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Uniform Convexity and the
Bishop–Phelps–Bollobás Property

Sun Kwang Kim and Han Ju Lee

Abstract. A new characterization of the uniform convexity of Banach space is obtained in the sense
of the Bishop–Phelps–Bollobás theorem. It is also proved that the couple of Banach spaces (X,Y )
has the Bishop–Phelps–Bollobás property for every Banach space Y when X is uniformly convex. As
a corollary, we show that the Bishop–Phelps–Bollobás theorem holds for bilinear forms on `p × `q

(1 < p, q <∞).

1 Introduction

Throughout this paper, X is a Banach space over a real or complex field K and BX

(resp. SX ) is the closed unit ball (resp. unit sphere) of X. The closed ball with center
x ∈ X and radius ε > 0 is denoted by B(x, ε). For Banach spaces X, Y over the same
scalar field K, L(X,Y ) is the Banach space of all bounded linear operators from X
into Y and X∗ = L(X,K) stands for the dual space of X. We say that an operator
T ∈ L(X,Y ) attains its norm if there exists a point x0 ∈ SX such that ‖T(x0)‖ =
‖T‖ = sup{‖T(x)‖ : x ∈ BX}.

In 1961, Bishop and Phelps showed that the set of norm-attaining functionals
on a Banach space X is dense in its dual space X∗ (the Bishop-Phelps Theorem [6]).
There has been a great effort to extend this theorem to bounded linear operators
between Banach spaces. In general, the set of norm-attaining operators is not dense
in L(X,Y ), but there are many positive answers on classical Banach spaces [18,24,25,
27]. Moreover, for a reflexive Banach space X, it is true for every Banach space Y [23],
and this result is generalized to a Banach space X with the Radon–Nikodým property
[8]. Very recently, this study has also been extended to non-linear mappings, such as
multi-linear mappings, polynomials and holomorphic mappings [1, 5, 11, 14, 15, 20,
21].

Meanwhile, Bollobás sharpened the Bishop–Phelps Theorem by simultaneously
approximating both functional and point. He approximates the norm of the func-
tional with norm-attaining functionals and corresponding points at which they attain
their norms.
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Theorem 1.1 ([7]) For an arbitrary ε > 0, if x∗ ∈ SX∗ satisfies |1 − x∗(x)| < ε2

4 for
x ∈ BX , then there are both y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1, ‖y − x‖ < ε
and ‖y∗ − x∗‖ < ε.

Very recently, Acosta et al. [2] began extending this theorem to bounded linear
operators between Banach spaces and introduced the Bishop–Phelps–Bollobás prop-
erty.

Definition 1.2 ([2, Definition 1.1]) Let X and Y be Banach spaces over K. We say
that the pair (X,Y ) has the Bishop–Phelps–Bollobás property for operators (BPBP)
if, given ε > 0 there exist β(ε) > 0 and η(ε) > 0 with limε→0+ β(ε) = 0 such that
if there exist both T ∈ SL(X,Y ) and x0 ∈ SX satisfying ‖Tx0‖ > 1 − η(ε), then there
exist an operator S ∈ SL(X,Y ) and u0 ∈ SX such that

‖Su0‖ = 1, ‖x0 − u0‖ < β(ε) and ‖T − S‖ < ε.

In the same paper it is shown that the pair (X,Y ) has the BPBP for finite dimen-
sional Banach spaces X and Y , and that the pair (`n

∞,Y ) has the BPBP for every n,
whenever Y is a uniformly convex space. They also gave a geometric characteriza-
tion of a Banach space Y , which is called AHSP such that (`1,Y ) has the BPBP, and
we know that uniformly convex spaces and lush spaces have this property [13]. It is
worth mentioning that some results on L1(µ) were obtained in [4, 12].

On the other hand, Aron et al. [3] studied this property for the case Y = C0(L),
where L is a locally compact Hausdorff space, and showed that the pair (X,C0(L))
has the BPBP if X is Asplund. It follows from this result that the pair (X,C0(L)) has
the BPBP for every uniformly convex Banach space X.

In this paper, we study the relation between the uniform convexity and BPBP.
In Section 2, we characterize a uniformly convex Banach space from the view point

of the Bishop–Phelps–Bollobás Theorem. Notice that the James theorem [19] says
that a Banach space is reflexive if and only if every continuous linear functional is
norm-attaining. In the sense of Bishop–Phelps–Bollobás theorem, we consider the
following property for a Banach space X:

For all ε > 0, there is some η(ε) > 0 such that for all f ∈ SX∗ and x ∈ BX

satisfying | f (x)| > 1 − η(ε), there exists x0 ∈ SX such that | f (x0)| = 1 and
‖x − x0‖ < ε.

