MAPPINGS OF NONPOSITIVELY CURVED MANIFOLDS

SAMUEL I. GOLDBERG¹⁾

1. Introduction.

In recent papers with S. S. Chern [3] and T.Ishihara [4], the author studied both the volume—and distance—decreasing properties of harmonic mappings thereby obtaining real analogues and generalizations of the classical Schwarz-Ahlfors lemma, as well as Liouville's theorem and the little Picard theorem. The domain M in the first case was the open ball with the hyperbolic metric of constant negative curvature, and the target was a negatively curved Riemannian manifold with sectional curvature bounded away from zero. In this paper, it is shown that M may be taken to be any complete Riemannian manifold of non-positive curvature.

THEOREM 1. Let $f: M \rightarrow N$ be a harmonic K-quasiconformal mapping of Riemannian manifolds of dimensions m and n, respectively. If M is complete, and (a) the sectional curvatures of M are nonpositive and bounded below by a negative constant -A, and (b) the sectional curvatures of N are bounded above by the constant $-((m-1)/(k-1))kAK^4$, $k=\min(m,n)$, then f is distance-decreasing. If m=n and (b) is replaced by the condition (b') the sectional curvatures of N are bounded away from zero by $-AK^4$, then f is volume-decreasing.

Thus, even in the 1-dimensional case, that is, even when M is a Riemann surface, the theorem is a generalization of Schwarz's lemma. P. J. Kiernan [8] assumed the ratio of distances attained its maximum on M in order to achieve this.

By assuming f is a mapping of bounded dilatation of order K (see [6]), a more general result may be obtained.

The concept of a K-quasiconformal mapping of equidimensional manifolds, $m=n \ge 2$, was introduced by Lavrentiev, Markusevic and Kreines

Received September 11, 1975.

¹⁾ Work done under partial support of National Science Foundation grant GP-43688.

in 1938, but it did not receive serious attention until the mid fifties. This notion was subsequently extended in [5] to include the cases $m \neq n$.

The proof of the theorem is inspired by the technique used so successfully to obtain the generalized Schwarz-Ahlfors lemma, as well as the real analogues and generalizations of Liouville's theorem and Picard's first theorem (see [5], \S 5), viz., the manifold M is exhausted by convex open submanifolds defined in terms of the "distance from a point" function. This function is continuous and, in fact, convex since the sectional curvature of M is nonpositive.

2. Harmonic mappings and curvature.

We begin by reviewing the theory of harmonic mappings as found in [3]. Let ds_M^2 and ds_N^2 be the Riemannian metrics of M and N, respectively. Then, locally,

$$ds_M^2 = \omega_1^2 + \cdots + \omega_m^2$$
, $ds_N^2 = \omega_1^{*2} + \cdots + \omega_n^{*2}$

where the ω_i and ω_a^* are linear differential forms in M and N, respectively. (In the sequel, the range of indices $i, j, k, \dots = 1, \dots, m$, and $a, b, c, \dots = 1, \dots, n$.) The structure equations in M are

$$d\omega_i = \sum\limits_j \omega_j \wedge \omega_{ji}$$
 , $d\omega_{ij} = \sum\limits_k \omega_{ik} \wedge \omega_{kj} - rac{1}{2} \sum\limits_{k,\ell} R_{ijk\ell} \omega_k \wedge \omega_\ell$.

The Ricci tensor R_{ij} is defined by

$$R_{ij} = \sum_{k} R_{ikjk}$$

and the scalar curvature by

$$R = \sum_{i} R_{ii}$$
.

Similar equations are valid in N, where we will denote the corresponding quantities in the same notation with asterisks.

Let $f: M \to N$ be a C^{∞} mapping, and

$$f^*\omega_a^* = \sum_i A_i^a \omega_i$$

where f^* is the pull-back mapping, that is the dual of the tangent mapping f_* . If e_1, \dots, e_m and f_1, \dots, f_n are orthonormal bases of the tangent

spaces $T_x(M)$ and $T_{f(x)}(N)$, respectively, then

$$(f_*)_x e_i = \sum_a A_i^a e_a^*$$
.

It is evident that

$$||f_*||^2 = \sum_{a,i} (A_i^a)^2$$

is an upper bound for the ratio function of distances on M and N, respectively (see § 3 for the definition of the norm).

