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Abstract

In this paper we first consider the expectation of the total discounted claim costs up to the
time of ruin, and then, more generally, we study the expectation of the total discounted
operating costs up to the time of default, which is the first passage time of a surplus process
downcrossing a given level. These two quantities include the expected discounted penalty
function at ruin or the Gerber–Shiu function, the expected total discounted dividends up
to ruin, and other interesting quantities as special cases among a class of risk processes.
As an illustration, we consider a piecewise-deterministic compound Poisson risk model.
This model recovers many risk models appearing in the literature such as the compound
Poisson risk models with interest, absolute ruin, dividends, multiple thresholds, and their
dual models. We derive and solve the integro-differential equation for the expected present
value of the total discounted operating costs up to default. The solutions to the expected
present value of the total discounted operating costs up to default can be used as a unified
approach to solving many ruin-related quantities. As applications, we derive explicit
solutions for the expected accumulated utility up to ruin, the absolute ruin probability
with varying borrowing rates, the expected total discounted claim costs up to ruin, the
Gerber–Shiu function with two-sided jumps, and the price for a perpetual American put
option with two-sided jumps.
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1. Introduction

Let {Xt, t ≥ 0} be a surplus process for an insurance company with initial surplus X0 = x

under measure Px , let τ = inf{t : Xt < 0} be the time of ruin, and let δ ≥ 0 be a constant
representing the force of interest. Recently, the following two functions have attracted a lot
of interest in the literature. One is the expected discounted penalty at ruin, also called the
Gerber–Shiu function, denoted by

m(x) = Ex[e−δτw(Xτ−, |Xτ |) 1(τ < ∞)],
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where the expectation is taken under the measure Px ,w(x, y) is a function defined on [0,∞)×
(0,∞) representing penalty at ruin, and 1(A) is the indicator of an event A, namely, 1(A) = 1
if A is true and 1(A) = 0 if A is false. The other function is the expected total discounted
dividends up to ruin defined by

V (x) = Ex
[∫ τ

0
e−δt dD(t)

]
, (1.1)

where D(t) denotes the accumulated dividend paid up to time t . Details on applications of
these two quantities can be found in many papers, among which are Gerber and Shiu (1998a),
Gerber and Shiu (2006), and the references therein.

In practice, every single insurance claim is usually accompanied by a certain amount of
business cost resulting from claim appraisal, investigation, settlement negotiation, and so on.
The actual cost of a claim to an insurer may be different from the size of the claim.

We let Ti, i = 1, 2, . . . , be the time of the ith claim in the surplus process, and we denote
the cost of individual claim i by �(XTi−, XTi ), which depends on the surplus just before the
claim and the surplus at the claim. Thus, the expected present value of total claim costs up to
the time of ruin is given by

C(x) = Ex
[ N∑
i=1

exp{−δTi}�(XTi−, XTi )
]
, (1.2)

where N = max{n : Tn ≤ τ } is the number of claims up to ruin and �(x, y) is a function
defined on [0,∞)× (−∞,∞) representing the cost at claim.

It is easy to see that the Gerber–Shiu function m is a special case of the function C if ruin
in the surplus process occurs only at claim times. In fact, let the function � in (1.2) be of the
form

�(x, y) =
{

0 for y ≥ 0,

w(x,−y) for y < 0.
(1.3)

Thus, if ruin occurs or τ < ∞, then N < ∞, TN = τ , XTi ≥ 0 for all i = 1, . . . , N − 1, and
XTN < 0. Hence,

N∑
i=1

exp{−δTi}�(XTi−, XTi ) = exp{−δTN }�(XTN−, XTN ) = e−δτw(Xτ−, |Xτ |).

Furthermore, if ruin does not occur or τ = ∞, then XTi ≥ 0 for all i = 1, 2, . . . and∑N
i=1 exp{−δTi}�(XTi−, XTi ) = 0. Hence,

N∑
i=1

exp{−δTi}�(XTi−, XTi ) = e−δτw(Xτ , |Xτ |) 1(τ < ∞),

which means that the Gerber–Shiu function m is a special form of the function C with the
special cost function in (1.3). Indeed, the Gerber–Shiu function only takes into account the
cost or penalty at the time of ruin.

In most work in ruin theory, researchers are interested in the quantities pertaining to the
time of ruin, which is the first passage time of a surplus process downcrossing 0. However, in
practice, we may also pay attention to the first passage time of a surplus process downcrossing
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any given level. In particular, such a given level is associated to the probability of default in
credit risk analysis. Thus, more generally, we study the first passage time of a surplus process
downcrossing a given level d , which is called the time of default and defined by

τd = inf{t : X(t) < d}, d ∈ (−∞,∞),

with the convention that inf{∅} = ∞.
Clearly, τ0 = τ is the time of ruin and τ−c/r is the time of absolute ruin in the compound

Poisson risk model with premium rate c > 0 and borrowing rate r > 0. References to absolute
ruin can be found in Gerber (1979) and Asmussen (2000).

Besides the costs at claim times, we are also interested in the operating costs associated with
a surplus process at any time throughout the life of the business. Such a cost is used in a general
sense and may represent any monetary amount such as claims, penalties, dividends, utilities,
and so on. We denote the operating cost at time t by l(Xt ) and, thus, the expectation of the
total discounted operating costs up to default is expressed as

H(x) = Ex
[∫ τd

0
e−δt l(Xt ) dt

]
, (1.4)

where l defined on (−∞,∞) is called the cost function.
It is easy to see that the functionH in (1.4) includes the expected total discounted dividends

up to ruin as a special case. In fact, if d = 0 and l(Xt ) is taken to be the dividend rate paid
at time t , then the function H in (1.4) reduces to V in (1.1), the expected total discounted
dividends up to ruin. For instance, with the dividend threshold b and dividend rate α, the cost
function l is expressed as

l(x) =
{
α if x ≥ b,

0 if 0 ≤ x < b.