We show that the above property is equivalent to uniform convexity. As a corol-
lary, if a Banach space X has a uniformly strongly exposed family {xα}α ⊂ SX with
respect to { fα}α ⊂ SX∗ and the convex hull of { fα}α is weak-*-dense in BX∗ , then X
is uniformly convex.

In Section 3, we show that (X,Y ) has the BPBP for every Banach space Y if X
is uniformly convex. As a corollary, the Bishop–Phelps–Bollobás theorem holds for
bilinear forms on `p × `q ( 1 < p, q < ∞). This is an affirmative answer to one of
the questions in a forthcoming paper by Cheng and Dai [9]. We also consider the
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following property for a Banach space X:

Given ε > 0, there exist positive real valued functions η(ε) and β(ε) (satisfying
limε→0 β(ε) = 0) such that for every Banach space Y , if there are both T ∈
SL(X,Y ) and x ∈ SX satisfying ‖Tx‖ > 1−η(ε), then there exist both S ∈ SL(X,Y )

and u ∈ SX such that

‖Su‖ = 1, ‖x − u‖ < β(ε) and ‖T − S‖ < ε.

If a Banach space X has the above property, then the following hold:

(a) any face of SX does not contain a relatively open subset of SX ;
(b) if X is isomorphic to a strictly convex Banach space, then the set of all extreme

points of BX is dense in SX ;
(c) if X is isomorphic to a uniformly convex Banach space, then the set of all strongly

exposed points of BX is dense in SX .

From this result, we see that a 2-dimensional real Banach space with the aforemen-
tioned property must be uniformly convex.

2 Uniform Convexity and the Bishop–Phelps–Bollobás Theorem

The norm-attaining operators have played key roles to characterize some properties
of a Banach space. James showed that a Banach space is reflexive if and only if every
bounded linear functional attains its norm. As an another example, a Banach space
X has the Radon–Nikodým property if and only if X has the Bishop–Phelps property
[8], that is, for every nonempty closed bounded convex subset C of X and for every
Banach space Y , the set of all bounded linear operators T such that ‖T( · )‖ attains its
maximum on C is dense in L(X,Y ).

In this section, we provide new criteria for characterizations of the uniform con-
vexity and the uniform smoothness of Banach spaces in the sense of the Bishop–
Phelps–Bollobás Theorem.

For ε ∈ (0, 2], the modulus of convexity of a Banach space (X, ‖ · ‖) is defined by

δ(ε) = inf
{

1−
∥∥∥ x + y

2

∥∥∥ : x, y ∈ BX, ‖x − y‖ ≥ ε
}
,

and for τ > 0, the modulus of smoothness of (X, ‖ · ‖) is defined by

ρ(τ ) = sup
{ ‖x + τh‖ + ‖x − τh‖ − 2

2
: ‖x‖ = ‖h‖ = 1

}
.

A Banach space (X, ‖ · ‖) is said to be uniformly convex if δ(ε) > 0 for all ε ∈
(0, 2], and uniformly smooth if limτ→0+

ρ(τ )
τ = 0. For the geometric meaning and

basic properties of these moduli, see [17].
It is convenient to use the sequential characterization of uniform convexity.

A Banach space X is uniformly convex if and only if, whenever xn, yn ∈ X
(n ∈ N), limn→∞(2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2) = 0, and {xn} is bounded,
limn→∞ ‖xn − yn‖ = 0.
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In the proof of the theorem, we will use a well-known property of Banach spaces
having the Radon–Nikodým property. A functional f ∈ X∗ is said to strongly expose
BX at x if f attains its norm at x and whenever there is a sequence {xn} in BX such that
limn→∞ Re f (xn) = ‖ f ‖, {xn} converges to x in norm. It is well known [8, 26] that
if X has the Radon-Nikodým property, then the set of all functionals that strongly
expose BX is dense in X∗.

Theorem 2.1 A Banach space X is uniformly convex if and only if for every ε > 0 there
is 0 < η(ε) < 1 such that for all f ∈ SX∗ and all x ∈ BX satisfying | f (x)| > 1− η(ε),
there exists x0 ∈ SX satisfying | f (x0)| = 1 and ‖x − x0‖ < ε.