Later on we will drop f^* in such formulas when its presence is clear from the context.

The covariant differential of A_i^a is defined by

$$(2.1) DA_i^a \equiv dA_i^a + \sum_i A_j^a \omega_{ji} + \sum_i A_i^b \omega_{ba}^* = \sum_i A_{ij}^a \omega_j \text{ (say)}$$

with

$$(2.2) A_{ij}^a = A_{ii}^a.$$

The mapping f is called harmonic if

$$\sum_{i} A_{ii}^{a} = 0.$$

Taking the exterior derivative of (2.1), and employing the structure equations in M and N, we obtain

$$(2.4) \qquad \sum\limits_{j} DA^a_{ij} \wedge \omega_j = -rac{1}{2} \sum\limits_{j,k,\ell} A^a_j R_{jik\ell} \omega_k \wedge \omega_\ell - rac{1}{2} \sum\limits_{b,c,d} A^b_i R^*_{bacd} \omega^*_c \wedge \omega^*_d$$

where

$$DA^a_{ij} \equiv dA^a_{ij} + \sum\limits_b A^b_{ij}\omega^*_{ba} + \sum\limits_k A^a_{kj}\omega_{ki} + \sum\limits_k A^a_{ik}\omega_{kj} = \sum\limits_k A^a_{ijk}\omega_k ext{ (say)}$$

From (2.4)

$$(2.5) A_{ijk}^a - A_{ikj}^a = -\sum_{\ell} A_{\ell}^a R_{\ell ikj} - \sum_{b,c,d} A_{i}^b A_{k}^c A_{j}^d R_{bacd}^*.$$

By (2.2) and (2.5), the laplacian

$$\Delta A_i^a \equiv \sum\limits_k A_{ikk}^a = \sum\limits_k A_{kik}^a = \sum\limits_k A_{kki}^a + \sum\limits_j A_j^a R_{ji} - \sum\limits_{b,c,d,k} R_{bacd}^* A_k^b A_k^c A_i^d$$

is easily calculated. For a harmonic mapping

Put $u = ||f_*||^2$. Then

$$(2.7) du = \sum_{i} u_{j} \omega_{j}$$

where

(2.8)
$$u_j = 2 \sum_{a,i} A_i^a A_{ij}^a$$
.

Taking the exterior derivative of (2.7), we get

$$\sum_{k} \left(du_k - \sum_{i} u_i \omega_{ki} \right) \wedge \omega_k = 0$$
.

We may therefore set

$$du_k - \sum_i u_i \omega_{ki} = \sum_j u_{kj} \omega_j$$

where $u_{jk} = u_{kj}$. Thus, from (2.8),

$$u_{kj} = 2 \sum_{a,i} A^a_{ik} A^a_{ij} + 2 \sum_{a,i} A^a_i A^a_{ikj}$$
.

For a harmonic mapping, (2.5) yields the laplacian

(2.9)
$$\frac{1}{2} \Delta u \equiv \frac{1}{2} \sum_{j} u_{jj} = \sum_{a,i,j} (A^{a}_{ij})^{2} + \sum_{a,i,j} R_{ij} A^{a}_{i} A^{a}_{j} - \sum_{\substack{a,b,c,d \\ i,j}} R^{*}_{abcd} A^{a}_{i} A^{b}_{j} A^{c}_{i} A^{d}_{j}.$$

Let $A^a=(A^a_1,\cdots,A^a_m)$ and $A_i=(A^1_i,\cdots,A^n_i)$ be local vector fields in M and N, respectively. Then, locally, $\sum \|A^a\|^2=\sum \|A_i\|^2=\|f_*\|^2$. If M is pinched, that is, if there are constants C_1 and C_2 such that

$$C_1 \leq {
m sectional}$$
 curvature of $M \leq C_2$,

then it is easily checked that

$$(m-1)C_1\|f_*\|^2 \leq \sum_i R_{ij}A_i^a A_i^a \leq (m-1)C_2\|f_*\|^2$$
.

Let $||A_i \wedge A_j||$ denote the area of the parallelogram spanned by A_i and A_j at each point. Then,

$$\sum_{i < j} \|A_i \wedge A_j\|^2 = \| \wedge^2 f_* \|^2$$
 .