Furthermore, if l is chosen to be a utility function then the function H is the expectation of
the total discounted utility up to default, which has been used by Hipp and Plum (2003) as an
optimization investment criterion for insurance companies.

The functions C in (1.2) and H in (1.4) appear to be of a different form. However, we
shall prove that the function C is a special case of the function H in a general class of surplus
processes. Therefore, it suffices to study the functionH . As illustrated in the paper, the solution
for the functionH will serve as a unifying tool to find solutions for many ruin-related quantities.

In this paper we will study the properties of the function H and consider its applications in
risk theory. As an illustration, we will focus on a piecewise-deterministic compound Poisson
risk process. This risk model includes many well-known risk models in the literature such as
compound Poisson risk models with dividends, interest, absolute ruin, multiple thresholds, two-
sided jumps, and their dual models. More general piecewise-deterministic Markov processes
and their applications in ruin theory can be found in Davis (1984), (1993), Rolski et al. (1999),
Dassios and Embrechts (1989), Embrechts and Schmidli (1994), Wang et al. (2003a), (2003b),
and the references therein.

The rest of this paper is organized as follows. We introduce in Section 2 the piecewise-
deterministic compound Poisson process. In Section 3, the relationship of the functions C in
(1.2) and H in (1.4) is discussed and an integro-differential equation for H is derived with the
underlying piecewise-deterministic compound Poisson process. We give a general solution to
H in the classical compound Poisson process in Section 4. In the following sections, we shall
investigate various applications of the total discounted operating costs up to default, namely,

https://doi.org/10.1239/aap/1246886621 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886621


498 J. CAI ET AL.

the accumulated utility up to ruin in Section 5, the total discounted claim costs up to ruin in
Section 6, the probability of absolute ruin with varying borrowing rates in Section 7, and the
Gerber–Shiu function with two-sided jumps, which yields the pricing formula for a perpetual
American put option with two-sided jumps, is studied in Section 8. In Appendix A we provide
the proofs of the results in Section 3, and the definition of the Dickson–Hipp operator and its
properties used for this paper.

2. Piecewise-deterministic compound Poisson process

In the classical compound Poisson model, the dynamics of a surplus process Xt is given by

dXt = c dt − dZt , t ≥ 0,

where c > 0 is the premium income rate and the aggregate claimZt = ∑Nt
i=1 Yi is a random sum

of insurance claims defined as follows. The occurrence of insurance claims follows a Poisson
process Nt with intensity rate λ. All claim sizes Y1, Y2, . . . are independent and identically
distributed nonnegative random variables with common distribution Q. Note that the surplus
between any two consecutive claims satisfies the differential equation dXt = c dt .

Various modified compound Poisson risk models have appeared in the literature. Many of
them are characterized by their sample paths between any two consecutive claims. We list the
following few.

• If the positive surplus earns interest at rate ρ > 0 (see Sundt and Teugels (1995)) then
the surplus between any two consecutive claims satisfies the differential equation dXt =
(ρXt + c) dt .

• If the dividend is paid at rate 0 < α < c over a threshold level b (see Gerber and Shiu
(2006)) then the surplus between any two consecutive claims satisfies the differential
equation

dXt =
{
(c − α) dt, Xt ≥ b,

c dt, 0 ≤ Xt < b.

• In the dual model of the compound Poisson risk model (see Avanzi et al. (2007)), the
surplus between any two consecutive claims satisfies the differential equation dXt =
−c dt .

All these models and many other risk models modified from the compound Poisson risk
model belong to the following class of piecewise-deterministic compound Poisson processes.

Definition 2.1. A piecewise-deterministic compound Poisson (PDCP) process is a real-valued
random process {Xt, 0 ≤ t < ∞}, defined on a probability space (�,F ,P), satisfying the
following properties.

1. X0 = x.

2. Let T0 = 0 and T1, T2, T3, . . . denote the sequence of jump points of the processXt . Then
the adapted counting process defined byN(t) = ∑∞

i=1 1(Ti ≤ t) follows a homogeneous
Poisson process with intensity rate λ.

3. The jump sizes�XTk = XTk −XTk− for k = 1, 2, 3, . . . are independent and identically
distributed random variables with common distribution function Q(y) = 1 − Q(y) =
P{�XT1 ≤ y}, −∞ < y < ∞.
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4. The process between any two consecutive jumps is deterministic and given by

{Xt = φXTk
(t), Tk < t < Tk+1}, k = 0, 1, 2, . . . ,

where φz(t) is determined by

dφz(t) = g(φz(t)) dt, t > 0,

satisfying φz(0) = z and limt→∞ φz(t) = L ∈ R = [−∞,∞], the function g(x),
x ∈ B, is locally Lipschitz continuous on each subinterval on a finite partition of its
domain B.

Note that jumps in the PDCP process may be downward, upward, or two sided. The class of
PDCP processes includes many interesting risk models appearing in the literature such as the
compound Poisson risk models with interest, absolute ruin, dividend, multiple threshold, and
their dual models. The corresponding expressions for g(x) and φx(t) for these specific models
are as follows.

• In the classical compound Poisson model, the deterministic piece between any two
consecutive claims is given by g(x) = c, x ≥ 0. Hence, φx(t) = x + ct, x ≥ 0,
and L = ∞.

• In the modification of the compound Poisson model where all positive surplus earns
interest at rate ρ > 0, the corresponding function g(x) = ρx + c, x ≥ 0. Hence,
φx(t) = xeρt+cstρ = (x+c/ρ)eρt−c/ρ, t ≥ 0, andL = ∞, where stρ = (eρt−1)/ρ.

• In the dividend threshold model, the corresponding function

g(x) =
{
c − α, x ≥ b,

c, 0 ≤ x < b,

which yields

φx(t) =
{
b + (c − α)t, t ≥ (b − x)/c,

x + ct, t < (b − x)/c,

with the limit L = ∞.