Proof First, assume that X is a uniformly convex Banach space. Let δ(ε) be the
modulus of uniform convexity and put η(ε) = min(δ( ε2 ), ε2 ). If there exist both
x∗ ∈ SX∗ and x ∈ BX satisfying |x∗(x)| > 1 − η(ε), then ‖x − x

‖x‖‖ <
ε
2 . Because

X is reflexive, there is a x0 ∈ SX satisfying x∗(x0) = 1. Choosing c ∈ SK with
x∗(c x

‖x‖ ) > 1− η(ε), then

δ
( ε

2

)
> 1− x∗

( x0 + c x
‖x‖

2

)
≥ 1−

∥∥∥ x0 + c x
‖x‖

2

∥∥∥ .
Hence, ‖x0 − c x

‖x‖‖ <
ε
2 and we get ‖cx0 − x‖ < ε.

To prove the converse, let 0 < ε < 1 and suppose x, y ∈ SX satisfy ‖x − y‖ ≥ ε.
Let Γ be the set of all bounded linear functionals in SX∗ that strongly expose BX .

We claim that each x∗ ∈ Γ satisfies either

Re x∗(x) ≤ 1−min
{
η
( ε2

64

)
,
ε2

64

}
or

Re x∗(y) ≤ 1−min
{
η
( ε2

64

)
,
ε2

64

}
.

Otherwise, there is z∗ ∈ SX∗ that strongly exposes BX at z, and satisfies both

Re z∗(x) > 1−min
{
η
( ε2

64

)
,
ε2

64

}
and

Re z∗(y) > 1−min
{
η
( ε2

64

)
,
ε2

64

}
.

By assumption, we have that for some α1 and α2 in SC,

‖x − α1z‖ < ε2

64
and ‖y − α2z‖ < ε2

64
.

Hence, we get |z∗(x)− α1| < ε2

64 and |z∗(y)− α2| < ε2

64 . This implies that

Reα1 > Re z∗(x)− ε2

64
> 1− ε2

32
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and

Reα2 > Re z∗(y)− ε2

64
> 1− ε2

32
.

Finally, we have

|α1 − α2| ≤
√

(Reα1 − Reα2)2 + (Imα1 − Imα2)2

<
√

(ε2/32)2 + 4(1− (1− ε2/32)2) <
ε

2
,

and

‖x − y‖ ≤ ‖x − α1z‖ + ‖α1z − α2z‖ + ‖α2z − y‖

<
ε2

64
+
ε

2
+
ε2

64
< ε,

which is a contradiction.
It follows from the hypothesis and James theorem that X is reflexive, hence Γ is

dense in SX∗ ([26]). Therefore, by the above claim, we get∥∥∥ x + y

2

∥∥∥ = sup
{

Re
x∗(x) + x∗(y)

2
: x∗ ∈ Γ

}
≤

2−min
{
η( ε

2

64 ), ε
2

64

}
2

= 1−min
{ 1

2
η
( ε2

64

)
,
ε2

128

}
,

which completes the proof.

By Theorem 2.1 and Smulian’s theorem, that is, the dual space of a uniformly
convex Banach space is uniformly smooth, we can get the following characterization
of a uniformly smooth Banach space.

Corollary 2.2 A reflexive Banach space X is uniformly smooth if and only if for every
ε > 0 there is 0 < η(ε) < 1 such that, for all f ∈ BX∗ and all x ∈ SX satisfying
| f (x)| > 1− η(ε), there exists f0 ∈ SX∗ satisfying | f0(x)| = 1 and ‖ f − f0‖ < ε.

In the next corollary, if the set of strongly exposing functionals is weak-*-dense in
SX∗ , then we can get the same result without any difficulty. We omit the details of the
proof.

Corollary 2.3 Suppose that the set Γ of every elements x∗ ∈ SX∗ that strongly expose
BX is weak-*-dense in SX∗ and that for each ε > 0, there is η(ε) > 0 such that if
there exist both x ∈ SX and x∗ ∈ SX∗ such that x∗ strongly exposes BX at x0 and
|x∗(x)| > 1− η(ε), then ‖x − αx0‖ < ε holds for some α ∈ SC. Then X is a uniformly
convex Banach space with modulus of convexity

δ(ε) ≥ min
{ 1

2
η
( ε2

64

)
,
ε2

128

}
.
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Lindenstrauss [23] introduced the notion of a uniformly strongly exposed family
to study the denseness of norm-attaining operators. We say that a family {xα}α ⊂ SX

is uniformly strongly exposed with respect to { fα}α ⊂ SX∗ if for every ε > 0 there
is a function δ(ε) > 0 such that for every α, fα(xα) = 1, and for any x ∈ BX ,
fα(x) ≥ 1 − δ(ε) implies ‖x − xα‖ ≤ ε. A slight modification of the proof of
Theorem 2.1 shows the following corollary.