The last term in formula (2.9) may be expressed as

$$\sum R_{abcd}^*A_i^aA_j^bA_i^cA_j^d=2\sum\limits_{i < i} R^*(A_i,A_j)\,\|A_i\wedge A_j\|^2$$

where $R^*(A_i, A_j)$ denotes the sectional curvature of N along the section spanned by A_i and A_j at each point. Hence, if the sectional curvature of N is bounded above by a nonpositive constant -B, we obtain

$$-\sum R_{abcd}^*A_i^aA_j^bA_i^cA_j^d \geq 2B\|\wedge^2f_*\|^2$$
 .

3. K-quasiconformal mappings.

Let V_1 and V_2 be Euclidean vector spaces over the reals of dimensions m and n, respectively, and let $A: V_1 \to V_2$ be a linear mapping. Let e_1, \dots, e_m and f_1, \dots, f_n be orthonormal bases of V_1 and V_2 , respectively. If $p \leq \min(m, n)$, A may be extended to the linear mapping $\wedge^p A: \wedge^p V_1 \to \wedge^p V_2$ given by

$$\wedge^p A(e_{i_1} \wedge \cdots \wedge e_{i_p}) = Ae_{i_1} \wedge \cdots \wedge Ae_{i_p}$$

where $1 \le i_1 < i_2 < \cdots < i_n \le m$.

Denoting the dual space of V_1 by V_1^* , $\wedge^p A$ may be regarded as an element of $\wedge^p V_1^* \otimes \wedge^p V_2$, the space of $\wedge^p V_2$ -valued p-forms. Set $Ae_i = \Sigma A_i^a f_a$, put $I \equiv (i_1, \cdots, i_p)$ with $1 \leq i_1 < i_2 < \cdots < i_p \leq m, J \equiv (a_1, \cdots, a_p)$ with $1 \leq a_1 < \cdots < a_p \leq n$, and let D_I^J denote $\det(A_{i\beta}^{a_a})$, where the i_β are the components of I and the a_α are the components of J. Moreover, let

$$e_I=e_{i_1}\wedge\cdots\wedge e_{i_p}$$
 , $f_J=f_{a_1}\wedge\cdots\wedge f_{a_p}$, $heta^I= heta^{i_1}\wedge\cdots\wedge heta^{i_p}$

where $\theta^1, \dots, \theta^m$ is the dual basis of e_1, \dots, e_m . Then,

$$\wedge^{\,p}\,A = \sum D_{\scriptscriptstyle I}^{\scriptscriptstyle J} heta^{\scriptscriptstyle I} \otimes f_{\scriptscriptstyle J}$$
 ,

the sum being taken over all possible I and J.

The inner products on V_1 and V_2 induce an inner product \langle , \rangle on $\wedge^p V_1^* \otimes \wedge^p V_2$, and a norm $\| \wedge^p A \|$ is then defined by

$$\| \wedge^{p} A \|^{2} = \sum_{I} \left< \wedge^{p} A(e_{I}), \wedge^{p} A(e_{I}) \right>$$
 .

Set $G = {}^{t}AA$. Then,

$$\|\wedge^p A\|^2 = \operatorname{trace} \wedge^p G$$
, $p \leq \min(m, n)$.

In the sequel, we assume rank A = k. Then, $k \le \min(m, n)$ and rank G = k. Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > \lambda_{k+1} = \cdots = \lambda_m = 0$ be the eigenvalues of G. If $p \le k$, trace $\wedge^p G$ is the p-th elementary symmetric

function of the positive eigenvalues of G, that is

trace
$$\wedge^p G = \sum\limits_{i_1 < \dots < i_p}^k \lambda_{i_1} \cdots \lambda_{i_p}$$
 .