• In the dual model, it is characterized by g(x) = −c, x ≥ 0, and φx(t) = x − ct, x ≥ 0,
with L = −∞.

• Furthermore, in the compound Poisson risk model where the positive surplus earns
interest at rate r > 0 and an insurer would borrow money at a borrowing rate ρ > 0 for
the negative surplus (see Zhu and Yang (2008)), the surplus follows the PDCP process
with

g(x) =
{
ρx + c, x ≥ 0,

rx + c, −c/r < x < 0.

Correspondingly, we have, for x ≥ 0,

φx(t) = xeρt + cstρ =
(
x + c

ρ

)
eρt − c

ρ
, t ≥ 0,
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and, for −c/r < x < 0,

φx(t) =

⎧⎪⎪⎨
⎪⎪⎩
cst−t0ρ = c

ρ
exp{ρ(t − t0)} − c

ρ
, t ≥ t0,

xert + cst r =
(
x + c

r

)
ert − c

r
, 0 ≤ t < t0,

where t0 = (1/r) log(c/(rx + c)). In this model, we have L = ∞.

• In the compound Poisson risk model with multiple threshold levels 0 < b1 < · · · <
bn < ∞ and dividend rates 0 < α1, . . . , αn < c for corresponding thresholds respec-
tively (see Lin and Pavlova (2006) and Lin and Sendova (2008)), it can be easily shown
that the corresponding function g(x) satisfies g(x) = c − αi for bi−1 ≤ x < bi ,
i = 1, . . . , n + 1, with b0 = 0, α0 = 0, and bn+1 = ∞. The corresponding
φx(t) = bi−1 + αit for bi−1 ≤ φx(t) < bi , and it is easy to verify that L = ∞.

• It is worthwhile pointing out that a commonly used model under the category of a
piecewise-deterministic compound Poisson process with a finite limit L is the modified
compound Poisson model with dividend barrier b where

g(x) =
{

0, x = b,

c, 0 ≤ x < b.

Correspondingly, when 0 ≤ x < b,

φx(t) =
{
b, t ≥ (b − x)/c,

x + ct, 0 ≤ t < (b − x)/c,

with the limit L = b.

3. Relationship between the functions C and H and the integro-differential equation
for H

We shall first demonstrate that the total discounted claim costs C are a special case of the
total discounted operating costs H .

Proposition 3.1. If the surplus process Xt is a PDCP process then the function C in (1.2) can
be expressed in the form of the function H in (1.4) with d = 0 and the following special cost
function:

l(x) = λ

∫ ∞

−∞
�(x, x + y) dQ(y), (3.1)

namely,

C(x) = Ex
[∫ τ0

0
e−δtλ

∫ ∞

−∞
�(Xt ,Xt + y) dQ(y) dt

]
.

Proof. See Appendix A.

Since the function C is a special case of the function H , it suffices to study the function H .
We first derive the integro-differential equation for the function H , then solve the integro-
differential equation and consider its applications, which show that the function H and its
solution can be used as a unified approach to solving many ruin-related quantities in risk
theory.
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Theorem 3.1. Suppose that the surplus process {Xt, t ≥ 0} is a PDCP process and that the
cost function l satisfies

Ex
[∫ τd

0
e−δt |l(Xt )| dt

]
< ∞ for any x > d. (3.2)

Then the function H is absolutely continuous and satisfies the integro-differential equation

g(x)H ′(x)− (λ+ δ)H(x)+ λ

∫ ∞

d−x
H(x + y) dQ(y)+ l(x) = 0, x �∈ D, x ∈ B, (3.3)

where D is the set of all discontinuities of l and g, and B is the domain of the function g.

Proof. See Appendix A.

Remark 3.1. In the following frequently used cases in the literature we can simplify the
expression of the integral

∫ ∞
d−x H(x + y) dQ(y) in (3.3). Let Q+ and Q− be distributions

supported on [0,∞) representing sizes of upward jumps and downward jumps, respectively.

1. When the processXt has only downward jumps such thatQ(y) = 1−Q−(−y) 1(y ≤ 0),
then ∫ ∞

d−x
H(x + y) dQ(y) =

∫ x−d

0
H(x − y) dQ−(y). (3.4)

2. When the process Xt has only upward jumps such that Q(y) = Q+(y) 1(y ≥ 0), then∫ ∞

d−x
H(x + y) dQ(y) =

∫ ∞

0
H(x + y) dQ+(y). (3.5)

3. When the process Xt has two-sided jumps such that

Q(y) = πQ+(y) 1(y ≥ 0)+ (1 − π)(1 −Q−(−y) 1(y < 0))

with 0 ≤ π ≤ 1, then∫ ∞

d−x
H(x + y) dQ(y)

= π

∫ ∞

0
H(x + y) dQ+(y)+ (1 − π)

∫ x−d

0
H(x − y) dQ−(y). (3.6)

Since many ruin-related quantities can be expressed in the form of the functionH by choosing
specific cost functions l and by identifying the function g in a PDMP risk model, we can
immediately obtain integro-differential equations for these ruin-related quantities in a unified
approach provided by Theorem 3.1. We shall illustrate the applications of the function H
together with Theorem 3.1 to consider a number of ruin-related quantities.

4. Solution to the function H in the classical compound Poisson model

Note that in the classical compound Poisson model, the claim size distributionQ represents
the downward jump distribution Q− in Remark 3.1. For brevity, we shall slightly abuse the
notation and regard Q as Q− in the classical compound Poisson model. In this case we shall
denote q̃(s) = ∫ ∞

0 e−sy dQ(y) and µ = ∫ ∞
0 y dQ(y) as the Laplace transform and the mean

of the claim size distribution, respectively.
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Assume that a unique nonnegative root γ satisfies the Lundberg equation

cγ − (λ+ δ)+ λq̃(γ ) = 0. (4.1)

Define

π = TγQ(0) =
∫ ∞

0
e−γyQ(y) dy

and

Qδ(x) = 1

π
TγQ(x) = 1

π
eγ x

∫ ∞

x

e−γyQ(y) dy,

where the Dickson–Hipp operator T is defined in Appendix A, and Q(x) = 1 − Q(x) and
Qδ(x) = 1 −Qδ(x) are the survival functions of the distribution functions Q(x) and Qδ(x),
respectively.