Corollary 2.4 Let X be a Banach space with a uniformly strongly exposed family
{xα}α ⊂ SX with respect to { fα}α ⊂ SX∗ . The convex hull of { fα}α is weak-*-dense in
BX∗ if and only if X is uniformly convex.

We note that Theorem 2.1 cannot be extended to vector-valued mappings. Indeed,
let R2 be the 2-dimensional Euclidean space. For every k ∈ N define Tk : R2 → R2 by

Tk(x, y) =
(

x,
(

1− 1

k

) 1/2
y
)
.

It is easily computed that

‖Tk‖ = sup
{
α2 + (1− α2)

(
1− 1

k

)
: 0 ≤ α ≤ 1

}
,

which implies that ‖Tk‖ = 1 and only α with α2 = 1 gives the norm of Tk. Hence
each Tk attains its norm only at (±1, 0). However ‖Tk(0, 1)‖ > (1 − 1

k )1/2 for every

k ∈ N and ‖(±1, 0)− (0, 1)‖ =
√

2.

3 The Bishop–Phelps–Bollobás Property for a Uniformly Convex
Space

Even though the Radon-Nikodým property is equivalent to the Bishop–Phelps prop-
erty [8], there exists a Banach space Y such that (`1,Y ) fails to have the BPBP [2].
On the other hand, the uniform convexity of X implies the BPBP of (X,Y ) for every
Banach space Y .

Theorem 3.1 Let 0 < ε < 1 and δ(ε) > 0 be the modulus of convexity of a uniformly
convex Banach space X. Then (X,Y ) has the BPBP for every Banach space Y . More
precisely, if T ∈ SL(X,Y ) and x ∈ SX satisfy

‖Tx‖ > 1− ε

25
δ
( ε

2

)
,

then there exist S ∈ SL(X,Y ) and x0 ∈ SX such that ‖Sx0‖ = 1, ‖S − T‖ < ε and
‖x − x0‖ < ε.

Proof Suppose that T ∈ SL(X,Y ) and x ∈ SX satisfy

‖Tx‖ > 1− ε

25
δ
( ε

2

)
.
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Choose f ∈ SY∗ satisfying

Re f (Tx) > 1− ε

25
δ
( ε

2

)
.

Define a sequence (xi , fi ,Ti)∞i=1 ⊂ SX × SY∗ × SL(X,Y ) inductively.
First, set (x1, f1,T1) = (x, f ,T). When the k-th sequence is constructed, set

T̃k+1x = Tkx +
ε

2k+2
fk(Tkx)Tkxk Tk+1 =

T̃k+1

‖T̃k+1‖

and choose xk+1 ∈ SX and fk+1 ∈ SY∗ satisfying

Re fk+1(T̃k+1xk+1) > ‖T̃k+1‖ −
ε

2k+5
δ
( ε

2k+1

)
,

Re fk(T̃kxk+1) =
∣∣ fk(T̃kxk+1)

∣∣ .
It follows that

Re fk+1(Tk+1xk+1) > ‖Tk+1‖ −
ε

2k+4
δ
( ε

2k+1

)
.

Hence, ‖Tk − Tk+1‖ ≤ ‖Tk − T̃k+1‖ + ‖T̃k+1 − Tk+1‖ < ε
2k+1 and {Tk}k is a

Cauchy sequence. This implies that (Tk)∞k=1 converges to some T∞ ∈ SL(X,Y ) and
‖T − T∞‖ < ε.

To show that the sequence (xi)∞i=1 is a Cauchy sequence we need to check the fol-
lowing:

‖T̃k‖ −
ε

2k+4
δ
( ε

2k

)
<
∣∣ fk(T̃kxk)

∣∣
=
∣∣∣ fk(Tk−1xk) +

ε

2k+1
fk−1(Tk−1xk) · fk(Tk−1xk−1)

∣∣∣
≤
∣∣∣ fk(Tk−1xk)| + ε

2k+1
| fk−1(Tk−1xk)

∣∣∣ · ∣∣ fk(Tk−1xk−1)
∣∣

≤ ‖Tk−1‖ +
ε

2k+1
Re fk−1(Tk−1xk),

and

‖T̃k‖ ≥
∣∣ fk−1(T̃kxk−1)

∣∣
=
∣∣∣ fk−1(Tk−1xk−1) +

ε

2k+1
fk−1(Tk−1xk−1) · fk−1(Tk−1xk−1)

∣∣∣
≥
∣∣∣(1 +

ε

2k+1
fk−1(Tk−1xk−1)