From Newton's inequalities, we therefore obtain

$$(3.1) \quad \left[\|\wedge^{\frac{p}{2}}A\|^{2}\Big/\binom{k}{p}\right]^{1/p} \geq \left[\|\wedge^{\frac{q}{2}}A\|^{2}\Big/\binom{k}{q}\right]^{1/q} \;, \qquad 1 \leq p < q \leq k \;.$$

Assume now that A has maximal rank k. By an orthogonal transformation A is transformed to a diagonal matrix with entries $\gamma_i=\lambda_i^{1/2},i=1,\cdots,k$. Let S^{k-1} be the unit sphere of dimension k-1 in V_1 . Then $A(S^{k-1})$ is an ellipsoid of dimension k-1 in V_2 . For a given constant $K\geq 1$, A is said to be K-quasiconformal if the ratio of the largest to the smallest axes of the ellipsoid $A(S^{k-1})$ is less than K. Since $\gamma_1\geq\cdots\geq\gamma_k>0$, A is K-quasiconformal if and only if $\gamma_1/\gamma_k\leq K$ or $\lambda_1/\lambda_k\leq K^2$. As $\|\wedge^p A\|^2$ is the p-th elementary symmetric function of $\lambda_1\geq\cdots\geq\lambda_k>0$, $p\leq k$, we then obtain

$$\Big[\| \wedge^p A \|^2 \Big/ {k \choose p} \Big]^{1/p} \leq K^2 \Big[\| \wedge^q A \|^2 \Big/ {k \choose q} \Big]^{1/q} \;, \qquad 1 \leq p < q \leq k$$

if A is K-quasiconformal.

Let $f: M \to N$ be a C^{∞} mapping. Then, the norm $\| \wedge^p f_* \|$ may be regarded as the "ratio function of intermediate volume elements" of M and N. In particular, $\| \wedge^k f_* \|$ is the ratio of volume elements when k = m = n, where $k = \operatorname{rank} f$. If $\operatorname{rank} f_* = k$ everywhere, then

$$(3.2) \quad \left[\| \wedge^p f_* \|^2 \left/ \binom{k}{p} \right]^{1/p} \geq \left[\| \wedge^q f_* \|^2 \middle/ \binom{k}{q} \right]^{1/q} \text{ , } \qquad 1 \leq p < q \leq k \text{ .}$$

Let f be a C^{∞} mapping of maximal rank and $K \geq 1$. Then, f is K-quasiconformal if at each $x \in M$, $(f_*)_x$ is a K-quasiconformal linear mapping of $T_x(M)$ into $T_{f(x)}(N)$.

LEMMA 3.1. If f is K-quasiconformal, then

$$\left[\| \wedge^p f_* \|^2 \Big/ {k \choose p}
ight]^{1/p} \leq K^2 \! \left[\| \wedge^q f_* \|^2 \Big/ {k \choose q}
ight]^{1/q} \,, \qquad 1 \leq p < q \leq k \;.$$

4. Proof of Theorem 1.

Let $d\tilde{s}_{M}^{2}$ be a Riemannian metric on M conformally related to ds_{M}^{2} . Then, there is a function p>0 on M such that $d\tilde{s}_{M}^{2}=p^{2}ds_{M}^{2}$. Let $\tilde{u}=\Sigma(\tilde{A}_{i}^{a})^{2}=p^{-2}\Sigma(A_{i}^{a})^{2}$, and let $\tilde{\Delta}$ be the laplacian associated with $d\tilde{s}_{M}^{2}$. Then

$$egin{aligned} rac{1}{2} ilde{A} ilde{u} &= \sum{(ilde{A}_{ij}^a)^2} + \sum{ ilde{A}_i^a ilde{A}_{ijj}^a} \ &= \sum{(ilde{A}_{ij}^a)^2} + \sum{ ilde{R}_{ij} ilde{A}_i^a ilde{A}_j^a} - \sum{ ilde{R}_{abcd}^* ilde{A}_i^a ilde{A}_j^b ilde{A}_i^c ilde{A}_j^a} \ &+ p^{-4}\sum{ ilde{A}_i^a[A_{jji}^a - 2A_{jj}^ap_i + (m-2)A_{ji}^ap_j} \ &+ (m-2)A_j^a(p_{ji} - 2p_jp_i)] \end{aligned}$$

where p_i is given by $d \log p = \sum p_i \omega_i$, and $p_{ij} = p_{ji}$ is defined by

If f is harmonic with respect to (ds_M^2, ds_N^2) , then

$$egin{aligned} rac{1}{2} ilde{ec{A}} ilde{u} &= \sum{(ilde{A}_{ij}^a)^2} + \sum{ ilde{K}_{ij}} ilde{A}_i^a ilde{A}_i^a ilde{A}_j^a - \sum{R_{abcd}^*} ilde{A}_i^a ilde{A}_j^b ilde{A}_i^c ilde{A}_j^a \ &+ (m-2)p^{-4}[\sum{A}_i^aA_{ij}^ap_j + \sum{A}_i^aA_j^a(p_{ij}-2p_ip_j)] \;. \end{aligned}$$

