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The teapot effect: sheet-forming flows with 
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Minneapolis, MN 55455, USA 

(Received 5 February 1990 and in revised form 3 April 1991) 

The flow of a two-dimensional viscous film falling from the edge of an inclined plane 
exhibits a distinctive set of phenomena which, in various combinations, have been 
referred to as the teapot effect. This paper makes plain that three basic mechanisms are 
at the root of these phenomena: deflection of the liquid sheet by hydrodynamic forces, 
contact-angle hysteresis, and multiple steady states that give rise to a purely 
hydrodynamic hysteresis. The evidence is drawn from Galerkin/finite-element analysis 
of the Navier-Stokes system, matched to a one-dimensional asymptotic approximation 
of the sheet flow downstream, and is corroborated experimentally by flow visualization 
and measurements of free-surface profiles and contact line position. The results 
indicate that the Gibbs inequality condition quantifies the inhibiting effect of sharp 
edges on spreading of static contact lines, even in the presence of flow nearby. The 
branchings, turning points, and isolas of families of solutions in parameter space 
explain abrupt flow transitions observed experimentally, and illuminate the stability of 
predicted flow states. 

1. Introduction 
This paper reports a comprehensive study of two-dimensional sheet-forming flows : 

liquid falls as a sheet, or curtain, from the bottom edge, or lip, of an inclined plate 
down which runs a film, as shown in figure 1. This free-surface flow is central in curtain 
coating where an unsupported liquid sheet falls under the action of gravity onto a 
moving substrate being coated (Greiller 1972). Understanding this flow is also relevant 
to many other coating and polymer processing flows because it incorporates a common 
feature, a static contact line where a free surface separates from the solid surface. The 
spontaneous advance, retreat, and seeming attachment of static contact lines at sharp 
edges can critically influence the uniformity of the sheet or coating produced. Beyond 
practical aspects, the flow in figure 1 is a fluid mechanical curiosity. It exhibits a 
peculiar set of phenomena that are all too familiar from everyday occurrence, and 
have evoked numerous scientific explanations (Reiner 1956, 1969; Keller 1957; Harlow 
& Amsden 1971; Lin & Krishna 1978; Walker 1984; Vanden-Broeck & Keller 1986, 
1988). 

Figure 2 illustrates these phenomena. Liquid issuing rapidly from an inclined spout 
arches downward along a ballistic-like trajectory (figure 2a). As the flow rate 
diminishes, the stream bends back more and more toward the underside of the spout 
(Ld). Figure 2(e) shows how the stream can make contact with the underside of the 
spout, wet it, and dribble some way down it before falling off. Thus wetting and 
spreading phenomena can enter the picture, and they can shift drastically the line of 
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FIGURE I .  A two-dimensional viscous film falling from the lip of an inclined plate to form an 
unsupported liquid sheet, or curtain: ( ( 1 )  contact line pinned; ( h )  contact line free to migrate. 

:i 

( d )  ( p )  (J') 
FIGURE 2. Photographs of a watcr stream flowing from the spout of a teapot. The flow rate is 

decreased from (a) to (e).  and increased from ( e )  to ( , f ) .  

three-phase contact where the liquid detaches from the solid. Figure 2 ( f )  shows how 
the liquid can persist in wetting the solid surface when the flow rate is again increased: 
a septum of flowing liquid connects the main stream to the now pre-wetted spout. 
Evidently there is hysteresis with respect to flow rate. 

This set of phenomena is often called the teapot etftcr. a usage reinforced by Reiner 
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(1956, 1969) who was the first to suggest an explanation of the physical mechanisms 
at work. He distinguished two flow phenomena. Onc is the liquid layer flowing in 
contact with the \call in such a way. Reiner held. that ’vortices’ are generated which 
keep the liquid ‘pressed’ against the wall. The second phenomenon Reiner called the 
‘anti-ballistic‘ jet, but left unexplained. Keller ( 1  957) offered an explanation in terms 
of two-dimensional potential flow theory from which the actions of viscosity, surface 
tension, and gravity were excluded. In that approximation. the speed of the liquid rises 
and its pressure falls at the edge, producing across the film a pressure difference which 
forces the stream to flow around the edge. Using a Marker-and-Cell (MAC) finite- 
difference scheme, Hirt & Shannon (1968) simulated the flow of a viscous liquid layer 
falling off the lip of an inclined plane. They attributed the anti-ballistic action to a 
cross-flow pressure gradient caused by the singularity at the sharp edge. This led some 
to regard the teapot effect as a relative of the Coanda effect by which a jet may attach 
to a wall (Harlow & Amsden 1971 ; see also Martin & Friedman 1974). Lin & Krishna 
1978) invoked macroscopic mass and momentum balances. accounting for inertia. 
gravity, viscous, and surface tension effects. However, they had to make several cicl hoc 
assumptions about the flow field near the lip, and introduced an empirical parameter 
( I ? ! )  to estimate the local film thickness where the liquid sheet forms. They concluded 
that the sheet deflects more as surface tension and viscosity rise, and that it can fall 
vertically only when the liquid is inviscid. These conclusions, however, agree with 
neither the theory nor the measurements presented below. Walker (1984) recounted 
Reiner’s and Keller’s explanations and reported some additional experiments, but did 
not mention the hysteresis phenomenon shown in figure 1. Pritchard (1986) published 
experimental observations of liquid being poured over the end of a plate inclined at  a 
small angle. He considered a lip configuration different from the one studied here, and 
focused on classifying a wide range of different, mostly unstable, flow configurations. 
For some flows in which the liquid formed a stable sheet, he uncovered multiple flow 
states a t  the same flow rate (see his figure 4), but offered no explanation. Vanden- 
Broeck & Keller (1986) extended the original potential-flow analysis (Keller 1957) to 
account for gravity. In addition to film-like flows which adhere to the underside of the 
lip, they analysed sheet-like flows with two free surfaces, one separating from the solid 
at the sharp edge of the lip. More recently, they also allowed for film flows that first 
adhere to the solid, but then separate from the lip underside, forming a second free 
surface at a detachment line away from the lip (Vanden-Broeck & Keller 1988). These 
potential-flow analyses, however, do not account for viscous and surface tension 
effects. Like previous attempts to explain the teapot effect, they cannot resolve all the 
phenomena observed in experiments. 

The present work follows neither Reiner’s arguments nor those that succeeded them, 
but presents a fresh view of the experiment pictured in figure 2, and of experiments with 
the closely related two-dimensional flows shown in figure 1. From these experiments it 
appears that three basic mechanisms are at the root of the teapot effect. First is a purely 
hydrodynamic deflection of the liquid stream. Second is contact-angle hysteresis of the 
sort recognized in surface chemistry (cf. Johnson & Dettre 1969; Adamson 1982), and 
restricted contact line advance and retreat at a sharp edge that make the contact line 
seem pinned (see Oliver, Huh & Mason 1977). Third are multiple steady flow states and 
free-surface configurations that are sometimes possible at the same contact angle. 

The objectives of our study are to predict the set of phenomena that constitutes the 
teapot effect from a complete analysis of the Navier-Stokes system for incompressible, 
viscous free-surface flow, and to corroborate those predictions by systematic 
experiments. The effect as seen in pouring tea from a pot is three-dimensional and a 
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formidable challenge to fluid mechanical analysis. Essentially the same phenomena can 
be seen, however, in the two-dimensional version of the teapot effect analysed here : 
refer to figure 1. Even for this flow, the analysis faces two major challenges. First, the 
free surfaces are quite free, especially when the contact line is not pinned at the sharp 
edge: not only the details of meniscus shape, but also the entire flow domain can 
change shape severely as flow parameters vary. Second, there is no obvious downstream 
boundary condition at any prospective outflow plane a short distance downstream of 
the lip. The sheet thickness and inclination are unknown, and the flow rearrangement 
that continues downstream defies a simple statement about the stress distribution in the 
sheet. Only far enough downstream that viscous effects have become unimportant does 
the flow approach asymptotically a state of free gravity fall. The first challenge is met 
here by an approach developed for the purpose (Kistler & Scriven 1983, 1984): the 
Navier-Stokes system is solved by Galerkin’s method with convenient finite-element 
basis functions and so-called isoparametric mapping of the flow domain into a 
rectangular strip. Central in this approach is a flexible parametrization of the free 
surfaces which, together with the division of the flow domain into sub-domains, or 
finite elements, can cope with highly irregular flow domains. The parametrization is 
based on generator lines, or spines, that translate and rotate adaptively and 
automatically so as to accommodate changes in contact line position and sheet 
deflection. The second challenge is met by dividing the flow into two zones (see figure 
3) : a sheet-forming zone around the lip where the liquid changes direction and falls off 
the inclined plane, acquiring a second free surface which separates from a static contact 
line; and a sheet-flow zone beyond the lip where the falling liquid sheet approaches a 
virtually pure extensional flow regime in which acceleration by gravity contends with 
upstream influence through normal viscous stress that diminishes and asymptotically 
vanishes downstream. Solutions of one-dimensional asymptotically valid equations 
that describe the flow in the falling sheet-flow zone downstream are matched to two- 
dimensional solutions of the complete Navier-Stokes system in the sheet-forming zone 
upstream. 

In our experiments, liquid sheets falling from the lip of an inclined plane were 
produced with a simple table-top apparatus. An optical sectioning technique with a 
sheet of laser light was developed to visualize film and sheet profiles. An adaptation of 
that technique was used to locate contact lines. A mechanical micrometer-needle probe 
was devised to measure precisely the shape of free surfaces. 

Section 2 states the Navier-Stokes system for two-dimensional sheet-forming flows, 
puts forward the asymptotic equations for the one-dimensional sheet-flow downstream, 
and establishes the conditions of matching those two flow representations. Section 3 
highlights the Galerkin/finite-element solution procedures that divide the domain into 
sub-domains, or elements, expand the dependent variables in terms of a set of simple 
polynomial basis functions, reduce the continuity and momentum principles to 
discretized algebraic equations for the coefficients of the basis functions, and solve the 
resulting nonlinear equation set by Newton iteration, with initialization by con- 
tinuation. Section 4 describes the flow apparatus and measurement techniques, and 
recounts the experimental procedures. 

