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There is a rising interest in topological magnetic spin textures, such as skyrmions, for both their 

fundamental physical properties as well as for potential uses in next-generation spintronic devices [1]. 

Lorentz transmission electron microscopy (LTEM) is an appealing technique for imaging nano- and 

micro-scale spin textures. LTEM is compatible with a variety of in situ experiments and allows for 

simultaneous high-resolution imaging of both the magnetic structure and sample microstructure. The 

interpretation of LTEM images can be difficult, but one method for overcoming this is by reconstructing 

the electron phase shift and the integrated magnetic induction via off-axis or in-line holography 

techniques. This is helpful for many in-plane magnetization patterns, but for topologically nontrivial 

spin textures, the integrated induction can appear very different from the magnetization. A relevant 

example of this is the Néel skyrmion, a magnetic quasiparticle shown in Fig. 1(a). A simulated LTEM 

image and the integrated magnetic induction of the skyrmion are shown in Fig. 1(b) and (c), both of 

which appear very different than the magnetization. This discrepancy between the magnetization and 

reconstructed induction can lead to the erroneous interpretation of LTEM images as containing novel 

spin structures. Most notably, the “biskyrmion” identified with LTEM was revealed to be a canted 

topologically trivial bubble domain [2].  Here we present the application of PyLorentz, an open-source 

software suite that we have developed, for both the interpretation of topological spin structures as well 

as for training machine learning (ML) models that can be used to analyze experimental LTEM images. 

 

One method for verifying complex spin structures is by comparing them to simulated data. PyLorentz 

allows users to define imaging conditions, such as microscope aberrations and sample tilt, and accepts as 

an input the magnetization output from micromagnetic simulations. It then simulates LTEM images and 

reconstructs the integrated magnetic induction as shown schematically in Fig. 1(d). The simulated 

images can be directly compared with experimental data to verify that the observed spin texture matches 

the known magnetization from the micromagnetic simulation. The most difficult step in the simulation is 

calculating the magnetic component of the electron phase shift. PyLorentz is built on a new algorithm 

that calculates this phase shift using a linear superposition method applicable to three-dimensional 

samples at any orientation [3].  

 

Simulated image data can also be used to train ML algorithms for interpreting LTEM images. It is 

difficult to distinguish individual Néel skyrmions when they are in a dense lattice, especially when 

imaging at the high defocus necessary for working near the Curie temperature. Quantifying the size and 

shape of skyrmions is important as their deformation provides insight into inter-skyrmion interactions. 

We performed micromagnetic simulations of skyrmion lattices with varying skyrmion sizes and 

densities, an example of which is shown in Fig. 2(a). These magnetizations were used to create LTEM 

training images and ground truth labels of skyrmion sizes and locations, as shown in Fig. 2(b) and (c). A 

convolutional neural network trained on 5000 simulated LTEM images was applied to perform instance 

segmentation of the experimental image shown in Fig. 2(d). Figure 2(e) shows the output prediction 
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overlaid on the input image, with the identified skyrmions transparent and the regions between 

skyrmions shown in red. This example demonstrates how combining LTEM image simulation with ML 

techniques provides new opportunities for analyzing topological spin textures in Néel skyrmion lattices 

and beyond [4]. 

 

 
 

Figure 1. Néel skyrmion LTEM image simulation with PyLorentz. (a) Néel skyrmion magnetization, in-

plane direction is depicted by the color wheel (inset), white points out of the page and black into the 

page. (b) Simulated LTEM image of the skyrmion at -1 mm defocus and     tilt around the x axis. (c) 

Integrated magnetic induction reconstructed from (b). (d) Flowchart showing the PyLorentz software 

capabilities. 

 
 

Figure 2. Machine learning applied to Néel skyrmion lattices. (a-c) Micromagnetic simulations of Néel 

skyrmion lattices (a) are used to create a training set of  LTEM images (b) and ground truth labels (c). 

(d) Experimental LTEM image of a Néel skyrmion lattice in Fe3GeTe2. (e) Instance segmentation of the 

skyrmions performed using a CNN trained on simulated data. The CNN prediction is transparent where 

skyrmions are identified, red where they are not, and is shown overlaid on the input image (d). 
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