Note that γ ≥ 0. Thus, 0 ≤ π ≤ µ = ∫ ∞
0 Q̄(y) dy. Furthermore, if c > λπ , we define the

compound geometric distribution with underlying distribution Qδ(y) by

Gδ(x) =
∞∑
k=0

(
1 − λπ

c

)(
λπ

c

)k
Q∗k
δ (x), (4.2)

where Q∗k
δ (x) is the k-fold convolution of Qδ(x) with itself.

Theorem 4.1. Suppose that the surplus process {Xt, t ≥ 0} is the classical compound Poisson
process, for which the unique root γ of (4.1) exists and c > λπ , and that the cost function l
satisfies (3.2). The function H with d = 0 satisfies the defective renewal equation

H(x) = λπ

c
H ∗Qδ(x)+ 1

c
Tγ l(x), x ≥ 0,

and H has the solution

H(x) = 1

c − λπ

∫ x

0
Tγ l(x − y) dGδ(y), x ≥ 0.

Proof. In view of (3.4) and the fact that g(x) �= 0 for all x, and noting that in this case the
constant td = ∞ and φx(t) = x + ct in (A.3), we obtain, from (A.3),

H(x) =
∫ ∞

0
λe−λt

∫ t

0
e−δs l(x + cs) ds dt

+
∫ ∞

0
λe−(λ+δ)t

∫ (x+ct)

0
H(x + ct − y) dQ(y) dt

=
∫ ∞

0
e−(λ+δ)t l(x + ct) dt +

∫ ∞

0
λe−(λ+δ)t

∫ (x+ct)

0
H(x + ct − y) dQ(y) dt.

Substituting u = x + ct gives

H(x) = 1

c

∫ ∞

x

e−(λ+δ)(u−x)/cl(u) du+ λ

c

∫ ∞

x

e−(λ+δ)(u−x)/c
∫ u

0
H(u− y) dQ(y) du,

which can be represented in terms of the Dickson–Hipp operator:

H(x) = λ

c
T(λ+δ)/c

{
H ∗Q+ 1

c
l

}
(x).
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It follows from Lemma A.1 that

H(x) = λ

c
Tγ

{
H ∗Q+ 1

c
l

}
(x)−

(
λ+ δ

c
− γ

)
λ

c
Tγ T(λ+δ)/c

{
H ∗Q+ 1

c
l

}
(x)

= λ

c
Tγ

{
H ∗Q+ 1

c
l

}
(x)−

(
λ+ δ

c
− γ

)
TγH(x). (4.3)

Note that the first term can be expressed by Lemma A.3 as

λ

c
Tγ

{
H ∗Q+ 1

c
l

}
(x) = λπ

c
H ∗Qδ(x)+ 1

c
Tγ l(x)+ λ

c
q̃(γ )TγH(x). (4.4)

Recall from (4.1) that
λ

c
q̃(γ ) = λ+ δ

c
− γ.

Together with (4.3) and (4.4) we obtain a defective renewal equation

H(x) = λπ

c
H ∗Qδ(x)+ 1

c
Tγ l(x).

Thus, the solution expression of H follows immediately from Theorem 2.1 of Lin and Will-
mot (1999).

5. The accumulated utility of an insurer

When a risk process is used to model and assess a line of insurance business, an insurer
might be interested in a quantitative measure of the overall performance in maintaining its
surplus reserve. The accumulated utility up to default provides such a tool to quantify an
insurer’s satisfaction gained from surplus at each moment throughout the life of the business.
The expectation of the accumulated utility up to the time of default is defined by

U(x) = Ex
[∫ τd

0
u(Xt ) dt

]
,

where d is a predetermined level of default for a particular line of business and u(·) is the utility
function representing the insurer’s attitude towards the current surplus.

As an illustration, we consider the classical compound Poisson risk model with d = 0
and exponential utility function u(x) = −e−ax/a, where a > 0 is a constant. In fact, the
solutions in this section can be generalized to investigate a variety of other utility functions.
More utility functions in the context of application in actuarial science can be found in Gerber
and Pafumi (1998).

To study the expected accumulated utility up to ruin, it suffices to consider the function W
defined as

W(x) = Ex
[∫ τ0

0
exp{−aXt } dt

]
.

Since U(x) = −W(x)/a, we shall now seek solutions to W .
When δ = 0, γ = 0 is the unique nonnegative root of the Lundberg equation (4.1). Hence,

µ = π in the assumption of Theorem 4.1, which means that the safety loading condition c > λµ

holds. It only remains to verify whether l satisfies condition (3.2).

https://doi.org/10.1239/aap/1246886621 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886621


504 J. CAI ET AL.

Lemma 5.1. In the classical compound Poisson model with c > λµ, the functionW is bounded.

Proof. Recall that

Ex[exp{−aXt }] = Ex
[

exp

{
−a

(
x+ct−

N(t)∑
i=1

Yi

)}]
= e−ax−acte−λt[1−q̃(−a)] = e−axef (−a)t ,

where f (s) = cs − λ + λq̃(s) is the left-hand side of the Lundberg equation (4.1). Note that
c > λµ. Thus, f ′(0) > 0. Now that f (0) = 0, it is easy to show by the continuity of f ′(s)
that there must exist a number r < 0 arbitrarily close to 0 such that f (y) < 0 and f ′(y) > 0
when r < y < 0. Therefore, for any a > 0, we can always find r > −a such that f (r) < 0
and f (−a) < f (r). Hence, for any a > 0, we have∫ ∞

0
Ex[exp{−aXt }] dt =

∫ ∞

0
e−axef (−a)t dt ≤

∫ ∞

0
e−axef (r)t dt = e−ax

−f (r) , x ≥ 0.

