0,

S0
DLAAYL =y 2 (AD?,
and
LA + 2T AFAN(Dyy — 2pp)) = 20 ALAGID:; + 845 20 (00" — 2p:p4]
at .

LEMMA 4.1. Let f: M — N be harmonic with respect to (dsi, ds%),
and let @ attain its maximum ot xe M. If the symmetric matrixz func-
tion

Xy =Dy + 0:5 2, (P)? — 20,0,
1s positive semi-definite everywhere on M, then
— 2 R A ARAiAl < — 3 R, A Ag

at x.

https://doi.org/10.1017/5002776300001730X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001730X

80 SAMUEL 1. GOLDBERG

Assume now that M is simply connected. Let y be a point of M
and denote by d(zx,¥y) the distance-from-y function. Then

t@) = (d=,v)', 2zeM
is C~ and convex on M (see [2]). The function
(%) = d(x, y)

is also convex, but it is only continuous on M. It is, however, C~ in
M — {y}. The convex open submanifolds

M, = {zeM|tx) < p}

of M exhaust M, that is M = U,<.. M,.
The nonnegative function

v, = log —©
p=log L

is a C* convex function on M,, that is its hessian

1 tit; + 1

(@p)u = (p—_t); p—t

ttj ’

where ¢, is given by dt = Xt,0; and f;; is its covariant derivative (see
(4.1)), is positive semi-definite. Observe that v,— co on the boundary
oM, of M,, and for z fixed, v,(x) — 0 as p — oo.

Consider the metric d§® = e*ds’® on M,. Then,

%= e~y = (p — t)zu
o
is nonnegative and continuous on the closure M, of M , and vanishes on
0M,. Since M, is compact, @ has a maximum in M,. We compute the
matrix X;; when p = e*. It is easily seen that p, = (v,); (the right hand
side being given by dv, = 3(v,),,), and p;; = (v,);;, so that

Xig = Wiy + 0552, ()i — 2(v,)4(v,),

1, 1
= t d te)® — tit,] .
p_tzj-l'(p_t)z[uZ(k) il

Since the function #(x) is convex, the matrix X;; is positive semi-definite,
so from Lemma 4.1
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=2 R5ATATAAG < —3 1 R, ALAY .

The relation between R, and R;, is given by

ewof, = Ry — ™ — 2, — 1 @t+m‘4-m@oyu,
o—1 o—t o—t

from which
~ o~ o~ —_ 2 ~ o~
% Ridrdy = (o) 5 Rudeds

4.2) - B—;;—t(m —2) 3¢, Ae s —"—;—tdt A

_m = Leat, atyiif. e -

2

To see this, let {@;} be an orthonormal coframe such that &; = po;.
Then,

di;, = dp N\ o; + pdw,
=dp A\ w; + 2, po; N\ 0y

=%@A@+Z@A%

=dlogp N\ & + 2, 0; N\ oy .
Now, we know

dlogp =dv, =3, (v,),0; .
Hence,

dao, = 33 ()05 N\ @ + 2585 N\ oy
= > d0; N (05 + (v,);00)
= >10; N\ {oy + (v,);0, — (v,)07)} .

Thus, we obtain

@y = 05 + ,)0, — (v,)0; .

S%MW@gmmm%ZﬁmmA@=Z@ﬂmw—MwQ%s

% P Ruk@k N\ @,

= >, (0 + @,);06 — (V)10) N\ (05 + W, )r0; — (v,);01)
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— (dwij + d('Up)i N @; + ('Up)idwj - d(v,,)j N w; — ('U,,)jdwi)
=Dl N\ opy — doy

— 22 d®,); + W )rwr) N\ w5 + 25 (d®,); + (W )eors) N o

+ Z (’U,,)i('v,,)kwk N wo; + Z ('Up)k(’vp)jwi N o — Z (,vp)?ca)i N oy

= —;—Z [Rijke — (@)ibse + Wik + V)0 — (V)06
+ 0,):()k05, — (0,)(V,) 05 — (,) (V)04
+ @,);() b — 23 ()3 (04055 — 51:435,176)](015 VANE7 N

h

Thus, we get

pZRijke = Rijue — 0,)i(0,) 50 + @ )01 + (0,) 1104
- (vp)]lalk + (vp)l(,vp)kajl - (?)p)z(’vp)lajk
— (@)@ )b + 0,);(0,) 0 — ; (v,)70:x075 — 0:051) -

LEMMA 4.2. For each p, there exists a positive constant e(p) such
that the inequality

—> B, Ar A3 < [(m — DA + (o)l
holds on M,. Moreover, &(p) — 0 as p— co.