Let \tilde{u} attain its maximum at x. Then at x,

$$d ilde{u}=2p^{-\imath}\sum[\sum A_i^aA_{ij}^a-p_j\sum (A_i^a)^\imath]\omega_j=0$$
 ,

so

$$\sum A_i^a A_{ij}^a = p_j \sum (A_i^a)^2$$
 ,

and

$$\sum A_i^a A_{ij}^a p_j + \sum A_i^a A_j^a (p_{ij} - 2p_i p_j) = \sum A_i^a A_j^a [p_{ij} + \delta_{ij} \sum (p_k)^2 - 2p_i p_j]$$
 at x .

LEMMA 4.1. Let $f: M \to N$ be harmonic with respect to (ds_M^2, ds_N^2) , and let \tilde{u} attain its maximum at $x \in M$. If the symmetric matrix function

$$X_{ij} = p_{ij} + \delta_{ij} \sum (p_k)^2 - 2p_i p_j$$

is positive semi-definite everywhere on M, then

$$-\sum R^*_{abcd} \tilde{A}^a_i \tilde{A}^b_i \tilde{A}^c_i \tilde{A}^d_i \leq -\sum \tilde{R}_{ij} \tilde{A}^a_i \tilde{A}^a_j$$

at x.

Assume now that M is simply connected. Let y be a point of M and denote by d(x, y) the distance-from-y function. Then

$$t(x) = (d(x, y))^2$$
, $x \in M$

is C^{∞} and convex on M (see [2]). The function

$$\tau(x) = d(x, y)$$

is also convex, but it is only continuous on M. It is, however, C^{∞} in $M - \{y\}$. The convex open submanifolds

$$M_{\rho} = \{x \in M \mid t(x) < \rho\}$$

of M exhaust M, that is $M = \bigcup_{\rho < \infty} M_{\rho}$.

The nonnegative function

$$v_{
ho} = \log \frac{
ho}{
ho - t}$$

is a C^{∞} convex function on M_{ρ} , that is its hessian

$$(v_{
ho})_{ij} = rac{1}{(
ho - t)^2} t_i t_j + rac{1}{
ho - t} t_{ij} \; ,$$

where t_i is given by $dt = \Sigma t_i \omega_i$ and t_{ij} is its covariant derivative (see (4.1)), is positive semi-definite. Observe that $v_{\rho} \to \infty$ on the boundary ∂M_{ρ} of M_{ρ} , and for x fixed, $v_{\rho}(x) \to 0$ as $\rho \to \infty$.

Consider the metric $d\tilde{s}^2 = e^{2v_\rho} ds^2$ on M_ρ . Then,

$$\tilde{u} = e^{-2v\rho}u = \left(\frac{\rho - t}{\rho}\right)^2 u$$

is nonnegative and continuous on the closure \overline{M}_{ρ} of M_{ρ} and vanishes on ∂M_{ρ} . Since \overline{M}_{ρ} is compact, \tilde{u} has a maximum in M_{ρ} . We compute the matrix X_{ij} when $p=e^{v_{\rho}}$. It is easily seen that $p_i=(v_{\rho})_i$ (the right hand side being given by $dv_{\rho}=\Sigma(v_{\rho})_i\omega_i$), and $p_{ij}=(v_{\rho})_{ij}$, so that

$$egin{aligned} X_{ij} &= (v_{
ho})_{ij} + \delta_{ij} \sum (v_{
ho})_k^2 - 2(v_{
ho})_i (v_{
ho})_j \ &= rac{1}{
ho - t} t_{ij} + rac{1}{(
ho - t)^2} [\delta_{ij} \sum (t_k)^2 - t_i t_j] \;. \end{aligned}$$

Since the function t(x) is convex, the matrix X_{ij} is positive semi-definite, so from Lemma 4.1

$$-\sum R^*_{abcd} \tilde{A}^a_i \tilde{A}^b_j \tilde{A}^c_i \tilde{A}^d_j \leq -\sum \tilde{R}_{ij} \tilde{A}^a_i \tilde{A}^a_j$$
 .