Thereafter, the computer-generated, theoretical predictions and the experimental 
observations are divided as follows. Section 5 contains those results in which the 
contact line remains pinned at the sharp lip of the inclined plane. In this case, there is 
purely hydrodynamic deflection that can be traced to the lack of shear in the free- 
falling sheets as compared to the film flow on the inclined plane. Section 6 reports those 
results in which the contact line takes up a position on the underside of the lip, away 
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FIGURE 3. Analysis by zones of viscous sheet-forming flows. 

from the lip's edge. In this case, the Gibbs inequality condition is violated (86.1). The 
results suggest that the contact-angle hysteresis commonly seen in static menisci with 
contact lines is evidently the same when liquid is flowing at an appreciable rate (86.2). 
The analysis also uncovers multiple steady states that arise from the nonlinearities of 
the Navier-Stokes system and the free boundary conditions (56.3). These multiple 
steady states lie on solution branches in parameter space that are connected at turning 
points where abrupt flow transitions give rise to a purely hydrodynamic hysteresis. This 
previously unrecognized hysteresis is quite distinct from the contact-angle hysteresis 
that is commonly associated with surface roughness and heterogeneity, but might also 
result from delayed equilibration of three-phase contact regions. Graphs of solution 
branches and isolas ($6.4), with their turning points, bring out the structure of the 
parameter space (Reynolds number, property parameter, contact angle, inclination 
angle of the plane, and cut-back angle of the lip). The stability of particular steady 
states, even though only to a limited class of disturbances, is related directly to their 
location with respect to the turning points in the parameter space. 
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In $7, the implications of the results are discussed in regard to the methods used, and 
the mechanisms uncovered. The consequences of the teapot effect are as undesirable 
when pouring tea from a pot as they are in modern high speed precision curtain coating 
(Raux 1976). Once complete physical understanding is at hand, it can be used to 
advantage in designing lip configurations that prevent the deleterious effect. It can also 
suggest how to vary flow parameters in start-up so as to avoid the operating hysteresis 
stemming from the multiple steady states. 

2. Governing equations 
2.1. Two-dimensional sheet-forming jow 

In the sheet-forming zone of figure 1, the pointwise momentum and mass conservation 
equations in dimensionless form are 

(1) 
V - v  = 0. (2) 

Velocity, which is expressed as u = ui+vj ,  is measured in units of U = q/h,  = 
( pgq2 sin P/3p)f, the average velocity in the fully developed film on the inclined plane. 
Length is measured in units of h, = (3pq/pgsinP)f, the thickness of that film. Here, i 
and j are the unit vectors in the directions parallel and normal to the inclined plane; 
q is the pre-metered volumetric flow rate per unit width (i.e. perpendicular to the 
section in figure 1); P is the inclination angle of the plane with respect to horizontal; 
p is the liquid density; ,u is the liquid viscosity; and g is the gravitational acceleration. 
T is the stress tensor, here taken to be that of incompressible Newtonian liquid, namely 
T = -p/+[Vv+VvT], where p is pressure and / is the unit tensor. Both T and p are 
measured in units of pU/h,. Re = pq/p is the Reynolds number. 

The assumption of two-dimensional flow implies that a large central portion of the 
curtain flow remains undisturbed by so-called edge guides which are needed to 
maintain a specified width of the falling curtain (cf. Lin 1981). They typically are 
vertical rods mounted near the lip (e.g. Greiller 1972). Two-dimensionality also implies 
that there are no variations in the transverse direction that are caused, for instance, by 
uneven wetting of the lip underside, or by flow instabilities. Pritchard (1986) gave a 
detailed account of various instabilities in sheet-forming flows. These instabilities, 
however, occur at lower flow rates than are of interest in this paper. 

At some inflow plane x = xI sufficiently far upstream, the essential velocity 
boundary condition is that of rectilinear film flow : 

Re v. Vv = V. T + 3 (sin Pi-cosPj)/sin P, 

’ v = 1.5(2y-y2)i. (3 )  

v = 0. (4) 

The dimensionless film thickness at x = xI is unity. At the solid boundaries there is 
neither slip nor penetration: 

At the free surfaces, the traction condition 

n -  T = N,[768/(Re2sin/5’)]idt/ds-npA ( 5 )  
relates the normal stress in the liquid to the capillary pressure, and also requires the 
shear stress to vanish; the kinematic boundary condition 

n-v = 0 (6) 
expresses that there be no mass flow through the interface. Here t is the unit tangent 
vector pointing in the direction of increasing distance s along the surface (cf. figure 3), 
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n the outward pointing unit normal, and p A  the hydrostatic pressure in the ambient gas 
which, by assumption, exerts no shear on the liquid. The property parameter 
N ,  2 ~ ~ / [ ( 4 p ) ~ g / p ] x  is preferred over the capillary number 

Ca = pU/n  = l/N,[Re2sinp/768]i, 
which normally enters the capillary pressure term in (9, because it is independent of 
flow rate q, the primary variable in experiments (the factor 768 = 3 x 44 arises from the 
particular choice for U = q / h ,  and the definition of N,). 

When the contact line is taken to be pinned at the sharp edge, the essential condition 
on contact line position is 

When the contact line is free to migrate, the apparent contact angle 8, - the angle 
between the normal to the solid surface, nw (cf. figure 3), and that to the visible free 
surface at the putative contact line, n, - becomes an additional input parameter; it is 
specified by the boundary condition 

(8) 
Even though it is a common measure of wettability, the apparent contact angle 0, is 
a macroscopic concept that incorporates information about submicroscopic details of 
‘disjoining forces ’ (or their potentials, the various surface excess energies), surface 
roughness, surface heterogeneity and contamination, and dynamic effects that can give 
rise to hysteresis phenomena (see Johnson & Dettre 1969; Oliver, Huh & Mason 1980; 
Mohanty 1981 ; and Teletzke, Davis & Scriven 1987, 1988). Comparisons between 
theory and experiments in $ 6  below confirm that the concept of a ‘quasi-static’ contact 
angle is a useful one even in the presence of flow. At the contact line, the change from 
adherence to the solid to no shear along the free surface causes a local singularity which 
is logarithmically weak and, hence, integrable (Michael 1958 ; Richardson 1970). For 
contact lines pinned at sharp edges, the singularity remains an inconsequential detail 
on the scale of macroscopic flow, and no-slip of the liquid on the solid appears to be 
an adequate boundary condition (e.g. Chang, Patten & Finlayson 1979; Silliman & 
Scriven 1980; Gear et al. 1983). An earlier analysis of a free-surface flow with a freely 
moving static contact line (Dupret 1982), as well as the results in $6 suggest that the 
same treatment is appropriate also for contact lines that are free to migrate. 

The chosen outflow plane is orthogonal to the sheet midsurface as indicated in 
figure 3. At that plane, boundary conditions on the streamwise component of momen- 
tum flux and surface tension force and on the transverse velocity component arise 
from matching the two-dimensional solution of sheet-forming flow upstream to a one- 
dimensional approximate solution of falling-sheet flow downstream. These matching 
conditions are described in $2.3. 

2.2. One-dimensional approximation to falling-sheet flow 
Away from forming zones, various schemes of approximate analysis suffice to 
approximate the flow in thin liquid sheets, for typically variations in the streamwise 
velocity and in stress are small across the sheet. Such schemes can be based on integral 
momentum balances or perturbation analysis, as reviewed by Kistler (1984), who also 
put forward a pair of equations that describe the position and shape of two- 
dimensional unsymmetrically falling liquid sheets. That pair of so-called sheet-pro$le 
equations is the one employed here. It permits a drastic reduction of the number of 
equations and unknowns in the finite-element analysis of the sheet-flow zone 
downstream of the lip, so that the computational effort can be concentrated near the 
lip, where it is most needed. 

x = 0. (7) 

n,. nu = cos 8,. 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

94
00

40
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112094004027


26 S. F. Kistler and L. E. Scriven 

The strategy behind deriving the profile equations of freely falling liquid sheets is an 
extension of Higgins & Scriven's (1979) integral momentum approach for deriving 
equations that describe the profile of liquid films supported by a flat solid substrate. In 
the case of unsupported liquid sheets (for complete details, see Kistler 1984), 
integrating the momentum balances in directions normal and tangential to the sheet 
across the sheet thickness and eliminating pressure by means of the normal momentum 
balance and normal stress boundary condition yields a pair of coupled integro- 
differential equations. These equation relate the variables of main interest, the 
inclination of the sheet trajectory and the sheet thickness along that trajectory, to the 
velocity field and viscous stress field within the sheet. With the Newtonian constitutive 
relation for viscous stress and a suitable approximation to the velocity field, the 
integrals in the integrodifferential equations can be evaluated. When the characteristic 
sheet thickness, T, is assumed to be much smaller than the characteristic distance in the 
streamwise direction over which the flow varies significantly, L, i.e. T / L  < 1, and the 
radius of curvature of the liquid sheet is taken to be much smaller than its thickness, 
so that everywhere (T /L)  (da/dS) 4 1 (here S is the distance along the sheet measured 
in units of L, and a(S)  is the angle of inclination of the sheet midsurface), local plug- 
flow in the streamwise direction adequately describes the velocity field in the sheet to 
leading order. These assumptions, and the resulting simplifications, are referred to as 
the thin-sheet flow approximation. 

The result is a pair of coupled ordinary differential equations that describe the 
thickness profile and inclination angle along unsymmetrically falling liquid curtains 
(Kistler 1984) : 

(9) 
Re N,  d(H" - Ha") H' . 

8 df 

a' rz ;)+cosaH=O. 

Here H(fj is the sheet thickness, measured normal to the sheet midsurface in units of 
;Re (4,ulp);g-i; a(fj is the inclination angle of the midsurface from horizontal; s" is the 
distance along the midsurface, measured in units of (4p/p)%g-{; and the prime denotes 
differentiation with respect to s". The lengthscales chosen here are independent of the 
characteristic length h, in the sheet-forming zone: they depend solely on liquid 
properties and gravitational acceleration, and thus are appropriate in the downstream 
regime of asymptotic approach to free gravity fall. The physical origin of the terms 
in (9) and (10) is transparent : in the direction normal to the sheet, gravity balances the 
'shell' forces arising from surface tension, normal viscous stress, and the centrifugal 
force; and in the tangential direction, the pressure force due to the capillary pressure 
gradient, the normal viscous force, inertia and gravity are in equilibrium. 

The upstream boundary conditions on sheet thickness and inclination angle emerge 
from matching the approximate sheet profile equations to the complete equation set in 
the sheet-forming zone upstream: see $2.3 below. The downstream boundary 
conditions describe free gravity fall: 

H' = -H3sina, 
H" = H 5  (3 sin2 a - cos2 a). 

Condition (1 1) is the tangential momentum balance (9) specialized for the case in which 
inertia and gravity dominate. In deriving (12), the relationship a' = H'cosa has been 
used. The latter is the normal momentum balance (10) simplified by the assumption 
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that sufficiently far downstream the centrifugal term a'/H dominates the surface 
tension term a'8NJRe. Experiments with symmetrically falling liquid curtains confirm 
that, at moderately high Reynolds numbers Re 3 U(1) which are of interest in this 
paper, the flow approaches free gravity fall a few sheet thicknesses downstream from 
the nozzle where the sheet is formed (Brown 1961). For symmetrical sheets and jets, 
asymptotic approach to free gravity fall has also been verified with formal perturbation 
procedures (e.g. Clarke 1968; Joseph, Ngyen & Matta 1983). For the non-symmetrical 
sheet flows analysed in this paper, the validity of the downstream boundary conditions 
(1 1) and (12) is established by demonstrating that computed predictions are insensitive 
to the locations ;where these conditions are imposed. In a typical solution shown in 
9 5 below (i.e. for Re = 7, No = 1.15, /I= 90"), lengthening the one-dimensional 
domain from 9.51 to 89.94 units of (4plp);g-i changed the velocity field and free- 
surface locations in the two-dimensional sheet-forming region by less than 0.0 1 %. 