Thus, by the fact that exp{−aXt } is nonnegative and Fubini’s theorem, we obtain, for x ≥ 0,

Ex
[∫ τ0

0
exp{−aXt } dt

]
≤ Ex

[∫ ∞

0
exp{−aXt } dt

]

=
∫ ∞

0
Ex[exp{−aXt }] dt

≤ e−ax

−f (r)
<

1

−f (r) .
Therefore, W(x) is bounded for all x ≥ 0.

Corollary 5.1. In the classical compound Poisson model with c > λµ, the solution to W is
given by

W(x) = e−ax

a(c − λµ)

∫ x

0
eay dG0(y), x ≥ 0, (5.1)

where G0 is the compound geometric distribution defined by

G0(x) =
∞∑
n=0

(
1 − λµ

c

)(
λµ

c

)n
Q∗n

0 (x)

and Q0 is defined by Q0(x) = (1/µ)
∫ x

0 Q(y) dy, x ≥ 0.

Proof. Since W is bounded, then condition (3.2) is satisfied. Since δ = 0, we have γ = 0.
Applying Theorem 4.1, we obtain

W(x) = 1

c − λµ

∫ x

0
T0l(x − y) dG0(y), x ≥ 0.

Since W(x) is a special case of H(x) with the cost function l(x) = e−ax , we have

T0l(y) =
∫ ∞

y

e−ax dx = 1

a
e−ay,

which leads to the desired solution, (5.1), upon substitution.
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When the claim size distribution is exponentially distributed, we can derive an explicit
solution for the expected accumulated utility up to ruin, which is presented in the following
result.

Corollary 5.2. In the classical compound Poisson model with c > λµ, if the claim size
distribution Q is exponential with mean 1/β then W admits an explicit solution given by

W(x) = λ

ac2(a − β + λ/c)
e−(β−λ/c)x + a − β

ac(a − β + λ/c)
e−ax, x ≥ 0. (5.2)

Proof. If the claim size distribution Q is exponential with mean 1/β then the equilibrium
distribution Q0 is exponential with the same mean. It is well known that G0 is an exponential
function given by

G0(y) = 1 −
(
λ

βc

)
e−(β−λ/c)y, y ≥ 0. (5.3)

Note that G0 has a probability mass point at 0 with G0(0) = 1 − λ/(βc). Substituting (5.3)
into (5.1) yields (5.2).

6. Total discounted claim costs up to ruin

As shown in Section 3, the total discounted claim costs up to ruin is a special case of the
total discounted operating costs up to default. We are now able to derive explicit solutions for
the function C, the total discounted claim costs up to ruin, in the classical compound Poisson
model by using the solution for the function H .

Corollary 6.1. Under the assumptions of Theorem 4.1, the solution to C is given by

C(x) = 1

c − λπ

∫ x

0
ζ(x − y) dGδ(y), x ≥ 0, (6.1)

where

ζ(z) = λeγ z
∫ ∞

z

e−γ x
∫ ∞

0
�(x, x − y) dQ(y) dx.

Proof. As a result of Theorem 4.1 and Theorem 3.1, the solution follows immediately upon
substitution of l(x) = λ

∫ ∞
0 �(x, x − y) dQ(y) dx.

The expected total discounted claim cost C(x) includes many interesting ruin-related quan-
tities. In particular, it includes the expected discounted aggregate claims up to ruin and the
expected number of claims up to ruin as special cases, which are discussed in the following
two examples.

Example 6.1. (Expected discounted aggregate claims up to ruin.) To investigate the present
value of future obligations for claim payments, an insurer would be interested in the discounted
aggregate claims up to ruin, defined by

K(x) = Ex
[ N∑
i=1

exp{−δTi}Yi
]
, x ≥ 0,

where δ > 0 and N = max{n : Tn ≤ τ0}. It is obviously a special case of C with the cost at
claim �(x, y) = x − y and, hence, �(x, x − y) = y.
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By Corollary 6.1, we easily obtain an explicit expression for the expected total discounted
claims up to ruin with exponential claims.

Corollary 6.2. In the classical compound Poisson model, for which the nonnegative root γ
exists for the Lundberg equation and c > λπ , the solution to K is given by

K(x) = λµ

(c − λπ)γ
Gδ(x), x ≥ 0. (6.2)

Proof. In this case, it follows from (3.1) that

l(x) = λ

∫ ∞

0
y dQ(y) = λµ,

which satisfies (3.2) sinceK is bounded by λµ/δ. Furthermore, the expression for ζ(x) in (6.1)
reduces to ζ(x) = λµ/γ and, hence, the desired result is obtained.

Corollary 6.3. If Q(y) is exponentially distributed with mean 1/β, the expected total dis-
counted claims up to ruin K is given by

K(x) = λ

δβ

(
1 − ρ + β

β
eρx

)
, x ≥ 0, (6.3)

where

ρ = (λ+ δ − βc)− √
(λ+ δ − βc)2 + 4δβc

2c
.

Proof. In the case where Q(y) = 1 − e−βy , we can easily show that Gδ defined in (4.2)
reduces to

Gδ(x) = 1 − λ

(β + γ )c
exp

{
−

(
β − λβ

(β + γ )c

)
y

}
,

where γ is the positive root to the Lundberg equation (4.1), which reduces to

cs2 + (βc − λ− δ)s − δβ = 0. (6.4)

We shall denote the negative root of (6.4) by ρ. Hence, it follows by substitution ofGδ in (6.2)
that

K(x) = λ(β + γ )

(c(β + γ )− λ)βγ

(
1 − λ

(β + γ )c
exp

{
−

(
β − λβ

(β + γ )c

)
y

})
, x ≥ 0.