The relation between \tilde{R}_{ij} and R_{ij} is given by

$$e^{2v_{
ho}} ilde{R}_{ij}=R_{ij}-rac{m-2}{
ho-t}t_{ij}-rac{1}{
ho-t}\Big(arDelta t+rac{m-1}{
ho-t}\langle dt,dt
angle\Big)\delta_{ij}$$
 ,

from which

$$\begin{split} \sum \tilde{R}_{ij} \tilde{A}_i^a \tilde{A}_j^a &= \left(\frac{\rho - t}{\rho}\right)^2 \sum R_{ij} \tilde{A}_i^a \tilde{A}_j^a \\ &- \frac{\rho - t}{\rho^2} (m - 2) \sum t_{ij} \tilde{A}_i^a \tilde{A}_j^a - \frac{\rho - t}{\rho^2} \Delta t \, \|f_*\|_{\rho}^2 \\ &- \frac{m - 1}{\rho^2} \langle dt, dt \rangle \|f_*\|_{\rho}^2 \, . \end{split}$$

To see this, let $\{\tilde{\omega}_i\}$ be an orthonormal coframe such that $\tilde{\omega}_i = p\omega_i$. Then,

$$egin{aligned} d ilde{\omega}_i &= dp \wedge \omega_i + p d\omega_i \ &= dp \wedge \omega_i + \sum p \omega_j \wedge \omega_{ji} \ &= rac{1}{p} dp \wedge ilde{\omega}_i + \sum ilde{\omega}_j \wedge \omega_{ji} \ &= d \log p \wedge ilde{\omega}_i + \sum ilde{\omega}_j \wedge \omega_{ji} \ \end{aligned}$$

Now, we know

$$d \log p = dv_{\rho} = \sum (v_{\rho})_{j}\omega_{j}$$
.

Hence,

$$\begin{split} d\tilde{\omega}_i &= \sum (v_\rho)_j \omega_j \wedge \tilde{\omega}_i + \sum \tilde{\omega}_j \wedge \omega_{ji} \\ &= \sum \tilde{\omega}_j \wedge (\omega_{ji} + (v_\rho)_j \omega_i) \\ &= \sum \tilde{\omega}_j \wedge \{\omega_{ji} + ((v_\rho)_j \omega_i - (v_\rho)_i \omega_j)\} \;. \end{split}$$

Thus, we obtain

$$\tilde{\omega}_{ji} = \omega_{ji} + (v_{\rho})_{j}\omega_{i} - (v_{\rho})_{i}\omega_{j} .$$

Substituting this in $\frac{1}{2}\sum \tilde{R}_{ijk\ell}\tilde{\omega}_k\wedge\tilde{\omega}_\ell=\sum \tilde{\omega}_{ik}\wedge\tilde{\omega}_{kj}-d\tilde{\omega}_{ij}$, gives

$$\begin{split} \frac{1}{2} \sum \tilde{R}_{ijk\ell} \tilde{\omega}_k \, \wedge \, \tilde{\omega}_\ell \\ &= \sum \left(\omega_{ik} + (v_\rho)_i \omega_k - (v_\rho)_k \omega_i \right) \wedge (\omega_{kj} + (v_\rho)_k \omega_j - (v_\rho)_j \omega_k) \end{split}$$