Sufficiently far downstream, of course, the liquid sheet impinges onto some solid 
object or plunges into a pool of liquid. However, once it has reached a state of free 
gravity fall, the flow cannot transmit any upstream influence : the equations become of 
parabolic type. Under these conditions, the details of the impingement flow - which are 
beyond the scope of this paper - have no effect on the sheet-forming flow. Where the 
sheet impinges, it may exhibit a set of standing waves analogous to those observed for 
impinging jets (Cullen & Davidson 1957). The amplitude of such waves, however, 
decays exponentially in the upstream direction (Bretherton 1961 ; Ruschak 1978) and 
would be undetectable where the sheet forms. The sheet may also suffer a buckling 
instability of the sort first described by Taylor (1968). Cruickshank & Munson (1981) 
established that this is a low-Reynolds-number phenomenon well outside the parameter 
ranges investigated here [Re 3 O(l)]. In actual curtain coaters, the falling sheet 
impinges on a moving substrate. Recent studies of curtain coating by Ogawa & Scriven 
(1994) confirm that, above a critical curtain height, there is no coupling between the 
coating flow and the sheet-forming flow upstream. 

2.3. Matching conditions 
Matching the one-dimensional sheet flow with the two-dimensional main flow ensures 
that the distinct approximations of the flow field on either side of the open-flow 
boundary, here referred to as the matching boundary, comply with the fundamental 
physical requirements that the mass flux, the momentum flux, and the free surfaces be 
continuous at the matching boundary. Here the matching conditions are merely 
summarized. They are readily derived and Kistler (1984) gives full details. 

The downstream boundary conditions that complete the mathematical description 
of the two-dimensional sheet-forming flow are 

T,, = e,e , :  T = 

Here e, and en are the unit vectors in the directions tangential and normal to the sheet 
midsurface respectively; and E is the distance along the matching plane, measured from 
the midsurface in units of iRe(4plp);g-i. The subscripts + and - denote the upper 
and lower free surfaces respectively, and Y = (12 sin/I/Re2): is a scale factor that reflects 
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the two distinct lengthscales used. Condition (13) imposes the component of the total 
traction normal to the matching plane, calculated from the thin-sheet flow 
approximation in terms of the variables that describe the sheet-flow zone. Likewise, 
condition (14) specifies the component of the surface tension force normal to the 
matching plane. Condition (15) imposes the velocity component normal to the sheet 
midsurface that is consistent with local plug flow. It is preferred over imposing the 
shear-stress profile T,, 3 en e,$: T as a natural boundary condition because shear stress 
cannot be estimated accurately with the thin-sheet flow approximation. 

The upstream boundary conditions that are needed to solve the sheet-profile 
equations (9) and (10) arise from the continuity requirements for the thickness and 
free-surface slopes of the liquid sheet; they are 

H = r-l en - (x, - x-), 
[sin(a-b) i+cos (a-/3)f.(t+ + t - )  = 0. 

(16) 
(17) 

Here, x+ and x- denote the free boundary locations at the matching plane. By virtue 
of the plug-like velocity profile on which the thin-sheet approximation is based, 
condition (1 6) also ensures continuity of total mass flow across the matching boundary. 

The strategy of solving simultaneously the equations of two-dimensional sheet- 
forming flow upstream and one-dimensional falling-sheet flow downstream can be 
validated by demonstrating that the computed predictions are insensitive to the 
location of the matching plane (for similar strategies, see also Novy, Davis & Scriven 
1990). For instance, for a solution at Re = 7, N,  = 1.15, and /3 = 90' (shown in figure 
10a below), the distance from the lip to the matching plane was increased in increments 
of 4.5 from 4.5 to 18. The maximum change in free-surface location in the two- 
dimensional domain was below 1 YO ; the computed values of separation angle 8, 
(cf. figure 1) changed less than 2 % ;  and H =  0.15646 and a = 1.6627 (95.31') 
calculated from the two-dimensional finite-element solution at the matching plane 
located a distance of 18 film thicknesses from the lip agreed closely with H(s) = 0.15665 
and a(s) = 1.6635 (95.27') obtained at the same location from the one-dimensional 
falling-sheet equations when the matching plane was located a distance 4.5 from the 
lip. 

3. Finite-element solution procedures 
3.1. Free-surface parametrization and domain tessellation 

The set of equations that governs sheet-forming flows is nonlinear and thus requires an 
iterative solution procedure. The main nonlinearity is due to the free surfaces, the 
locations of which are unknown a priori, and at which the nonlinear boundary 
conditions (5) and (6) apply. Additional nonlinearities come from the convective 
momentum term in (l), the sheet profile equations (9) and (lo), and the matching 
conditions (13)-( 17). The key to handling these nonlinearities is a scheme that reliably 
and efficiently readjusts the free surfaces and associated finite-element tessellation at 
each iteration step. 

In the analysis put forward here, the free surfaces were parametrized along 
generators called spines (Kistler & Scriven 1983, 1984). Spines are conveniently located 
and oriented lines, as shown in figure 4. Each is defined by the coordinates xk of its 
base point and the unit vector ei pointing in its direction. The nodal coordinates x' of 
node k(i , j)  on the ith spine are 

xk = xB + [ h i  + wj(ht -hi)] ei, (18) 
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I I 

FIGURE 4. Parametrization of free surfaces and associated finite-element tessellation by means of 
adaptively rotating and translating spines, shown here for a case in which liquid wets the lip 
underside. 

FIGURE 5. Typical finite element tessellations: (a) type A - no wetting (Re = 5,  No = 1.15, /3 = 90'); 
(b)  type B - slight wetting (Re = 5,  N, = 1, ,8 = 80", y = 60", Oc = 70"); (c) type C - substantial 
wetting (Re = 8, N,, = 1, /3 = 60", y = 60", 0, = 67"). 
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where h: and h i  are local coordinates of the inner and outer free surfaces, unknowns 
to be solved for. In close conjunction with spine placement, the flow domain in the 
sheet-forming zone was tessellated into quadrilateral elements as indicated in figure 4. 
Two opposing sides of each element were defined by spines, and thus were straight. The 
other two sides were made to intersect those spines at fixed relative locations (d), and 
thus reflected the curved shape of the free surfaces. In the sheet-flow zone downstream 
(not shown in figure 4), the elements were one-dimensional, and were simply line 
segments along the sheet midsurface. 

Some of the spines were made to translate and rotate adaptively so as to follow 
salient features of the solution: the angle of inclination aLw of the sheet midsurface at 
the matching plane and, in cases with wetting of the lip underside, the distance x* 
between the contact line and the sharp edge of the lip (see Kistler 1984 for more 
details). The base points xk and the directions ei became functions of these additional, 
unknown variables. Depending on the contact line position, the finite-element 
tessellation was one of the three types displayed in figure 5 :  type A was used for 
solutions in which the contact line remained pinned, type B for those in which the 
liquid wetted the lip underside slightly, and type C for those in which the liquid flowed 
along the lip underside over a sizable distance before falling of€ as a sheet. 

3.2. Basis function expansions and weighted residual equations 
In the sheet-forming zone, the unknown velocity and pressure fields were expanded in 
the forms 

K L 

u = c Uk Ok(5, 7),P = c Pi w 5 ,  7). (19) 
k = l  1=1 

Similarly, in the sheet-flow zone, the unknown sheet thickness and inclination were 
expanded in the forms 

Here, nine-node biquadratic basis functions Ok were employed for u, four-node 
bilinear ones !P for p ,  Hermite cubic ones xm for H(s), and linear ones r for a(s). The 
choice for u and p is one of the so-called mixed interpolations that should be used in 
velocity-pressure formulations of the Navier-Stokes system (e.g. Huyakorn et al. 
1978). In the computations reported in this paper, the numbers of unknown coefficients 
were 203 < K <  387, 60 < L c  110, M=42,  and N =  21. 

The key to expanding the free-surface shapes in the forming zone is the isoparametric 
mapping 

K 

x = c X k ( h )  @Y& 7). (21) 
k = l  

This is an element-by-element transformation between the actual flow domain and 
replicates of the unit square in ((,r)-coordinates (cf. figure 4; 5 and 7 here are local 
coordinates within a finite element, but they also can be interpreted as global 
coordinates, modulo element indices, in a computational domain). In (21), h denotes 
the entire set of free-surface parameters, namely h:, h4, aM, and x*. Along free 
surfaces, the local mappings 
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by the biquadratic basis functions, make the curved free-surface segments simple one- 
dimensional mappings of straight lines (9 = f 1) in the ([, 7)-plane ( F  denotes the sub- 
set of basis functions @ that are non-zero along one of the free boundaries). As an 
added benefit, the unit tangent and normal vectors t and n along the free boundaries 
(where 7 is either + 1 or - 1) take the computationally convenient forms 

x6i+jJJ 

(xf +yip  ' 
= - jJ6 i + X&j 

(xf +y$ . 
t =  

Here, the subscript 6 denotes differentiation with respect to that variable. 

weighted momentum residuals were required to vanish, 
In the two-dimensional sheet-forming zone, the two scalar components of the 

(24) 
and thereby provided 2K equations, as many as there were unknown velocity 
coefficients uk and vk (here A ( h )  refers to the flow domain and s(h) to the flow 
boundary). Setting the weighted residual of the continuity equation to zero, 

provided L equations, as many as there were pressure coefficients p l ,  and setting the 
weighted residuals of the kinematic boundary condition to zero, 

R ~ K  = J~ @(t,y = 1)n.vds = 0, (26) 
Sp(h)  

provided as many equations as there were free-surface coefficients in h (here sF(h) refers 
to a free boundary). Likewise, in the one-dimensional sheet-flow zone, the coefficients 
H" and a" were determined by requiring that the residuals of the sheet profile 
equations (9) and (lo), weighted with xm and <" respectively, vanish: 

Re Nu $0 

R" s = 48 (H"-Ha") 1 
0 

(H"-Ha'2)g-[$+sinz-  

Re + +$ Hcos a} d i  = 0. 
4 H  

Here s", is the arclength from the matching plane to the outflow boundary at which (1 1) 
and (1 2) were imposed. 

Essential, or Dirichlet, boundary conditions on the velocities (3), (4) and (15), on 
film thickness at the inflow, and on sheet thickness (16) and sheet inclination (17) at the 
matching plane were imposed by substituting those conditions in place of the 
corresponding residual equations. Natural, or Neuman, boundary conditions, or 
boundary conditions of the third kind (Robin), were imposed through the boundary 
integral of n- Tin (24), the result of applying the divergence theorem to the stress term, 
and through the end-point term in (27), which arises from integration by parts of the 

2-2 
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capillary pressure-gradient term (Kistler & Scriven 1983, 1984). For example, the 
normal traction at the matching plane was imposed by substituting its one-dimensional 
approximate value (13) into the boundary integral in (24). Along the free surfaces, the 
traction condition ( 5 )  was substituted in the boundary integral in (24). After 
integration by parts (cf. Ruschak 1980) and with p A  = 0 as pressure datum, the 
boundary contribution to the momentum residuals became 

This form also permitted the conditions (14) on the directions of the surface tension 
forces to be imposed by direct substitution in the momentum residual equations. 