Since γ is a root of (6.4), then

δ = (c(β + γ )− λ)γ

β + γ
.

Note that ργ = δβ/c. Hence,

ρ = δβ

cγ
= (c(β + γ )− λ)β

c(β + γ )
= λβ

(β + γ )c
− β.

Therefore, we obtain (6.3) by substitution of parameters.
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We point out that the moments of the total discounted claims until a given time in a renewal
risk process are studied in Léveillé and Garrido (2001a), (2001b). However, their results do
not apply to the expectation of the total discounted claims up to ruin.

Example 6.2. (Expected number of claims up to ruin.) Another special case of the expected
total discounted claim costs is the expected number of claims up to ruin defined by

N(x) = Ex[N ], (6.5)

which is a special case of the function C in (1.2), letting δ = 0 and �(x, y) = 1.
It follows immediately from (3.1) that l(x) = λ. By Proposition 3.1 we see that

N(x) = Ex[λτ0] = λEx[τ0].
Note that if c > λµ then Px{τ0 < ∞} < 1 or, equivalently, Px{τ0 = ∞} > 0. Thus,

Ex[τ0] = ∞, which in turn leads toN(x) = ∞. Therefore, in order to find an explicit solution
to the function N , we consider the c < λµ case, under which condition (3.2) can be verified.

Lemma 6.1. In the classical compound Poisson model for which c < λµ, the function N(x),
the expected number of claims up to ruin, satisfies, for x ≥ 0,

N(x) ≤ Meax for all a > 0 and some constant M,

and, hence, condition (3.2) is satisfied.

Proof. By definition we have, for any a > 0,

Ex[exp{aXt }] = exp

{
a

(
x + ct −

N(t)∑
i=1

Yi

)}
= eaxef (a)t ,

where f (s) = cs − λ+ λq̃(s).
Note that f (0) = 0 and f ′(0) < 0 since c < λµ. Thus, we can find an arbitrarily small

a > 0 such that f (a) < 0. Thus, λ ≤ λeax for any such a > 0. Therefore,

Ex
[∫ τ0

0
|l(Xt )| dt

]
= Ex

[∫ τ0

0
λ dt

]

≤ Ex
[∫ τ0

0
λ exp{aXt } dt

]

= λEx
[∫ ∞

0
exp{aXt } dt

]

= λ

∫ ∞

0
Ex[exp{aXt }] dt

= λeax
∫ ∞

0
ef (a)t dt

= Meax

< ∞, (6.6)

where M = −λ/f (a).
Note that eax is increasing in a for x ≥ 0. Hence, (6.6) holds for all a > 0 and, thus, the

desired result is obtained.
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Not only does Lemma 6.1 verify condition (3.2), which enables us to apply Theorem 3.1,
but it also leads to the result that

e−axN(x) < constant for all x ≥ 0. (6.7)

Corollary 6.4. In the classical compound Poisson model, if the safety loading factor θ =
(βc − λ)/λ < 0 then the expected number of claims up to ruin N(x) in (6.5) is given by

N(x) = λβ

λ− βc
x + λ

λ− βc
.

Proof. Applying Theorem 3.1, we obtain, by letting �(x, y) = 1 and δ = 0 in (3.3),

cN ′(x)− λN(x)+ λβ

∫ x

0
N(x − y)e−βy dy + λ = 0, x ≥ 0. (6.8)

By taking derivatives on both sides of (6.8), we obtain

cN ′′(x)+ (βc − λ)N ′(x)+ λβ = 0. (6.9)

By inspection we see thatN(x) = Ax is a particular solution, whereA is a constant satisfying
(βc− λ)A+ λβ = 0, which shows that A = λβ/(λ− βc). Thus, the general solution to (6.9)
is given by

N(x) = λβ

λ− βc
x + A1 + A2e(λ/c−β)x, x ≥ 0, (6.10)

since s = 0 and s = λ/c−β are the two roots of the characteristic equation cs2+(βc−λ)s = 0.
Inserting the expression for N(x) in (6.10) into (6.8) gives

λβc

λ− βc
+ A2(λ− βc)e(λ/c−β)x − λ

(
λβ

λ− βc
x + A1 + A2e(λ/c−β)x

)

+ λβ

∫ x

0

(
λβ

λ− βc
y + A1 + A2e(λ/c−β)y

)
e−β(x−y) dy + λ

= 0,

which implies that

λβc

λ− βc
+ A2(λ− βc)e(λ/c−β)x − λ2β

λ− βc
x − λA1 − λA2e(λ/c−β)x + λ2β

λ− βc
x − λ2

λ− βc

+ λ2

λ− βc
e−βx + λA1 − λA1e−βx + cβA2e(λ/c−β)x − cβA2e−βx + λ

= 0.

Upon rearrangement and cancellation, the above equation is simplified to

λ2

λ− βc
e−βx − λA1e−βx − cβA2e−βx = 0.

Hence, the undetermined coefficients A1 and A2 must satisfy

λ2

λ− βc
− λA1 − cβA2 = 0. (6.11)
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Recall from (6.7) that there exists a number a ∈ (0, λ/c − β) such that

e−axN(x) = λβ

λ− βc
xe−ax + A1e−ax + A2e(λ/c−β−a)x < constant for all x ≥ 0.

Hence, we must have A2 = 0. It follows from (6.11) that

A1 = λ

λ− βc
.

Therefore, the desired result is obtained.

7. Absolute ruin with varying borrowing rates

In a modification of the classical compound Poisson risk model, we may allow a certain
line of insurance business to continue even when the surplus falls below 0. When it does fall
below 0, an insurer borrows loans from external sources at a prescribed borrowing rate.