$$\begin{split} &-(d\omega_{ij}+d(v_{\rho})_{i}\wedge\omega_{j}+(v_{\rho})_{i}d\omega_{j}-d(v_{\rho})_{j}\wedge\omega_{i}-(v_{\rho})_{j}d\omega_{i})\\ &=\sum\omega_{ik}\wedge\omega_{kj}-d\omega_{ij}\\ &-\sum(d(v_{\rho})_{i}+(v_{\rho})_{k}\omega_{ki})\wedge\omega_{j}+\sum(d(v_{\rho})_{j}+(v_{\rho})_{k}\omega_{kj})\wedge\omega_{i}\\ &+\sum(v_{\rho})_{i}(v_{\rho})_{k}\omega_{k}\wedge\omega_{j}+\sum(v_{\rho})_{k}(v_{\rho})_{j}\omega_{i}\wedge\omega_{k}-\sum(v_{\rho})_{k}^{2}\omega_{i}\wedge\omega_{j}\\ &=\frac{1}{2}\sum\left[R_{ijk\ell}-(v_{\rho})_{ik}\delta_{j\ell}+(v_{\rho})_{i\ell}\delta_{jk}+(v_{\rho})_{jk}\delta_{i\ell}-(v_{\rho})_{j\ell}\delta_{ik}\right.\\ &+(v_{\rho})_{i}(v_{\rho})_{k}\delta_{j\ell}-(v_{\rho})_{i}(v_{\rho})_{\ell}\delta_{jk}-(v_{\rho})_{j}(v_{\rho})_{k}\delta_{i\ell}\\ &+(v_{\rho})_{j}(v_{\rho})_{\ell}\delta_{ik}-\sum_{k}(v_{\rho})_{k}^{2}(\delta_{ik}\delta_{j\ell}-\delta_{i\ell}\delta_{jk})\right]\omega_{k}\wedge\omega_{\ell}\;. \end{split}$$

Thus, we get

$$\begin{split} p^2 \tilde{R}_{ijk\ell} &= R_{ijk\ell} - (v_\rho)_{ik} (v_\rho)_{j\ell} + (v_\rho)_{i\ell} \delta_{jk} + (v_\rho)_{jk} \delta_{i\ell} \\ &- (v_\rho)_{j\ell} \delta_{ik} + (v_\rho)_i (v_\rho)_k \delta_{j\ell} - (v_\rho)_i (v_\rho)_\ell \delta_{jk} \\ &- (v_\rho)_j (v_\rho)_k \delta_{i\ell} + (v_\rho)_j (v_\rho)_\ell \delta_{ik} - \sum_h (v_\rho)_h^2 (\delta_{ik} \delta_{j\ell} - \delta_{i\ell} \delta_{jk}) \;. \end{split}$$

Lemma 4.2. For each ρ , there exists a positive constant $\varepsilon(\rho)$ such that the inequality

$$-\sum \tilde{R}_{ij}\tilde{A}_i^a\tilde{A}_j^a \leq [(m-1)A + \varepsilon(\rho)]\tilde{u}$$

holds on M_{ρ} . Moreover, $\varepsilon(\rho) \to 0$ as $\rho \to \infty$.

Proof. Since $\langle dt,dt\rangle=4\tau^2\langle d\tau,d\tau\rangle=4t$, the last term on the right hand side of (4.2) tends to zero as $\rho\to\infty$. The lemma will follow if we can show that $\Delta\tau$ is bounded as $\tau\to\infty$. For, $\Delta t=2\tau\Delta\tau+2\langle d\tau,d\tau\rangle=2(t^{\frac{1}{2}}\Delta\tau+1)$. Under the circumstances $(\rho-t)\Delta t/\rho^2$ will tend uniformly to zero. Moreover, since the matrix t_{ij} is positive semi-definite, the quadratic form $\sum t_{ij}\tilde{A}_i^a\tilde{A}_j^a\leq \lambda_0((\rho-t)/\rho)^2\tilde{u}$, where λ_0 is the least upper bound of the largest eigenvalues of t_{ij} on M_ρ .

To see that $\Delta \tau$ is bounded as $\tau \to \infty$, observe that the level hypersurfaces of τ are spheres S with y as center. The hessian $D^2\tau$ of τ can be identified with the second fundamental form of those spheres, extended to be 0 in the normal direction. For, the value of $D^2\tau$ on a vector v is the second derivative of τ along the geodesic generated by v. Along a geodesic from y,τ is linear, so the second derivative is 0. This shows that $D^2\tau$ is 0 on the normals to the spheres. One way of viewing the second fundamental form is as follows. On the tangent space $T_x(S)$ we define a function $\delta(v)$ to be the signed distance from $\exp_x(v)$ to S. Then, the second fundamental form h is the hessian of δ at 0, where $T_0(T_x(S))$

is identified with $T_x(S)$ in the usual way, that is,

$$h(w,w) = \frac{d^2}{dt^2}(0)(\delta(tw))$$
 , $w \in T_x(S)$.