3.3. Computation of basis function coeficients 
In early finite-element analyses of viscous free-surface flows (e.g. Nickell, Tanner & 
Caswell 1974), the location of a free surface had been sought by successive 
approximation techniques in which the free-surface location is updated on the basis of 
one of the boundary conditions, which condition is ignored during calculation of the 
flow field. Similarly, in a previously published finite-element analysis of fibre spinning 
in which, as in the present study, a one-dimensional approximate solution was matched 
to a complete two-dimensional one (Gifford 1982), the algorithm required iterating 
back and forth between solving the two-dimensional problem and the one-dimensional 
one. It is now clear, however, how to achieve a strikingly improved, quadratic rate of 
convergence by using Newton's method to solve, in a single iteration process, the 
entire set of equations for velocity, pressure, and free-surface location (Saito & Scriven 
1981; Ruschak 1980), and asymptotic sheet profiles as well (Kistler 1984). 

Written in terms of a vector b of all the coefficients of the finite-element basis 
functions and a vector R(b) of all the weighted residuals, the Newton iteration process 
is, of course, the repeated solution of the linearized system of equations 

Jtb,,, - b,l = - R(b,), (30) 
where J = aR/ab is the Jacobian matrix, and n denotes the nth iteration step. The crux 
is the evaluation of the derivatives aR/ah of the weighted residuals with respect to the 
free boundary parameters. Kistler & Scriven (1983, 1984) showed that, with the spine 
parametrization and the isoparametric mapping, the differentiation becomes straight- 
forward. They also explained how the full Newton system (30) of both two- 
dimensional exact and one-dimensional approximate equations can be assembled and 
solved by the frontal technique (Hood 1976; Walters 1980). 

A major drawback of Newton's method is its limited radius of convergence, i.e. it 
converges only if the initial estimate is close enough to the solution. Particularly critical 
is the very first approximation at the start of the sequence of parameter values of 
interest. Analysis of sheet-forming flows as presented here opened with an adhoc initial 
guess (semi-parabolic and plug-like velocity profiles upstream and downstream of the 
lip respectively, and a sheet profile in accord with the limiting free gravity fall regime) 
for a simple case with pinned contact line, and proceeded from there to the more 
complicated cases with wetting of the underside of the lip. Sufficient under-relaxation, 
i.e. curtailed adjustment of the update (b,,, = b, - wJ- l  R(b,), where 0 < w < 1) 
gives the Newton iteration process the 'descent' property that will take it to a solution 
if there is at least one. In this study, under-relaxation was sometimes used to facilitate 
start-up of the computations. 
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Families of sheet-forming flows were calculated by changing sequentially any of the 
parameters LP‘ = [Re, N,, p, y ,  O,]. Even though first-order continuation would 
probably have been more effective (cf. Kheshgi et al. 1983), zeroth-order continuation 
was used in this work, i.e. the converged solution for one set of parameters provided 
the initial approximation for a slightly different set. Continuation in a particular 
parameter fails near a turning point in that parameter, i.e. points where a solution 
branch turns back upon itself. Turning points appear in many of the solution families 
presented in 56. In the computations, they were much in evidence owing to the 
narrowing of the domain of convergence as they are approached, and eventually the 
complete failure of Newton’s method to converge. At the root of these computational 
difficulties were one or more Gauss elimination pivots of J which became very small 
as the turning was approached. At the turning point, J is singular, i.e. its determinant 
vanishes. 

The singularity of the Jacobian matrix J at a turning point can be removed by 
switching continuation parameters (see e.g. Keller 1977). In this study, at a turning 
point in contact angle 8,, the continuation parameter was simply switched to the 
contact line position x*, i.e. 19, was made a dependent variable and x* was specified. 
At turning points in any of the other parameters I7, in the set Z7, continuation was 
switched to x* also, but instead of I7, it was again 8, that was made the dependent 
variable. Computations were continued in that matter until the predicted angle 8, was 
sufficiently close to the desired one that another continuation step in I7, converged to 
a solution on the new branch beyond the turning point. These tactics are, in essence, 
an ad hoc implementation of what has come to be known as Abbott’s method (Abbott 
1978). 

4. Experimental techniques 
4.1. Curtain pow apparatus 

The two-dimensional teapot effect was investigated experimentally with the curtain 
flow apparatus shown in figure 6 ( a )  (the numbers in the figure refer to the text that 
follows). Reservoir 1 contained the bulk of the approximately 0.01 m3 of water- 
glycerine mixtures that served as test liquids. A Zenith Model BLB-5456 gear pump, 
2, mounted on a DC motor/driver assembly with digital speed control (Zenith 
Products Co., West Newton, Massachusetts, USA), metered the liquid through the die, 
3. On the inclined plane of that die, the liquid formed a film that fell over the sharp 
edge, 4, where the freely falling curtain was formed and where the teapot effect was 
observed. The curtain width was maintained by two vertical edge guides, 5 ,  set 200 mm 
apart. These were made of stainless steel rods of 2 mm diameter, and touched the lip 
where the liquid curtain was formed. The curtain fell freely for about 150 mm before 
impinging onto the catch tray, 6 ,  from which the liquid returned to the reservoir, 1. The 
catch tray was positioned to minimize splashing and thereby avoid bubble formation. 

Details of the die design, including important dimensions, are given in figure 6(b) .  
The two main components of the die were made of stainless steel and were precision 
ground. The film on the inclined plane was maintained at a width of 200 mm by strips 
of Teflon (1.59 mm thick). These strips caused some edge effects in the form of tiny 
standing waves on the film surface; these waves, however, did not affect a large central 
portion of the falling curtain. 
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t 

FIGURE 6. Curtain flow apparatus : (a) schematic of flow system; (b) die design 
(dimensions are in mm). 

4.2. Flow visualization and measuring techniques 
Free-surface profiles in the sheet-forming zone were measured with the micrometer 
probe shown in figure 7. A precision micrometer (25.4 mm travel, 2.54 pm resolution) 
moved a needle tip in the x-direction toward the free surface at various preset 7- 
positions. The y-position was selected by means of a positioning slide equipped with 
a dial indicator (25.4 mm travel, 25.4 pm resolution). The x-position at which the needle 
tip just touched the free surface was readily apparent because a meniscus immediately 
attached to the needle. The repeatability of these measurements was within 50 pm. The 
accuracy of the probe was established by measuring the thickness of the fully developed 
film on the inclined plane. The deviation from the theoretical value h, was less than 
2 YO. The main source of error came from inaccuracies in establishing the experimental 
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Dial indicator * 
Precision slide 

Micrometer & 
9 

FIGURE 7. Mechanical micrometer needle probe. 

X- and y-positions at which the needle tip just contacted the sharp edge of the die. Other 
potential sources may have come from imprecisions in measuring the liquid properties 
and monitoring their temperature dependence, and from variations in flow rate over 
the width of the die. 

A sheet of laser light was used to probe the teapot effect in two ways: it was used 
to section optically the sheet profiles in the sheet-forming zone; and it was used to 
measure the position of the static contact line where the curtain separated from the die 
surface. 

Figure 8 (a) shows the arrangement in the optical sectioning mode. The beam from 
a low-power laser (Model 1356P, Spectra Physics, San Jose, California, USA) was 
expanded into a sheet with a concave cylindrical lens (90mm focal length). To 
compensate for beam expansion normal to the sheet, a convex cylindrical lens (300 mm 
focal length) focused the light into the zone of flow visualization. Small particles 
suspended in the test liquid scattered light when they resided in the illuminated plane. 
Both polystyrene latex particles of about 0.2 pm (courtesy Professor W. R. Schowalter, 
Princeton University) and Mearlin Luster Pigment in the size range 1540 pm (Mearl 
Co., New York, New York, USA) worked successfully. When recorded photo- 
graphically with a camera oriented normal to the light plane, the streak lines of the 
particles generated two-dimensional images of the flow (see Figure 9 below). 

To measure the location of the static separation line, the laser sheet was deflected 
from beneath toward the underside of the curtain die. Where the sheet met the steel 
surface, a straight line of refracted laser light appeared. That line was aligned with 
respect to a scale that was mounted on the underside of the die as shown in figure 8 (6). 
The point where the line of refracted laser light intersected the contact line was very 
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lens 

Sharp edge 
(1 I Edge guide 

FIGURE 8. Laser light-sheet probe: (a )  optical sectioning set-up; (6) set-up for measuring contact 
line position (view of die underside). 

prominent. The measuring range u was 150 mm and the distance h 15 mm. Such a small 
ratio h / a  makes the contactless measuring technique quite sensitive : with the 
resolution of 1 taken to be 1 mm, the contact line location could be determined to 
within 0.1 mm. The shape of the contact line drawn in figure 8(b)  is indicative of the 
contact lines that were observed in experiments when the liquid wet the lip underside. 
Edge effects induced by the edge guides were confined to a band at  most 2 cm wide. 
Over a large central portion of the flow, the contact line was straight, and the curtain 
deflection was insensitive to the position at which it was measured. 

4.3. Experimental procedure5 
The viscosity of the Newtonian glycerine-water mixtures ranged from 20 to 
200 rnPa s, surface tension was typically around 0.063 N m-', and density around 
1210 kg rn-.?. Because the viscosity of the mixtures is highly sensitive to tempera- 
ture and air humidity, it was monitored in every run. Surface tension and density were 
checked only sporadically, for they were found to be in good agreement with 
tabulated values (Newman 1968) so that measuring viscosity sufficed. 

In experimental studies of the teapot effect, reproducible preparation of the solid 
surfaces is of foremost importance, because it can influence whether the liquid wets the 
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FIGURE 9. Hydrodynamic deflection of viscous liquid sheet falling from lip of vertical plane: 
section photographs. 

underside of the lip. Between each run, the flow was stopped and the lip was washed 
with water, dried with a paper wiper (' Kimwipes' by Kimberly-Clark Corp., Roswell, 
GA), and cleaned with an acetone-soaked paper wiper. With this procedure, the 
measurements of contact line position were quite repeatable (see 46.2) and, within the 
range of flow parameters reported here, the contact line appeared straight across a 
large central portion of the curtain as depicted schematically in figure S(6). When flow 
parameters, in particular flow rate, were varied over wide ranges, many instability 
phenomena similar to those reported by Pritchard (1986) could be observed. The 
central experiments in the present study, however, focused on flow configurations most 
pertinent to curtain coating in which the liquid falls in the form of a stable sheet and 
separates from the solid surface at a straight contact line. 