)
· fk−1(Tk−1xk−1)

∣∣∣
≥
(

1 +
ε

2k+1
Re fk−1(Tk−1xk−1)

)
· Re fk−1(Tk−1xk−1)

≥ ‖Tk−1‖ −
ε

2k+2
δ
( ε

2k−1

)
+

ε

2k+1

(
‖Tk−1‖ −

ε

2k+2
δ
( ε

2k−1

)) 2
.
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Therefore, from the monotonicity of the modulus of convexity (cf. [17]), we get

Re fk−1(Tk−1xk) >
(
‖Tk−1‖ −

ε

2k+2
δ
( ε

2k−1

)) 2
− 1

2
δ
( ε

2k−1

)
− 1

23
δ
( ε

2k

)
≥ 1− ε

2k+1
δ
( ε

2k−1

)
− 1

2
δ
( ε

2k−1

)
− 1

23
δ
( ε

2k

)
≥ 1− δ

( ε

2k−1

)
.

Hence, ∥∥∥ xk−1 + xk

2

∥∥∥ ≥ Re fk−1

(
Tk−1

xk−1 + xk

2

)
> 1− ε

2k+3
δ
( ε

2k−1

)
− 1

2
δ
( ε

2k−1

)
≥ 1− δ

( ε

2k−1

)
.

This implies that ‖xk−1 − xk‖ < ε
2k−1 . Thus, (xk)k converges to some x∞ ∈ SX and

‖x − x∞‖ < ε.
From the fact that limk→∞ ‖Tkxk‖ = 1 and that both Tk and xk converge in norm,

it follows that ‖T∞x∞‖ = 1.

Theorem 2.2 in [2] implies that for Banach spaces X and Y such that Y has the
property β of Lindenstrauss with 0 ≤ ρ < 1, for given ε > 0, if T ∈ SL(X,Y ) and
x ∈ SX satisfy ‖T(x)‖ > 1 − ε2/4, then for each real number η such that η >
ρ/(1− ρ)(ε + ε2/4), there are S ∈ L(X,Y ), z ∈ SX such that

‖Sz‖ = ‖S‖, ‖z − x‖ < ε, ‖S− T‖ < η + ε +
ε2

4
.

This means that (X,Y ) has the BPBP when Y has the property β. Moreover, the real
valued functions η(ε) and β(ε) in the definition of the BPBP do not depend on the
Banach space X. In Theorem 3.1, we can see similarly that the real valued functions
η(ε) and β(ε) do not depend on the target space Y . A natural question arises as to
whether or not this implies the uniform convexity of X. We could get a necessary
condition and an affirmative answer for a real 2-dimensional Banach space.

In [23], Lindenstrauss showed the following for a Banach space X such that the
set of norm attaining operators is dense in L(X,Y ) for any Banach space Y :

(a) If X is isomorphic to a strictly convex space, then SX is the closed convex hull of
its extreme points.

(b) If X is isomorphic to a locally uniformly convex space, then SX is the closed con-
vex hull of its strongly exposed points.

In the next theorem, we get stronger results for X when (X,Y ) has the BPBP with
the positive real valued functions η(ε) and β(ε) that are independent of the target
space Y .
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Theorem 3.2 Let X be a Banach space. Suppose that given ε > 0 there exist positive
real valued functions η(ε) and β(ε) that go to 0 as ε goes to 0 and satisfying the following.

• For every Banach space Y if ‖Tx‖ > 1−η(ε) for T ∈ SL(X,Y ) and x ∈ SX , there exist
u ∈ SX and S ∈ SL(X,Y ) such that ‖Su‖ = 1, ‖x − u‖ < β(ε) and ‖T − S‖ < ε.

Then

(i) if X is a real Banach space, then there is no face of SX that contains a nonempty
relatively open subset of SX ;

(ii) if X is isomorphic to a strictly convex Banach space, then the set of all extreme
points of BX is dense in SX ;

(iii) if X is isomorphic to a uniformly convex Banach space, then the set of all strongly
exposed points of BX is dense in SX .

Proof For the proof of (i), assume that there is x∗ ∈ SX∗ such that the face F(x∗) =
{x ∈ SX | x∗(x) = 1} contains a nonempty relatively open subset U of SX .

Choose a positive number 0 < ε ′ < 1 and points x0, y0 ∈ U such that BX(y0, ε
′)∩

SX ⊂ U , ‖x0 − y0‖ < ε ′, and x0 6= y0. Let p = x0 − y0. Choose y∗ ∈ SX∗ such that
y∗(p) = ‖p‖, and set

y∗n =
x∗ + 1

n y∗

‖x∗ + 1
n y∗‖

.