But, for $S = \tau^{-1}(r)$, the signed distance to S is simply $\tau - r$, so $\frac{d^2}{dt^2}(0)$

 $\cdot (\delta(tw))$ is just the second derivative of $\tau - r$ along the geodesic $t \to \exp_x(tw)$. Since r is constant, this is just $D^2\tau(w,w)$. It follows that $\Delta \tau = \operatorname{trace} D^2\tau = \operatorname{trace} h = (m-1) \cdot \operatorname{mean}$ relative curvature of S.

If the curvature $K \ge a^2$ [in fact, if the Ricci curvature $\ge (m-1)a^2$], then from [1; pp. 247–255]

$$\Delta \tau \leq (m-1)a \frac{\cos a\tau}{\sin a\tau}$$
.

If we put $a^2 = -\alpha^2$, then

$$\Delta \tau < (m-1)\alpha \coth \alpha \tau$$
.

It is now clear that $\Delta \tau$ is bounded as $\tau \to \infty$.

To complete the proof of the theorem, Lemmas 4.1 and 4.2 imply

$$-\sum R^*_{abcd} \tilde{A}^a_i \tilde{A}^b_j \tilde{A}^c_i \tilde{A}^d_j \leq [(m-1)A + \varepsilon] \tilde{u}$$

at x where $\varepsilon \to 0$ as $\rho \to \infty$. Let $\|\wedge^p f_*\|_{\rho}$ denote the norm of $\wedge^p f_*$ with respect to $d\tilde{s}^2$. Then, if the sectional curvature of N is bounded above by a negative constant -B,

$$2B \| \wedge^2 f_* \|_{\alpha}^2 < [(m-1)A + \varepsilon] \cdot \| f_* \|_{\alpha}^2$$

at x, where $\varepsilon \to 0$ as $\rho \to \infty$. It follows from Lemma 3.1 that

$$||f_*||_{
ho}^2 \le \frac{kK^4}{B(k-1)}[(m-1)A + \varepsilon]$$

everywhere on M_{ρ} . Since this inequality holds for every ρ and $\lim_{\rho \to \infty} \|f_*\|_{\rho}^2 = \|f_*\|^2$, we conclude that

$$||f_*||^2 \le k \Big(\frac{m-1}{k-1}\Big) \frac{A}{B} K^4$$
.

The first part of the theorem follows by taking $B = ((m-1)/(k-1)) \cdot kAK^4$. Applying the inequality (3.2) we conclude that

$$\|\wedge^p f_*\|^{2/p} \leq \frac{m-1}{k-1} {k \choose p}^{1/p} \frac{A}{B} K^4.$$

Putting k = m = n and $B = AK^4$, the volume-decreasing statement is obtained. The assumption of simple connectedness is clearly not essential.

By taking $M=E^m$ with the standard flat metric the above proof quickly yields the following real version and generalization of Liouville's theorem as well as Picard's first theorem originally obtained in [4]. However, the definition of K-quasiconformality must be slightly revised to allow for the possibility that f_* vanish at each point x of M.

THEOREM 2. Let N be an n-dimensional Riemannian manifold with negative sectional curvature bounded away from zero. Then, if $f: E^m \to N$ is a harmonic quasiconformal mapping, it is a constant.

BIBLIOGRAPHY

- [1] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press Inc., New York, 1964.
- [2] R. L. Bishop and B. O'Neil, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- [3] S. S. Chern and S. I. Goldberg, On the volume-decreasing property of a class of real harmonic mappings, Amer. J. Math. 97 (1975), 133-147.
- [4] S. I. Goldberg and T. Ishihara, Harmonic quasiconformal mappings of Riemannian manifolds, Bull. Amer. Math. Soc. 80 (1974), 562-566.
- [5] —, Harmonic quasiconformal mappings of Riemannian manifolds, Amer. J. Math., to appear.
- [6] S. I. Goldberg, T. Ishihara and N. C. Petridis, Mappings of bounded dilatation, Journ. of Math., Tokushima Univ. 8 (1974), 1-7.
- [7] Z. Har'El, Harmonic mappings and distortion theorems. thesis, Technion, Israel Inst. of Tech., Haifa, 1975.
- [8] P. J. Kiernan, Quasiconformal mappings and Schwarz's lemma, Trans. Amer. Math. Soc. 148 (1970), 185-197.

University of Illinois