5. Pinned contact line - purely hydrodynamic deflection 
5.1. Eflects of,flou pnranzeters on h~~drodjnarnic deflection 

The trajectory of a liquid sheet that falls from the lip of a vertical plane changes 
substantially as flow rate varies. In the sequence of section photographs in figure 9 
(taken as described in figure 8 a ) ,  the flow rate decreases from top left to bottom right. 
At high flow rates, inertial effects dominate and so the liquid falls almost vertically. As 
the flow rate decreases, the liquid falls along a deflected, or  'antiballistic', trajectory. 
The deflection is most substantial at an intermediate flow rate. At low enough flow 
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3 

0 4 

(6) 

8 12 16 20 

-4  0 4 8 12 16 20 

Horizontal coordinate 
FIGURE 10. Hydrodynamic deflection of viscous liquid sheet falling from lip of vertical plane: 
computed profiles and streamlines for (a) vertical plane (/3 = 90", N ,  = 1.15); and (b)  inclined plane 
( B  = 60", N,, = 1.0). 

rates, viscous effects dominate and the flow rearrangement is confined to a short 
forming zone about the lip, so that the liquid curtain reaches vertical fall close to the 
lip. 

In the flows depicted in figure 9, the static contact line, when inspected by naked eye, 
seemed to be pinned at the sharp edge. Evidently, a viscous liquid sheet falling from 
the lip of an inclined plane deflects towards the underside of the lip because of the 
interplay of purely hydrodynamic forces, and not because of the submicroscopic forces 
that control wetting and spreading. 
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FIGURE 1 1 .  Comparison between predicted (solid lines) and measured (symbols) free-surface 
profiles (Nv = 1.15, /I = 90"). 

Theory confirms that there is a purely hydrodynamic teapot effect, quite apart from 
wetting and spreading. Figure 10 shows sample predictions (computed as described in 
53.3)  of curtains that separate at the sharp edge as they fall from either a vertical or 
an inclined plane. The flow parameters in figure 10 are representative of the flow rates 
and physical properties of the glycerine/water mixtures used in the experiments of 
figure 9. For the case of a vertical plane, the theoretical predictions in figure 10(a) agree 
well with the section photographs in figure 9. For the case of an inclined plane, the 
predictions of curtain fall in figure lO(6) reveal similar trends: the trajectory is 
'ballistic' at high flow rates; reverses to an 'antiballistic' one as flow rate diminishes; 
and is nearly vertical at low rates. 

The most striking characteristic of the hydrodynamic curtain deflection is that it is 
most pronounced at intermediate flow rates. Other features of the predicted flows 
worth noting include a thickening of the film just upstream of the lip at low flow rates 
(e.g. Re = 1 in figure lob)  and a second inflexion point in some of the sheet trajectories 
(e.g. Re = 4 in figure 10a, or He = 3 in figure 10h). 

Free-surface profiles measured with the mechanical micrometer probe also agree 
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-4 0 4 8 12 16 
Horizontal coordinate 

FIGURE 12. Effect of inclination angle B on trajectory of viscous liquid curtain ( N ,  = 1 ) :  
(a )  high Reynolds number (Re = 20); (6) intermediate Reynolds number (Re = 5) .  

closely with the theoretical predictions. In figure 11,  the predicted top or outer free 
surfaces are drawn as solid lines, whereas the measured readings are marked by the 
various symbols. At the lower and higher Reynolds numbers, the agreement is 
excellent. Even such details as a second inflexion point in the free surface are the same 
in theory and experiment (see Re = 4). At intermediate Reynolds numbers (namely 
Re = 5 and 7), at which the deflection is greatest and most sensitive to flow rate, the 
agreement is not quite as good. The discrepancy between theory and experiment arises, 
most likely, from measurement errors of flow rate and viscosity, but may also stem 
from slight wetting of the lip underside (this is discussed further in $6). 
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FIGURE 13. Hydrodynamic deflection of viscous liquid curtain (N,, = 1) as a function of 
inclination angle p :  ( a )  deflection angle O,,; ( h )  separation angle O\. 

As long as the contact line remains pinned at the sharp edge, the inclination angle 
p is the only lip design parameter that influences the shape of the falling liquid sheet. 
At Reynolds numbers high enough that inertial effects dominate and the liquid falls 
along a ballistic trajectory, /3 is all-important because it controls the initial slope of the 
sheet trajectory, as illustrated by the computed predictions in figure 12(u). In contrast, 
a t  intermediate Reynolds numbers at which the liquid follows an antiballistic 
trajectory, the angle p influences the shape of the sheet surprisingly little, as shown in 
figure 12(b). Evidently, the purely hydrodynamic deflection is not connected with the 
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FIGURE 14. Hydrodynamic deflection of visco,us liquid curtain: effect of capillary parameter 
N ,  I a/[(4p)'g/p] i  (Re = 5 ,  /I = 60"). 

inclination of the plane. At low enough Reynolds numbers that the liquid falls 
vertically just downstream of the lip (not shown in figure 12), the trajectory of the 
falling curtain changes even less as the inclination angle /3 is varied. 

These trends are summarized in figure 13 (u )  which shows the deviation from vertical 
of the rear free surface at the static attachment line, O , ,  as a function of the angle of 
inclination of the lip, /3. This deflection angle 0, is most sensitive to /3 at high Reynolds 
numbers, but remains almost the same at low Re. However, when and how the liquid 
wets the lip underside hinges not on the deflection angle H,, but on the separation angle 
#,7 = 270"+8,-/3: to avoid wetting, H,7 ought to be as small as possible (see 56.1). 
Figure 13 (b)  shows that O,< is most sensitive to the inclination angle /3 at low values of 
Re for which 8, scarcely changes, whereas at high Reynolds numbers changes in /3 are 
nearly offset by accompanying variations in 8, and thus, 0, becomes insensitive to /3. 
Figure 13 indicates that high Reynolds numbers are best to avoid the teapot effect and 
that, for any value of Re, the likelihood of wetting is smallest for large values of /3. 

Figure 14 shows how the purely hydrodynamic teapot effect is influenced by the 
property parameter, N,,, in which surface tension is paramount. The liquid curtain 
undergoes a significant deflection only at intermediate values of N,, whereas at low and 
high values the curtain falls vertically immediately downstream of the lip. The free- 
surface profiles in the latter two cases are, however, quite different: at N,, + 1, there is 
a sizable standing wave upstream of the lip, whereas at N,, + 1, there is virtually no 
upstream influence. Nonetheless, operating at a high or low value of the property 
parameter does not avoid the purely hydrodynamic teapot effect, as might be inferred 
from figure 14. Variations in N,, merely shift the range of Reynolds numbers Re, or flow 
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FIGURE 15. Summary of effect of flow parameters Re and N ,  on hydrodynamic deflection of 
viscous liquid curtain ( B  = 90"). 

rate, in which the maximum deflection occurs, as is plain in figure 15. The maximum 
separation angle in each curve is not much different, even though N ,  changes by orders 
of magnitude. 

In summary, figure 15 captures the essence of the purely hydrodynamic teapot effect 
as far as it is controlled by flow rate and liquid properties: the curtain deflects toward 
the lip underside only in a certain range of flow rates which depends on viscosity and 
surface tension. This result clearly vitiates the conclusions Lin & Krishna (1  978) drew 
from their oversimplified macroscopic momentum balance. It also makes apparent the 
limited utility of potential flow calculations that ignore the effects of viscosity and 
surface tension altogether (Keller 1957; Vanden-Broeck & Keller 1986). 

5.2. Nature of the hjdrodynamic teapot efect 

The question remains of how to extract from the analysis a basic understanding of the 
teapot effect. Details of the computed flow fields in the forming zone and certain 
macroscopic balances of moment-of-momentum provide some insights, as follow. 

The contours of kinematic and dynamic variables in figure 16 exemplify, a t  a set of 
flow parameters that yields a deflected curtain trajectory, the characteristics of flow 
rearrangement near the lip. The transition from shear to extensional flow is complex, 
yet the transition zone extends only a few film thicknesses upstream and downstream. 
Upstream, fully developed flow prevails as close to the sharp edge as 2 film thicknesses. 
The contours are those of a semi-parabolic velocity profile as given by ( 3 ) ,  a linear 
hydrostatic pressure distribution, a linear variation of shear stress and vorticity In 
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(0) ( h )  ( (.) (ii) (el (. i )  
FIGURE 16. Details of flow field in sheet-forming flow near the lip of an inclined plane ( R e  = 5 ,  
N,, = 1.15, = 60"): (a )  stream function: (h )  particle speed Ivl; ((,) pressurep; ( d )  streamwise normal 
stress difference 7<\ -7 , , , ! ;  ( P )  shear stress T,(> normal to streamlines; ( f ' )  vorticity wz. 

accord with ( 3 ) ,  and a negligible normal stress difference. Downstream, near- 
extensional flow is established about 5 film thicknesses from the lip. The contours 
indicate a linear velocity profile that relaxes toward plug flow, the profile on which the 
approximate sheet profile equations (9) and (10) are based. The normal stress difference 
approaches a uniform profile, whereas pressure, which is subambient and approxi- 
mately half the negative of the normal stress difference, varies linearly across the 
sheet, in agreement with the one-dimensional approximation (13). Shear stress is 
negligible, whereas vorticity, which here measures the local rate of rotation of the 
liquid as a rigid body, changes sign near the inflexion point of the sheet trajectory. In 
the immediate vicinity of the contact line, where the shear stress on the liquid surface 
suddenly disappears, the contours evidence the well-known singularity as predicted by 
a local analysis (Michael 1958), a rapid acceleration along the free surface, and a tensile 
normal stress which accompanies that acceleration. 

The singularity a t  the wetting line and the complex flow nearby, together with the 
difficulty of locating the unknown free surfaces, argues against the possibility of fully 
explaining the teapot effect with any simple analytical approach. The situation is 
reminiscent of exit flow with die swell (cf. Richardson 1970; Silliman & Scriven 1980), 
in which the swelling ratio is determined by the rearrangement of the flow field 
upstream of the exit plane. For that flow, a macroscopic balance that does not account 
for the modified velocity and stress distributions at the exit predicts a contraction of 
the viscous jet instead of swelling. 
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FIGURE 17. Macroscopic moment-of-momentum balance around viscous sheet-forming flow : ( ( I )  

definition of control volume; ( h )  normalized contributions to (31) as a function of the .\--position of 
the downstream boundary of control volume ( R e  = 5 ,  lZr,, = I .1S, 11 = 90'). 