Then (y∗n )n converges to x∗.
For each n ∈ N, define an equivalent norm 9 ·9n of X by

9x92
n =

1

2
‖x‖2 +

1

2
|y∗n (x)|2

and let Xn = (X,9 ·9n). We can see that for each x ∈ SX there exists unique tx > 0
such that txx ∈ SXn .

Set
U ′n = {txx ∈ SXn : x ∈ U , tx > 0}.

It is easy to see that the map x 7→ txx is a homeomorphism, and so U ′n is relatively
open in SXn .

Claim There is no nonempty relatively open convex subset Ũ in SXn that is con-
tained in U ′n.

If not, there exists a nonempty relatively open convex set Ũ in SXn that is contained
in U ′n. Choose x ∈ U and t > 0 such that x + t p ∈ U and txx, tx+t p(x + t p) ∈ Ũ .
Then, by the assumption ∣∣∣∣∣∣∣∣∣ txx + tx+t p(x + t p)

2

∣∣∣∣∣∣∣∣∣
n

= 1.

Since

9txx92
n =

1

2
‖txx‖2 +

1

2
|y∗n (txx)|2 = 1,

9tx+t p(x + t p)92
n =

1

2
‖tx+t p(x + t p)‖2 +

1

2
|y∗n (tx+t p(x + t p))|2 = 1,
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we get

1 =
∣∣∣∣∣∣∣∣∣ txx + tx+t p(x + t p)

2

∣∣∣∣∣∣∣∣∣ 2

n

=
1

8

∥∥ txx + tx+t p(x + t p)
∥∥ 2

+
1

8

∣∣ y∗n
(

txx + tx+t p(x + t p)
) ∣∣ 2

≤ 1

8

(
‖txx‖ + ‖tx+t p(x + t p)‖

) 2
+

1

8

∣∣ y∗n (txx) + y∗n
(

tx+t p(x + t p)
) ∣∣ 2

≤ 1

8

(
‖txx‖2 + ‖tx+t p(x + t p)‖2 + 2‖txx‖‖tx+t p(x + t p)‖

+ |y∗n (txx)|2 + |y∗n
(

tx+t p(x + t p)
)
|2 + 2|y∗n (txx)| · |y∗n

(
tx+t p(x + t p)

)
|
)

≤ 1

8

(
4 + 2

(
‖txx‖‖tx+t p(x + t p)‖ + |y∗n (txx)| · |y∗n

(
tx+t p(x + t p)

)
|
))

≤ 1

8

(
4 + 2

(
‖txx‖2 + |y∗n (txx)|2

) 1/2(‖tx+t p(x + t p)‖2 + |y∗n
(

tx+t p(x + t p)
)
|2
) 1/2

)
≤ 1.

The equality holds only when ‖txx‖ = ‖tx+t p(x+t p)‖ and y∗n (txx) = y∗n (tx+t p(x+t p)).
It follows from ‖txx‖ = ‖tx+t p(x + t p)‖ that tx = tx+t p. Hence, y∗n (x) = y∗n (x + t p).
This is a contradiction to the fact that y∗n (p) > 0.

Now, we are ready to prove that there are no positive real valued functions η(ε)
and β(ε) satisfying the assumption in Theorem 3.2.

Otherwise, choose ρ so that 0 < ρ < ε ′

8 and β(ρ) < ε ′

4 , and N ∈ N such that√
1 + |y∗N (y0)|2

2
> 1− η(ρ).

Considering the identity operator I : X → XN , we can see easily that ‖I‖ = 1. Hence,

9I y09N = 9y09N =

√
1

2
‖y0‖2 +

1

2
|y∗N (y0)|2 > 1− η(ρ).

There exist V ∈ SL(X,Y ) and y1 ∈ BX(y0,
ε ′

4 )∩SX ⊂ U such that ‖V−I‖ < ρ < ε ′

8
and 9V y19N = 1. Clealy, V is an isomorphism.

We will show that U ′N contains a nonempty relatively open convex subset in SXN ,
which contradicts the claim.