In the classical absolute ruin models, it is often assumed that an insurer loans at a constant
borrowing rate r as soon as the surplus becomes negative, X(t) < 0. In this case, the absolute
ruin occurs when the negative surplus reaches the level −c/r . In other words, if X(t) < −c/r
or rX(t)+c < 0, the premium collected at rate c is no longer able to even cover the interest due
at rate −rX(t). Absolute ruin problems with constant borrowing rate have been well studied in
the literature. See, for example, Asmussen (2000), Cai (2007), Gerber and Yang (2007), Wang
and Yin (2009), Yang et al. (2008), Yuan and Hu (2008), Zhang and Wu (1999), Zhu and Yang
(2008), and the references therein.

In a more general case, we assume that the borrowing rate r(y), y < 0, is a piecewise
locally Lipschitz continuous function in the negative surplus level y. It is important to note that
absolute ruin occurs at the new level d , which is the largest root of the equation

r(y)y + c = 0, y < 0. (7.1)

We call d the level of absolute ruin because the premium income is no longer able to cover the
borrowing interest when Xt < d . Therefore, the surplus between any two consecutive claims
satisfies

dXt =
{
c dt, if Xt ≥ 0,

(r(Xt )Xt + c) dt, if d < Xt < 0,

where d < 0 is the largest root of (7.1). Hence, as an example of the PDCP process, we can
express the growth of surplus by

g(x) =
{
c if x ≥ 0,

r(x)x + c if d < x < 0.

Accordingly, the time of absolute ruin is defined by τd = inf{t : Xt < d}. The expected
discounted penalty at absolute ruin or the Gerber–Shiu function at absolute ruin is defined by

mabs(x) = Ex[exp{−δτd}w(Xτd−, |Xτd |) 1(τd < ∞)],
wherew(x, y) is a nonnegative function defined on [d,∞)× (|d|,∞) representing the penalty
at absolute ruin. If condition (3.2) is satisfied, it follows from Theorem 3.1 that the Gerber–Shiu
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function mabs satisfies

cm′
abs(x)− (λ+ δ)mabs(x)+ λ

∫ x−d

0
mabs(x − y) dQ(y)+ λ

∫ ∞

x−d
w(x, y − x) dQ(y)

= 0, x ≥ 0, (7.2)

and

(r(x)x + c)m′
abs(x)− (λ+ δ)mabs(x)+ λ

∫ x−d

0
mabs(x − y) dQ(y)

+ λ

∫ ∞

x−d
w(x, y − x) dQ(y)

= 0, d < x < 0. (7.3)

To simplify our analysis, we investigate a special case of the Gerber–Shiu function mabs
where δ = 0, denoted by

ϕabs(x) = Ex[w(Xτd−, |Xτd |) 1(τd < ∞)],
where w is assumed to be bounded, implying that (3.2) is satisfied.

The special function ϕabs still includes many interesting quantities such as the absolute ruin
probability, the distribution functions of the surplus before absolute ruin, the surplus at absolute
ruin, the surplus causing absolute ruin, and many more.

If the claim size distributionQ follows an exponential distribution, we can solve the integro-
differential equations (7.2) and (7.3) for an explicit solution as follows.

Corollary 7.1. IfQ is exponentially distributed with mean 1/β, ϕabs admits an explicit solution
given by

ϕabs(x) = C1 +
∫ x

0
e−S(y)

(
C2 +

∫ y

0
eS(t)f (t) dt

)
dy, x ≥ 0, (7.4)

ϕabs(x) = C3 +
∫ x

d

e−G(y)
(
C4 +

∫ y

d

eG(t)h(t) dt

)
dy, d < x < 0, (7.5)

where

S(y) =
∫ y

0

(
β − λ

c

)
dt =

(
β − λ

c

)
y,

f (x) = −βζ(x)+ ζ ′(x)
c

,

ζ(x) = λβ

∫ ∞

x−d
e−βyw(x, y − x) dy,

G(y) =
∫ x

d

g(t) dt,

g(x) = r ′(x)x + r(x)+ βr(x)x + βc − λ

r(x)x + c
,

h(x) = −βζ(x)+ ζ ′(x)
r(x)x + c

,
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and the coefficients are determined by

C1 = −
∫ ∞

0
e−S(y)

(
C2 +

∫ y

0
eS(t)f (t) dt

)
dy,

C2 = e−G(0)C4 + e−G(0)
∫ 0

d

eG(t)h(t) dt,

C3 = ζ(d),

C4 = −
(
ζ(d)+

∫ ∞

0
e−S(y)

∫ y

0
eS(t)f (t) dt dy +

∫ 0

d

e−G(y)
∫ y

d

eG(t)h(t) dt dy

+ e−G(0)
∫ d

0
e−G(t)h(t) dt

∫ ∞

0
e−S(y) dy

)

×
(∫ 0

d

e−G(y) dy + e−G(0)
∫ ∞

0
e−S(y) dy

)−1

.

Proof. Differentiating both sides of (7.2) and (7.3), and making substitutions yields

ϕ′′
abs(x)+

(
β − λ

c

)
ϕ′

abs(x) = f (x), x ≥ 0, x �∈ D,
ϕ′′

abs(x)+ g(x)ϕ′
abs(x) = h(x), d < x < 0, x �∈ D,

where D is the set of points of x, at which r(x) is not differentiable.
The general solution to ϕabs(x) is given by (7.4) and (7.5). In order to determine those

coefficients, we search for four boundary conditions, each of which gives a linear equation
involving the coefficients.

Since c > λµ and w is bounded, we have

lim
x→∞ϕabs(x) = 0. (7.6)

Letting x → d in (7.3) yields
ϕabs(d+) = ζ(d). (7.7)

By the continuity of ϕabs at 0 we have

ϕabs(0−) = ϕabs(0+). (7.8)

Letting x = 0 in (7.2) and x → 0 in (7.3), and in view of (7.8) we obtain

ϕ′
abs(0−) = ϕ′

abs(0+). (7.9)

Hence, inserting (7.4) and (7.5) into (7.6), (7.7), (7.8), and (7.9) yields the desired solutions.