Nevertheless. the cause of the hydrodynamic teapot effect can be illuminated by 
means of a macroscopic balance of the torques exerted by the forces and momentum 
fluxes acting on a control volume of the sort shown in figure 17(u). With the origin at 
the sharp edge of the lip, that balance is 

t ( t n :  T )  x r d s +  - t ( t n :  T )  x rd.y - n(nn:T) x r d s +  - n(nn: T)  x rds  
" 0 i ,v 0 i 

v r/ 
T 

I1 I 

3 + r x (sinbi-cosilj) dA + n(nn: T )  x r d s  = 0. 
s1nB .z 

Locating the origin at the sharp edge brings the advantage that the wall shear exerts 
no torque. In (31), S,, S ,  and S,,. denote the boundaries at the inflow plane, the outflow 
plane, and the slide surface respectively; A is the area of the two-dimensional flow 
domain within the control volume; f and n denote the unit tangent and norm' d 1 vectors 
to the respective boundaries; and r is the vector displacement from the origin. The term 
IV arises from the surface tension forces at the three locations where free surfaces 
intersect the control volume. The macroscopic balance (3 1 )  suggests that the relaxation 
toward plug flow and the absence of shear in the falling sheet are at the root of the 
hydrodynamic teapot effect. In fully developed film flow down a vertical wall, the 
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moments of momentum inflow and outflow and of surface tension forces cancel. 
whereas the transverse shear torques in the inflow and outflow planes are balanced by 
the torque of gravity. Were the curtain simply to fall vertically off the lip, with a 
straight rear free surface. and were the zone of flow relaxation short enough that 
gravitational acceleration were negligible, evaluating the terms in (3 1 )  would show that 
both the ~noment-of-inornentLiin flow and the absence of shear torque downstream 
would cause an unbalanced torque that tended to deflect the curtain in the direction 
observed, and that surface tension would oppose the deflection. 

Even though these insights are useful, i t  is impossible to predict the deflection 
accurately from a macroscopic balance alone. The results of the Galerkinlfinite- 
element analysis can, however. be used to compute the contributions to (3 1 )  in a post- 
processing step. and thereby further clarify the source of the hydrodynamic teapot 
effect. Figure 17(h),  in which the roman numerals refer to the terms in (31), shows how 
the various torques contributing to the macroscopic balance shift dramatically in their 
relative importance as the outflow plane of the control volume is moved in the vertical 
direction. Plainly, the hydrodynamic teapot effect results from a complicated interplay 
of the gravity torque V, the viscous traction torques I and 11, surface tension torque 
IV, normal traction torque VI at the wall, and moment-of-momentum inflow and 
outflow 111. The flow parameters Re and N, reflect the physics behind the 
hydrodynamic deflection : as they change so do the relative significance of gravity, 
inertial, viscous and surface tension effects which contend with one another in a two- 
dimensional flow ; and so also do  the development lengths of these effects upstream and 
downstream of the lip. 

6. Migrating contact line: wetting and hysteresis 
6.1. Inhibiting effect of u sharp corner on the sprcwding q f ' a  liquid curtain 

Wettability of the lip underside can greatly influence the conditions under which steady 
states with a pinned contact line are stable with respect to contact line displacement 
away from the sharp edge. Figure 18 illustrates this in the case of curtain-forming flow 
from a vertical plane. The angle y between the two solid surfaces that form the sharp 
edge, defined in figure 1 and referred to as cut-back angle, is 60" for this set of results. 
At a small contact angle U,, the liquid wets the lip underside. Close to the lip, the main 
liquid stream deflects substantially, but does not climb in the direction against gravity. 
Instead, it drives a slowly circulating eddy in the corner-like region between the solid 
wall and the free surface. As 0, is made larger, the contact line approaches the solid 
corner, the eddy shrinks, and the sheet trajectory resembles inore and more that of a 
hydrodynamically deflected sheet with pinned contact line. Comparing, in figure 18, 
the solution with pinned contact line with that at #,, = 60" shows that slight wetting of 
the lip underside can readily account for the discrepancies between the computed and 
the experimental top free-surface profiles in figure 11.  At a sufficiently high contact 
angle #c, the contact line reaches the sharp edge, as is plain in figure 19. 

Figure 19 summarizes how the distance .Y* from the sharp corner of the solid to the 
contact line varies with contact angle. The filled triangle denotes the solution with 
pinned contact line on a type A tessellation (cf. figure 5 ) ;  the open circles and squares 
distinguish two different finite-element tessellations, both of type B, with N ,  = 5 and 
N,, = 7 respectively, N,, being the number of elements across the sheet downstream of 
the lip. Evidently, the values of .Y* are insensitive to local refinement of the finite- 
element discretization. As s* becomes small (namely x* < 0.08), continuation in 
contact angle 0,. leads to a constricted domain of convergence of Newton's method, 
presumably because of the proximity of the singularities at the contact line and the 
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FIGURE 18. Effect of wettability on sheet-forming flow off the lip of a vertical plane 

(Re = 5 ,  N ,  = 1.15, ,8 = 90", y = 60"). 
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FIGURE 19. Inhibiting effect of sharp edge on wetting in sheet forming flow (Re = 5 ,  N,, = 1.15, 

p = 90", y = 60"; A, tessellation type A; 0, type B with N ,  = 5 ;  0, type B with N ,  = 7). 

sharp edge; ultimately iteration does not converge at all. Continuation in contact line 
position x*, however, avoids these convergence difficulties, and was used for X* -4 1. 

Figure 19 conveys an important result about the inhibiting effect of a sharp edge on 
spreading of liquid: if the static contact angle 8,. is larger than a critical angle 8irit ,  there 
is always a steady-state configuration in which the lip underside is not wet by liquid. 
Figure 19 demonstrates that, as x* is set closer and closer to zero, the predicted contact 
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angle 0,. approaches and eventually reaches 0:'" = 0, - (  l X O o - y ) ,  where 0 ,  is the 
separation angle that results when the contact line is taken to be pinned at  the sharp 
corner. This finding implies that the contact line does not advance over the sharp edge 
if the separation angle 0, satisfies the inequality condition 

0, < 0;' i t  = + ( 180" - y ) .  ( 3 2 )  
In the teapot flow analysed here, N ,  is a function of the flow parameters Rc and N ,  and 
of the inclination angle /I (cf. 5 5 ) .  whereas H:"" depends on the contact angle H,, which 
here must be a recently advanced angle as discussed further below. and on the cut-back 
angle 7 .  

Condition ( 3 2 )  is. of course. the familiar Gihhs iwytrrrlitj. contlirioii which Gibbs 
(1906) derived from a purely geometric extension of the familiar Young-Dupre 
equation. It has been confirmed experimentally for the equilibrium of a static drop 
bounded by the sharp edge of a solid disk (Oliver cf a/. 1977). The results in figures 18 
and I9 argue that the inequality ( 3 2 )  applies equally well to dynamic situations in 
which flowing liquid separates from a rigid wall at  a sharp edge. Apparently, the 
inhibiting effect of a sharp edge on liquid spreading arises merely from a geometrical 
constraint in flow situations as well. Further experimental confirmation of this finding 
is desirable, however. 

A real edge is not truly sharp, of course. Nonetheless, what appears to be an edge 
effect is normally observed at the macroscopic level. If an edge is modelled as a round 
surface without discontinuities, the contact line movement that is needed to maintain 
a constant contact angle becomes smaller as the radius R, of the edge decreases; as Re 
approaches zero, the apparent contact line seems pinned (cf. Oliver rt a/. 1977). 

6.2. Hjdrodjsnam ic hjsst  errsis 
The Gibbs inequality condition ( 3 2 )  is a necessary, but not a sufficient, condition for 
the contact line nor to take a position beyond the sharp edge. It admits combinations 
of H,, and 11 at which computed predictions with the contact line pinned at  the edge 
correspond to experimentally realizable flow states. However, at  a particular set of 
flow parameters at  which O,, < there might be other steady-state configurations in 
which the liquid wets the lip underside. 

An example of such multiple steady states is shown in figure 20. Even though the cut- 
back angle y = 60" is the same as in figure 18, the contact line position x.,+ depends on 
the contact angle 0, in a strikingly different way, primarily because the plane is inclined 
at 60" so that the lip underside becomes horizontal. When the liquid wets the solid 
sufficiently well (in this particular case for 0,. < 78" )  the only realizable position of the 
static separation line is one a few film thicknesses back from the lip. On the other hand, 
when the liquid wets the solid poorly (here for 0,. > 97") the only steady-state flow is 
that with a pinned separation line. For intermediate contact angles 78" < H ,  < 97", 
however, multiple steady states exist, and these give rise to hysteresis. The solution 
family in figure 20 forms an ordinary hysteresis loop with two turning points. These 
mark loss of existence of steady-state solutions and signal an abrupt change in the 
structure of the flow when a parameter, here the contact angle Or,  is altered by a small 
amount beyond its value at  the turning point. At the point where the family of 
solutions with a freely locatable separation line branches off the abscissa, which 
represents solutions with a pinned contact line, the Gibbs inequality condition ( 3 2 )  
applies as in figure 19. 

The computed hysteresis loops are quite insensitive to further refinement of the 
finite-element tessellation. Figure 20. for instance, indicates that even the location of 
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FIGURE 20. Hysteresis loop for contact line position .Y* a s  a function of contact angle Or ( R c  = 5 ,  
Nn  = 1. 4 = 60". 7 = 60"; 0, tessellation type C: 0, type B with N,, = 7 ;  0, typc B with iV,! = 5 ;  
A, type A). 

the lower turning point, where the solution family curves sharply, is virtually 
unaffected when N ,  in tessellation B is changed from 5 (circles) to 7 (squares). 

Stability of a particular flow state can be inferred from its location in the tree 
structure of families of steady states (e.g. Iooss & Joseph 1980). The sheet-forming 
flows analysed here must change stability at a turning point in either Oc, as in figure 20, 
or  any other parameter ni, as illustrated below. Stability deduced from the tree 
structure is, of course, only with respect to a restricted class of disturbances, namely 
two-dimensional non-oscillatory ones. In the light of other situations with similar 
hysteresis loops, it seems most likely that the upper and lower branches are stable, 
whereas the branch that connects the two turning points is unstable. Experiments 
reported below establish that the upper branch of the hysteresis loop and the branch 
on the abscissa indeed correspond to stable flow states, so that the branch between the 
turning points must be unstable. Incidentally, in the states on the branch, a sizeable 
eddy separates the main flow completely from the lip underside (this detail in the flow 
field is most easily seen in the solution at  Re = 7 in figure 22 below). 

The change in stability at the turning points can be confirmed in the computations 
by monitoring the determinant of the Jacobian matrix J of the Newton iteration for 
each converged solution, because det (J I is just the product of the eigenvalues of that 
matrix. Figure 21 confirms that at each turning point the sign of det IJI does indeed 
change, corresponding to an odd number of eigenvalues passing through zero (J is 
constructed here for the case of a prescribed contact angle H, and free contact line 
position x*). 