Now V y1 is tuu for some u ∈ U and tu > 0. Indeed, we can write V y1 in SXN

uniquely in the form tuu for some u ∈ SX and tu > 0. From the fact that ‖x‖ ≤
2 9 x9N ≤ 2‖x‖, it follows that 1 ≤ tu < 1 + ε ′/4. More precisely, the fact that

1 ≤ tu = ‖tuu‖ = ‖V y1‖ ≤ ‖y1‖ + ‖V y1 − y1‖

< ‖y1‖ + 2 9 V y1 − y19N < 1 + 2ρ < 1 +
ε ′

4

https://doi.org/10.4153/CJM-2013-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-009-2


Uniform Convexity and the Bishop–Phelps–Bollobás Property 383

implies that ‖u − y1‖ ≤ ‖u − tuu‖ + ‖tuu − y1‖ < ε ′

2 . Thus ‖u − y0‖ < ε ′ and
V y1 = tuu ∈ U ′N .

Choose 0 < δ < ε ′

4 so that BXN (V y1, δ) ∩ SXN ⊂ U ′N . We can see that

V
(

BX(y1, δ) ∩ SX

)
= V

(
BX(y1, δ) ∩ F(x∗)

)
⊂ BXN (V y1, δ)

and V (BX(y1, δ)∩F(x∗)) ⊂ SXN , because 9V y19N = 1. Hence V (BX(y1, δ)∩SX) is a
convex subset of U ′N . Further, from the following we can see that V (BX(y1,

δ
2 )∩SX) =

V (BX(y1,
δ
2 )) ∩ SXN , which implies that SXN contains a relatively open convex subset

contained in U ′n . Indeed, we have checked that 9V x9N = 1 for any x ∈ BX(y1,
δ
2 ) ∩

SX in the above, and it is easy to see that 9V x9N < 1 for any x ∈ BX(y1,
δ
2 ) with

‖x‖ < 1. For any x ′ ∈ BX(y1,
δ
2 ) with ‖x ′‖ > 1 we can write x ′ = αx for some α > 1

and x ∈ BX(y1, δ) ∩ SX . Hence, from 9V x9N = 1 we can get that 9V x ′9N > 1.
For the proof of (ii), suppose that there are both x0 ∈ SX and ε0 > 0 such that the

subset BX(x0, ε0)∩ SX does not contain any extreme point of BX . Let 9 ·9 be a norm
on X with which the Banach space (X,9 ·9) is strictly convex and we may assume
that 9x9 ≤ ‖x‖ for all x ∈ X. Then for each n ∈ N, define the equivalent norm
‖x‖n = (‖x‖2 + 1

n 9 x92)1/2 on X. Then (X, ‖ · ‖n) is strictly convex. Choose 0 < ρ
satisfying β(ρ) < ε0/2 and m ∈ N satisfying

√
m√

1 + m
> 1− η(ρ).

Let I : (X, ‖ · ‖) → (X, ‖ · ‖m) be the identity operator on X and let T = I/‖I‖.
Because 1 ≤ ‖I‖ ≤ (1 + 1/m)1/2,

‖Tx0‖m =
‖x0‖m

‖I‖
≥ ‖x0‖

√
m√

m + 1
> 1− η(ρ).

Hence, there exist both an operator S : (X, ‖ · ‖)→ (X, ‖ · ‖m) and x1 ∈ SX such that
‖x0 − x1‖ < β(ρ) < ε0/2, ‖Sx1‖m = 1 and ‖S − T‖ ≤ ρ < 1/4. This implies that
x1 ∈ BX(x0, ε0) ∩ SX , and it is not an extreme point of BX . Choose a nonzero p ∈ X
and t0 > 0 such that x1 + t p ∈ BX for all t satisfying |t| < t0. Let y∗ ∈ S(X,‖ · ‖m)∗

such that y∗(Sx1) = 1. Then for all t satisfying |t| < t0,

1 = Re y∗S(x1) =
Re y∗S(x1 + t p) + Re y∗S(x1 − t p)

2
≤ 1.

Hence it is clear that ‖S(x+t p)‖m = 1 for all t satisfying |t| < t0. Because (X, ‖·‖m) is
strictly convex, Sp = 0. Finally we show that S is invertible, and this is a contradiction
to p 6= 0. Indeed,

‖T−1S− I‖ = ‖T−1(S− T)‖ ≤ ‖T−1‖ · ‖T − S‖

= ‖I−1‖ · ‖I‖ · ‖T − S‖ < 1

4
(1 +

1

m
)1/2 < 1,
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which implies that S is invertible.
The proof of (iii) is almost the same as that of (ii), but for the sake of completeness

we give it here.
Suppose that there are both x0 ∈ SX and ε0 > 0 such that the subset BX(x0, ε0) ∩

SX does not contain any strongly exposed point of BX . Let 9 ·9 be a norm on X
with which the Banach space (X,9 ·9) is uniformly convex, and we may assume
that 9x9 ≤ ‖x‖ for all x ∈ X. Then for each n ∈ N, define the equivalent norm
‖x‖n = (‖x‖2 + 1

n 9 x92)1/2 on X. Then (X, ‖ · ‖n) is uniformly convex. Choose
0 < ρ satisfying β(ρ) < ε0/2 and m ∈ N satisfying

√
m√

1 + m
> 1− η(ρ).