Proof. Since {dt,dty = 47Xdr, dr) = 4t, the last term on the right
hand side of (4.2) tends to zero as p— co. The lemma will follow if
we can show that 4z is bounded as ¢ — co. For, 4t = 2¢dc + 2{dz, dr)
= 2(t*4z + 1). Under the circumstances (p — t)4¢/p* will tend uniformly
to zero. Moreover, since the matrix ¢;; is positive semi-definite, the
quadratic form 3| t“ﬁ;’fi‘; < A((p — ©)/p)u, where 2, is the least upper
bound of the largest eigenvalues of ¢,; on M,.

To see that 4r is bounded as ¢ — oo, observe that the level hyper-
surfaces of ¢ are spheres S with ¥ as center. The hessian D% of = can
be identified with the second fundamental form of those spheres, extend-
ed to be 0 in the normal direction. For, the value of Dz on a vector
v is the second derivative of r along the geodesic generated by v. Along
a geodesic from vy, r is linear, so the second derivative is 0. This shows
that D?c is 0 on the normals to the spheres. One way of viewing the
second fundamental form is as follows. On the tangent space T.(S) we
define a function §(v) to be the signed distance from exp,(v) to S. Then,
the second fundamental form & is the hessian of § at 0, where T(T.(S))
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is identified with T,(S) in the usual way, that is,

hw, w) = %(oxa(tw)) . weTy(S).

But, for S = z7'(), the signed distance to S is simply = — 7, so %(0)

-(0(tw)) is just the second derivative of r — r along the geodesic
t — exp, (tw). Since r is constant, this is just D*(w,w). It follows
that 4z = trace D’z = trace h = (m — 1) mean relative curvature of S.

If the curvature K > a? [in fact, if the Ricci curvature > (m — 1)a?],
then from [1; pp. 247-255]

dr < (m — 1)aM .
sin ar

If we put o’ = —a? then
dr < (m — D coth az .

It is now clear that 4z is bounded as z — oo.
To complete the proof of the theorem, Lemmas 4.1 and 4.2 imply

— > R¥,Ar AL A4S < [(m — DA + €li

at  where ¢e—0 as p— co. Let | A?f,]|, denote the norm of A?f, with
respect to ds®.. Then, if the sectional curvature of N is bounded above
by a negative constant —B,

2B | A\ fylP < [(m — DA + el-[|f4 ]2

at z, where ¢ —» 0 as p— oo. It follows from Lemma 3.1 that

kK*
< = _[(m— 1A
17215 < ggsllm — DA + ]
everywhere on M,. Since this inequality holds for every p and
lim || f4 |2 = || f«|? we conclude that
o

: km“l)ém.
17l < k(=) 2

The first part of the theorem follows by taking B = ((m — 1)/(k — 1))
-kAK*. Applying the inequality (3.2) we conclude that
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— 1K\ A
AP Felr <™ ()_K4.
R

Putting £k = m = n and B = AK*, the volume-decreasing statement is ob-
tained. The assumption of simple connectedness is clearly not essential.
By taking M = E™ with the standard flat metric the above proof
quickly yields the following real version and generalization of Liouville’s
theorem as well as Picard’s first theorem originally obtained in [4].
However, the definition of K-quasiconformality must be slightly revised
to allow for the possibility that f, vanish at each point x of M. '

THEOREM 2. Let N be an n-dimensional Riemannian manifold with
negative sectional curvature bounded away from zero. Then, if f:E™
— N is a harmonic quasiconformal mapping, it is o constant.
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