Compared to wettability of solid surfaces, flow rate is more readily varied in 
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FIGURE 21. Change in sign of determinant detlJI of Jacobian matrix of Newton's method in the 
vicinity of turning points for the solution family displayed in figure 20 (Re = 5 ,  N o  = 1, p = 60°, 
y = 60'; 0 ,  tessellation type C; ., type B with N ,  = 7; *, type B with N ,  = 5). 

experiments, and more relevant to practical curtain coating. Figure 22 reveals a 
hysteresis loop in contact line position x* as a function of Reynolds number Re at a 
fixed contact angle 8, = 67". This loop accords with that in figure 20, for the lip 
configuration is the same, and so figures 20 and 22 correspond to planes of constant 
8, and Re in the (x*, Re, 0,)-space, the curves being intersections of those planes with 
a surface, or manifold, of states at fixed values of N,, p and y .  

At low Reynolds numbers, the only steady states in figure 22 are those in which the 
underside of the lip is wet and the curtain falls almost vertically. When the sheet- 
forming flow is started up at a low flow rate, this configuration ought to be established. 
As the rate is increased, the contact line advances, the deflection of the curtain 
intensifies, and the liquid stream detaching from the solid beneath the sharp edge drives 
a recirculating eddy of increasing size. At Re,, the eddy has grown so big that the main 
flow does not reattach at all to the lip underside, and the upper turning point is 
reached. At Reynolds numbers beyond Re,, the Navier-Stokes system has no steady 
two-dimensional solutions with a free contact line. Thus a slight increase of flow rate 
beyond the critical value q(; = Re, p / p  causes a sudden flow transition: the separation 
line recedes spontaneously to the sharp edge, as indicated by the broken arrow in 
figure 22. As flow rate is increased further, the curtain-forming flow behaves as described 
in $ 5 .  

When, on the other hand, the flow is started up at a high enough rate that Re > Re,, 
the contact line remains pinned, or moves imperceptibly, as flow rate is decreased until 
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FIGURE 22. Hydrodynamic hysteresis for contact line position Y *  as a function of Reynolds number, 
or flow rate ( N m  = 1, Oc = 67". = 60". 7 = 60"; 0, tessellation type C ;  0, type B;  A, type A). 

the Reynolds number reaches a critical value Re,, at  which the separation angle U,? no 
longer satisfies the Gibbs inequality condition (32) .  Decreasing Re further makes the 
contact line detach from the sharp edge. The line remains, however, close to the edge 
down to a flow rate that corresponds to a critical value Re, at the lower turning point. 
A further decrease in flow rate triggers another sudden transition that re-establishes the 
flow configuration on the upper branch with a substantial portion of the lip underside 
being wet, and a large recirculating eddy. 

The multiple steady-state solutions in figure 22 give rise to a hysteresis effect that 
originates solely in the competition of hydrodynamic forces which interact in a 
nonlinear manner. The difference between co-existing flow configurations can be quite 
dramatic, with obvious practical implications for start-up of coating operations. 

The theoretically predicted hydrodynamic hysteresis has been verified in the 
laboratory. Figure 23 summarizes three sets of measurements of wetting line position 
by the laser-sheet refraction technique explained at  figure 8 (6). The photographs 
complementing the data were taken with the laser-sheet sectioning technique described 
at  figure 8 ( a ) .  The ordinate in figure 23 is the flow-rate independent dimensionless 
position x* Re: = X, ~ z g s i n P / ( 3 p 2 ) ] ~ ,  where X ,  is dimensional. Each data point is the 
average of seven separate runs. The time interval between incrementally increasing or 
decreasing flow rate was at least 5 minutes. This was found to be long enough for the 
new flow state to become established. The vertical bars represent the standard 
deviation in the experimental data. 

In data set 1 (closed squares) the flow was started up at  a low pumping rate and 
raised in increments. The curtain shapes in the photographs and the curve of measured 
contact line positions closely resemble the theoretical predictions in figure 22.  In the 
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F I w R b ,  23. Experimental evidence of hydrodynamic hysteresis and contact-angle hysteresis 
(Arm = 0.8, /I = 60". y = 60"; the symbols are explained in the text). 

experiment, too, there was an abrupt flow transition: at an upper critical Reynolds 
number indicated by an asterisk, a minute rise in flow rate triggered retraction of the 
contact line to the sharp edge. Retraction commenced near the two edge guides and 
propagated toward the centre of the curtain at  a speed of a few millimetres per second. 
Eventually, the curtain separated from the lip at the sharp edge over its entire width, 
even though patches of liquid were occasionally left behind on the lip underside. As 
pumping rate was increased further, the flow behaved as described in $ 5 .  

In data set 2 (solid circles) the flow was started up at Re > Re,-, i.e. above the upper 
turning point of figure 22. The contact line assumed a pinned position at  the lip, and 
remained pinned as flow rate was lowered in increments down to values at which there 
was substantial wetting in the previous case. Thus, the experiments confirm that there 
can be remarkably different flow configurations at the same flow rate (e.g. Re = 5) .  The 
slight wetting of the lip underside which the theory predicts a t  Re, < Re < Re, was 
difficult to confirm in the experiment. At a lower critical value of flow rate, indicated 
by two asterisks in figure 23,  the contact line was observed to jump back spontaneously, 
starting in the middle of the curtain and spreading toward the edge guides at a speed 
of a few millimetres per second. Eventually the contact line assumed a shape like that 
depicted schematically in figure 8 (h) ,  where the contact line is straight over most of the 
die width, with edge effects being confined to the vicinity of the edge guides. As the flow 
rate was lowered further, the contact line remained stationary over an appreciable 
range, but at lower rates took up a progression of positions closer and closer to the 
sharp edge of the lip. 

In data set 3 (solid diamonds) in figure 23,  the flow rate was reversed just above the 
minimum needed to maintain a stable curtain ( -  3 x lo-:' m" s-l). Upon raising the 
rate in increments, the contact line at first remained stationary; then took up 
successively advanced positions along a curve close to that of set 1 ;  remained 
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stationary ovcr ii small range of flow rates close to Re,,; advanced along a curve 
virtually identical to that of set I ; and finally retracted to the sharp corner of the lip 
at an upper transition point. indicated by three asterisks. in similar ftishion to set 1 .  

6.3. Con t r i c  t -c ingl~~ h!,.c tcrrsis 
Together. the data sets 2 and 3 in figure 23 form another hysteresis loop, which is quite 
distinct from that of the hydrodynamic hysteresis in  figure 22. but which strongly 
resembles that of the contact-angle hysteresis, well known from many slowly 
equilibrating systems (cf. Teletzke et id. 1987, 1988): the contact line advances from 
position to position as flow rate is incrementally raised, in order to maintain an 
apparent contact angle characteristic of the solid-liquid-gas combination when the 
liquid displaces gas; and the contact line retracts reluctantly, as flow rate is 
incrementally lowered, in order to maintain an apparent contact angle that is lower and 
characteristic of situations where liquid has recently been withdrawn from a solid 
surface. This kind of hysteresis has been predicted, for instance, for a drop resting on 
a surface whose roughness consists of concentric grooves (Huh & Mason 1977) and 
i t  has been measured on similar surfaces (Oliver et a/ .  1980). Force-versus-depth curves 
for plates being immersed and withdrawn from liquid exhibit analogous hysteresis 
loops (Johnson & Dettre 1969). 

Theoretical predictions of contact line position confirm that the hysteresis loop 
drawn in figure 23 can indeed be attributed to the differences between a recently 
advanced apparent contact angle 0; and a recently receded one O:,  the timescale since 
the last change being that mentioned above, i.e. about five minutes. In figure 24, 
theoretical curves of x, Re; cs. Re are superimposed on the experimental data of 
figure 23. The contact angles in the computations are chosen so that the theoretical 
value of.y, Reiagreeswith themeasured oneatoneparticular Reynoldsnumber: choosing 
Re = 4.5 leads in this way to the recently advanced angle 19; = 75"; choosing 
Re = 3.5 leads to the recently receded one H i  = 36". These values are in the range 
observed. 

Contact-angle hysteresis is commonly attributed to both roughness and com- 
positional heterogeneities of the solid surface (Johnson & Dettre 1969), which can 
certainly exacerbate the underlying dynamics. In the present situation, both are 
present: the stainless steel surface shows grit marks that are visible to the naked eye; 
and the cleaning procedure described in 54.3, although performed carefully, falls far 
short of the standards of surface chemistry. On the other hand, the surface is 
representative of real coating dies. Variations in contact angle may arise also when 
certain portions of the solid surface have been in contact with the liquid for longer 
times than others. This phenomenon, referred to as a 'kinetic effect' by Johnson & 
Dettre (1969), most likely accounts for the difference in 6'; between data sets 1 and 3 
in figure 23. To what extent the dynamic effects, i.e. slow relaxation of the contact line 
to its equilibrium position (see Teletzke et al. 1987), affect the experimental data is not 
clear. Waiting 20 instead of 5 minutes made differences that were smaller than the 
sensitivity of the measurements ( -  0.1 mm). 

The theoretical predictions and the measurements of contact line position in fig- 
ure 24 agree well over a wide range of Reynolds number, even though contact angles 
are fitted at just one value of Re. In particular, the theoretical values of Re,, and Re,. at 
the turning points correspond quite closely to the flow rates at which the spontaneous 
flow transitions were observed in the experiment. Fluctuations in pumping rate and 
imperfect flow distributions across the width of the curtain probably account for some 
of what disagreement there is. A small discrepancy is that close to the upper turning 
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FIGURE 24. Hydrodynamic hysteresis and contact-angle hysteresis : finite-element predictions (open 
symbols) and experimental data of figure 23 (closed symbols) for N ,  = 0.8, p = 60", y = 60". 

point the predicted values of x,Rei pass through a maximum, whereas in the 
experiment, as a consequence of contact-angle hysteresis, the contact line does not 
recede before it jumps. 

The excellent match of experiment and theory in figure 24 argues for the validity of 
an important concept, namely that of a quasi-static apparent contact angle. Evidently, 
at a static contact line where a viscous free-surface flow separates from a solid surface 
and where the shape of the nearby meniscus, though controlled primarily by 
capillarity, can be influenced by viscous stress and inertial effects, the apparent contact 
angle is unaffected by major changes in the adjacent flow field. Similarly, the contact- 
angle hysteresis at static contact lines with steady flow nearby appears to be, at least 
qualitatively, the same as in the absence of flow. In contrast, the 'dynamic' contact 
angle at a wetting 'line' where liquid continually encounters a moving surface is well- 
known to be much affected by the adjacent flow field (e.g. Gutoff & Kendrick 1982). 

6.4. Eflects of wettability and lip design on hydrodynamic hysteresis 
A non-wetting surface on the lip underside should avert hydrodynamic hysteresis 
altogether. Common experience teaches that it is advantageous to coat the underside 
of a teapot spout with butter. In the experiments reported here, applying an adhesive 
Teflon tape to the lip underside did indeed almost completely prevent the contact line 
from advancing away from the edge. 