Let I : (X, ‖ · ‖) → (X, ‖ · ‖m) be the identity operator on X and let T = I/‖I‖.
Because 1 ≤ ‖I‖ ≤ (1 + 1/m)1/2,

‖Tx0‖m =
‖x0‖m

‖I‖
≥ ‖x0‖

√
m√

m + 1
> 1− η(ρ).

Hence, there exist both an operator S : (X, ‖ · ‖)→ (X, ‖ · ‖m) and x1 ∈ SX such that
‖x0 − x1‖ < β(ρ) < ε0/2, ‖Sx1‖m = 1 and ‖S − T‖ ≤ ρ < 1/4. This implies that
x1 ∈ BX(x0, ε0)∩ SX , and it is not a strongly exposed point of BX . Let y∗ ∈ S(X,‖ · ‖m)∗

such that y∗(Sx1) = 1. By the uniform convexity of the X, Sx1 is a strongly exposed
point of B(X,‖ · ‖m), and this implies that for every sequence (ui)∞i=1 ⊂ BX if y∗(Sui)
converges to 1 then Sui converges to Sx1. Thus S is invertible, and ui converges to x1.
This is a contradiction.

In a 2-dimensional Banach space X, a nontrivial line segment in SX is a face of
SX with a nonempty relatively open subset in SX . Hence Theorem 3.2 implies the
following corollary from the fact that a finite dimensional Banach space is strictly
convex if and only if it is uniformly convex. (cf. see [17]).

Corollary 3.3 If X is a real 2-dimensional Banach space, the assumption in Theorem
3.2 is equivalent to uniform convexity.

Indeed, for given ε > 0, there exist positive real valued functions η(ε) and β(ε)
that go to 0 as ε goes to 0 and satisfying that for every Banach space Y if ‖Tx‖ >
1 − η(ε) for T ∈ SL(X,Y ) and x ∈ SX , then there exist u ∈ SX and S ∈ SL(X,Y ) such
that ‖Su‖ = 1, ‖x−u‖ < β(ε) and ‖T−S‖ < ε, if and only if X is uniformly convex.

We say that (X,Y ) has the Bishop–Phelps–Bollobás property for bilinear forms if
given ε > 0, there exist η(ε) and β(ε) > 0 with limt→0 β(t) = 0 such that for all
φ ∈ SL2(X×Y ), if x ∈ SX , y ∈ SY satisfy |φ(x, y)| > 1 − η(ε), then there exist points
xε ∈ SX , yε ∈ SY and a bilinear form φε ∈ SL2(X×Y ) that satisfy

|φε(xε, yε)| = 1, ‖x − xε‖ < β(ε), ‖y − yε‖ < β(ε), ‖φ− φε‖ < ε.

It is known that (`1, `∞) has the BPBP [2], but (`1, `1) does not have the Bishop–
Phelps–Bollobás property for bilinear forms [10, 16]. However, Cheng and Dai [9]
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could show that (`1, `p) has the Bishop-Phelps-Bollobás property for bilinear forms
for (1 < p < ∞) by obtaining Theorem 3.4, and they asked whether (`p, `q) has
the Bishop–Phelps–Bollobás property for bilinear forms for (1 < p, q < ∞). Using
Theorems 3.2 and 3.4, we get an affirmative answer to this question.

Theorem 3.4 ([9]) Assume that a Banach space Y is uniformly convex. Then (X,Y )
has the Bishop-Phelps-Bollobás property for bilinear forms if and only if the pair (X,Y ∗)
has the BPBP.

Corollary 3.5 (X,Y ) has the Bishop–Phelps–Bollobás property for bilinear forms for
any uniformly convex Banach spaces X and Y .

We want to finish this paper with some open questions.

(a) Very recently, it is shown that (c0,Y ) has the BPBP when Y is uniformly convex
[22]. It would be interesting to find conditions of a Banach space Y that guaran-
tee that (c0,Y ) has the BPBP.

(b) In [22], it is also shown that (c0, `p) (1 < p < ∞)) has the BPBP for bilinear
forms. However, we still do not know whether (c0, c0) has the Bishop–Phelps–
Bollobás property for bilinear forms.
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