Figure 25 shows how the hysteresis loop of contact line position versus Reynolds 
number contracts as the quasi-static contact angle 8, is made larger. The range of Re 
in which wetting phenomena do intrude diminishes as the lip underside is made less 
wetting. Furthermore, the maximum distance x* between the sharp edge and the 
contact line decreases. As 8, comes near 98", the two points approach one another and 
coalesce. At contact angles greater than 98", the sharp edge inhibits spreading over the 
entire range of Reynolds numbers. This angle pertains, of course, only to the particular 
lip geometry (/3 = 60°, y = 60") and liquid properties (N,, = 1) chosen. Moreover, in 
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X* 
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0 
2 4 6 8 10 

Re 

FIGURE 25.  Family of hydrodynamic hysteresis loops with isolated solution branch ( N ,  = 1, /3 = 60°, 
y = 60"; 0, tessellation type C; 0, type B with N ,  = 7 ;  0, type B with N ,  = 5; A, type A). 

most real flow situations, a contact-angle hysteresis of the sort unveiled in figure 23 
would be superimposed on the hydrodynamic hysteresis elucidated in figure 25. 

The critical angle Oy = 98" can be deduced from the Gibbs inequality condition 
(32) directly without computing complete hysteresis loops of the sort shown in fig- 
ure 25. OFt = 98" is the angle that satisfies (32) when the critical separation angle OFt 
is taken to be that at the maximum of a curve of separation angle versus Reynolds 
number for the given lip configuration (cf. figure 15). Thus the role of the Gibbs 
inequality condition is twofold : it governs the conditions under which particular steady 
states with pinned contact line are realizable; and it constrains contact angles and lip 
configurations for which hydrodynamic hysteresis can be avoided altogether. 

The hysteresis loop in figure 25 does not simply shrink and collapse into the abscissa 
as Oc is increased. Analysis of the nonlinear equations and boundary conditions 
governing the film-forming flow reveals the existence of unexpected isolated solution 
branches. Such so-called isolas are common in many types of nonlinear systems (see 
Iooss & Joseph 1980). Here, at a contact angle close to 94", a closed loop of isolated 
steady states separates from the main hysteresis loop. Two turning points separate 
stable flow states on the upper half from unstable ones on the lower half. Stability is 
conjectured here from the way the solution family evolves. Experimentally, flow states 
on the isola cannot be reached by scanning flow rate, starting from either high or low 
rate, because the isola is disconnected from the main branch of states. They might be 
realized, however, if during operation in the range of Reynolds numbers covered by the 
isola, a large disturbance displaced the contact line sufficiently far away from the sharp 
edge. Special start-up procedures could guarantee this. 

Contact line position is extremely sensitive to the inclination of the lip underside. 
Figure 26 reveals that tilting the lip underside downward from horizontal by only a few 
degrees makes the contact line advance a distance of a few film thicknesses. At 
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FIGURE 26. Hysteresis loop for contact line position .Y* as a function of cut-back angle y ( R c  = 6. 
N,,  = I .  Or = 67", = 60"; 0, tessellation type C;  0, type B ;  A, type A). 
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x * 

2 

0 
10 

FIGURF 27. Disappearance of hydrodynamic hysteresis loop with decreasing cut-back angle y 
(N, ,  = 1. OC = 67", /! = 60"; 0, tessellation type C; 0, type B with N,, = 7; 0, type B with N,,  = 5 ;  
A, type A). 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

94
00

40
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112094004027


200 

160 

120 

100 
0 15 30 45 60 75 

6 (deg.) 
FIGURE 28. Finite-element predictions of sheet-forming flows with improved lip design 

(Re  = 5. Nn = 1.15, j l  = 60°, y = 60"). 

sufficiently large y, of course, the liquid film attaches completely to the solid instead of 
falling off as an unsupported curtain. On the other hand, tilting the lip underside 
upward from horizontal, by only 10" at the particular set of flow parameters considered 
here, ensures that the contact line remains pinned at the sharp corner. The curve of s* 
cs. y at constant Re forms another hysteresis loop, as might be expected, for it is just 
another section through a surface of states in the (.Y*, Re, y)-space at fixed N ,  and O r .  

The results in figure 26 imply that the hydrodynamic hysteresis is largely due to the 
relative ease with which the contact line can migrate in a direction almost normal to 
gravity when the lip underside is close to being horizontal. When y is much larger than 
60" (at /I = 60"), the hysteresis loop of .Y* L ~ S .  Re expands beyond all bounds. At all but 
extremely high Reynolds numbers, the only stable states are those in which the liquid 
dribbles along the lip underside. When, on the other hand, the lip is made sharper, the 
loop shrinks rapidly as shown in figure 27. At the particular set of parameters 
considered, a cut-back angle smaller than 27" ensures that the contact line remains 
pinned over the entire range of Reynolds numbers. 

These results rationalize another strategy for making sure that wetting phenomena 
and associated hysteresis effects do not intrude. The cut-back angle y between the two 
solid surfaces ought to be made as acute as other design criteria permit. Moreover, a 
horizontal lip underside is to be avoided. Indeed, choosing p- y as large as possible 
appears best. This criterion is put to work in the improved lip design shown in 
figure 28 (Dittman e f  a/. 1976 disclosed similar lip configurations): the lowest portion 
of the lip is cut back at an angle 8, but the angle y at the corner where the free 
surface separates from the solid is held fixed at 60". The distance I ,  between the two 
corners of the solid is an additional design parameter: I ,  = 3 is taken in the present case 
study. 

Cutting back the lip yields two benefits. First, the hydrodynamic deflection almost 
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i l  

FIGURE 29. Detergent flowing from the spout of a commercial dispensing bottle (flow rate 
decreases from top left to bottom right). 

disappears as the angle S is made larger. Second, the separation angle 
0, 5 (180" - y )  + (180" - 8,) on the gas side increases and eventually exceeds 180". The 
Gibbs inequality condition (32) implies that when 0, > 180" the contact line does not 
advance whatever the contact angle appears to be. At very small contact angles, 
however, the contact line might recede to another position between the two corners of 
the solid. Furthermore, the design study in figure 28 pertains to just one particular set 
of flow parameters. Thus a single lip design is unlikely to be optimal over wide ranges 
of flow parameters and contact angles. 

The spout design of certain commercial detergent bottles, such as the one shown in 
figure 29, mimics closely the modified lip design suggested in figure 28, even though the 
original purpose of that spout design might have been quite different. Observation 
reveals that, indeed, the detergent rarely wets the underside of the spout. And in 
everyday life one finds a great variety of old and new teapot designs, some of which 
perform well and others not - for reasons elucidated in this paper. 

7. Concluding remarks 
This study establishes a comprehensive theory for sheet-forming flow off the lip of 

an inclined plane, a flow that had been locked away from analysis. The theory rests on 
combining Galerkin's weighted residual technique with convenient finite-element basis 
functions, spine parametrization, and isoparametric mapping to solve efficaciously the 
equations of steady two-dimensional viscous free-surface flow. Computational 
methods for viscous free-surface flow analysis are still evolving, but the developments 
put forward by Kistler & Scriven (1983, 1984) have proven particularly advantageous 
for the analysis reported in this paper. Not only has the computer-aided analysis 
produced complete descriptions of the flow fields and free-surface shapes of interest; 
it has also led, in combination with corroborating experiments, to a thorough 
understanding of the basic mechanisms that cause the teapot effect. Nonetheless, the 
intricate structure of the solution space uncovered points toward the value of 
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incorporating. in finite-element algorithms of the sort summarized in $2, more efficient 
schemes for tracking the evolution. multiplicity, and stability of viscous free-surface 
flows. Such schemes might include arclength continuation with adaptive. automatic 
parameter step control (cf. Kheshgi cf d. 1983), as well as a strategy to automatically 
trace loci of turning points in solution space (cf. Christodoulou & Scriven 1994). 

The mechanisms behind the teapot effect can be summarized as follows. The 
deflection of the liquid results from the interplay of purely hydrodynamic forces, in 
particular the lack of shear in the sheet as it falls away from the edge of the lip (Rubin 
& Wharshavsky 1970 report an experimental observation that the ‘antiballistic’ 
deflection is influenced by polymeric additives, an effect to be investigated further). 
The Gibbs inequality condition rules under what conditions the contact line actually 
remains pinned at the sharp edge. When it does not, with the result that wetting 
and spreading phenomena intrude, the flow field, free surfaces, and contact line 
depend in quite complex and unexpected ways on flow parameters, lip shape, and 
wettability. Hysteresis arises both because of purely hydrodynamic effects, i.e. multiple 
steady-state configurations at identical flow parameters and apparent contact angle, 
and because of surface effects, i.e. contact-angle hysteresis, particularly that associated 
with surface roughness and heterogeneity. Steady flow states on isolas further 
complicate the structure of the space of solutions of the system of governing equations. 
Thus the teapot effect is more than merely an issue of wetting as one might be led to 
believe by its annoying everyday occurrence. 

Beyond explaining the teapot effect, the results of this study point to conclusions of 
some generality. One is that in macroscopic analysis of viscous free-surface flows, the 
sub-microscopic details of the physics at a static contact line can be ignored. The 
concept of a quasi-static apparent contact angle 0,. is entirely adequate, provided the 
underlying dynamics of equilibration are either very rapid or very slow compared to 
the time interval in which the flow is operated. That angle shows in essence the same 
behaviour as the observed contact angle at a contact line where a meniscus that bounds 
the same liquid at  rest appears to intersect the same solid surface: 0, is not affected by 
appreciable flow nearby, nor by substantial changes in the adjacent flow field; 0, 
exhibits contact-angle hysteresis between recently advanced and recently receded 
configurations; and 8, enters the Gibbs inequality condition that quantifies the 
inhibiting effect of a sharp edge on spreading of liquid, whether or not there is flow 
nearby. Of course, if the apparent contact angle is to be inferred from first principles, 
the physics of wetting at  submicroscopic scales has to be resolved (see Benner, Scriven 
& Davis 1983; Teletzke et nl. 1987, 1988). 

Perhaps the most striking result of this study is that viscous free-surface flows can 
exhibit multiple steady states that are associated with a static separation line yet are 
completely independent of the contact-angle hysteresis. Similar hysteresis effects ought 
to affect contact line position in many other coating and polymer processing flows 
where a free surface separates froin a solid near a sharp edge. Understanding this 
hysteresis is important, for it demonstrates that the observed flow, and therewith 
possibly product quality, depend not only on flow parameters, wettability, and die 
configurations, but sometimes also on the way the flow is started up. For the case of 
falling liquid curtains, that understanding has led to identification and evaluation of 
different ways of avoiding the deleterious consequences of the teapot effect. 

C. A. Dowd contributed significantly to the experimental part of this work. The 3M 
Company made available key components of the experimental set-up, for which we are 
grateful. Financial support was provided early by the Fluid Mechanics Program of the 
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National Science Foundation, and later by grants-in aid from 3M Company, Xerox 
Corporation, Eastman Kodak Company, Fuji Photo Film Co. Ltd., and Polaroid 
Foundation, by the University of Minnesota Computer Center, and by a University of 
Minnesota Graduate School Fellowship. For valuable discussions we are indebted 
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