8. The Gerber–Shiu function with two-sided jumps

In the classical compound Poisson model jumps are downward only whereas in its dual model
jumps are upward only. However, it is also interesting to consider the compound Poisson model
with two-sided jumps. For instance, Gerber and Shiu (1996) used such a two-sided jump model
in asset pricing. With two-sided jumps, we assume that random events arrive according to the
Poisson process Nt . For each event, it brings either a random insurance claim with common

https://doi.org/10.1239/aap/1246886621 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886621


512 J. CAI ET AL.

distributionQ− or a random investment income (cash injection) with common distributionQ+.
The probability of the event being an insurance claim is assumed to be π and, thus, the event
happens to be an investment income with the chance 1−π . Therefore, the jump size distribution
is given by (3.5).

In view of (3.3) and (3.6), the integro-differential equation for H in the compound Poisson
risk model with two-sided jumps would be

cH ′(x)− (λ+ δ)H(x)+ λπ

∫ ∞

0
H(x + y) dQ+(y)

+ λ(1 − π)

∫ x

0
H(x − y) dQ−(y)+ l(x)

= 0. (8.1)

It is difficult to solve the integro-differential equation (8.1). However, we can derive explicit
solutions to (8.1) for the double exponential jumps, where the distribution function of the jump
size is given by

Q(y) = π(1 − exp{−β1y}) 1(y ≥ 0)+ (1 − π)[1 − (1 − exp{−β2y}) 1(y < 0)], (8.2)

where β1 > 0, β2 > 0, and 0 ≤ π ≤ 1.
Readers are referred to Kou and Wang (2003) for related topics in a more general jump

diffusion process with two-sided exponential jumps.
With the double exponential distribution (8.2), the integro-differential equation (8.1)

becomes

cH ′(x)− (λ+ δ)H(x)+ λπβ1 exp{β1x}
∫ ∞

x

H(y) exp{−β1y} dy

+ λ(1 − π)β2 exp{−β2x}
∫ x

0
H(y) exp{β2y} dy + l(x)

= 0. (8.3)

As an illustration, we solve the following special case of the Gerber–Shiu function, denoted
by ψδ:

ψδ(x) = Ex[exp{−δτ0}f (|Xτ0 |) 1(τ0 < ∞)],
where f is a bounded function defined on (0,∞).

The special function ψδ includes the absolute ruin probability, the Laplace transform of the
absolute ruin time, the distribution function of the surplus at absolute ruin, the moments of the
surplus at absolute ruin, and so on.

Corollary 8.1. For δ > 0, if Q is the double exponential distribution (8.2), ψδ admits an
explicit solution given by

ψδ(x) =
(
(β2 + ρ)

∫ ∞

0
f (z) exp{−β2z} dz

)
e−ρx, x ≥ 0,

where ρ is the unique negative root of the Lundberg fundamental equation

cs + λ

(
π

β1

β1 − s
+ (1 − π)

β2

β2 + s
− 1

)
= δ. (8.4)
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Proof. Taking derivatives with respect to x and making a substitution in (8.3) gives

cH ′′(x)− (λ+ δ)H ′(x)− cβ1H
′(x)+ β1(λ+ δ)H(x)

− β1λ(1 − π)β2 exp{−β2x}
∫ x

0
H(y) exp{β2y} dy − β1l(x)− λπβ1H(x)

+ cβ2H
′(x)− β2(λ+ δ)H(x)+ β2λπβ1 exp{β1x}

∫ ∞

x

H(y) exp{−β1y} dy

+ β2l(x)+ λ(1 − π)β2H(x)+ l′(x)
= 0.

Taking derivatives with respect to x again and substituting the integral terms yields

cH ′′′(x)+ (cβ2 − cβ1 − λ− δ)H ′′(x)
+ [λ(1 − π)β2 − λπβ1 − β2(λ+ δ)+ β1(λ+ δ)− cβ1β2]H ′(x)
+ δβ1β2H(x)+ l′′(x)+ (β2 − β1)l

′(x)− β1β2l(x)

= 0. (8.5)

Note that w(x, y − x) = f (y − x). Then

l(x) = λ(1 − π)β2

∫ ∞

x

f (y − x) exp{−β2y} dy

= λ(1 − π)β2 exp{−β2x}
∫ ∞

0
f (z) exp{−β2z} dz.

It is easy to verify that in this case l′′(x) + (β2 − β1)l
′(x) − β1β2l(x) = 0. Thus, (8.1) and

(8.5) reduce to

cψ ′
δ(x)− (λ+ δ)ψδ(x)+ λπ

∫ ∞

0
ψδ(x + y) dQ+(y)+ λ(1 − π)

∫ x

0
ψδ(x − y) dQ−(y)

+ λ(1 − π)β2 exp{−β2x}
∫ ∞

0
f (z) exp{−β2z} dz

= 0 (8.6)

and
cψ ′′′

δ (x)+ (cβ2 − cβ1 − λ− δ)ψ ′′
δ (x)

+ [λ(1 − π)β2 − λπβ1 − β2(λ+ δ)+ β1(λ+ δ)− cβ1β2]ψ ′
δ(x)+ δβ1β2ψδ(x)

= 0.

We know that the fundamental solution to ψδ can be written as

C1eρx + C2 exp{γ1x} + C3 exp{γ2x},
where ρ ≤ 0, γ1 ≥ 0, and γ2 > γ1 are the three real roots of the characteristic function

cs3 + (cβ2 − cβ1 − λ− δ)s2

+ [λ(1 − π)β2 − λπβ1 − β2(λ+ δ)+ β1(λ+ δ)− cβ1β2]s + δβ1β2

= 0,

which is equivalent to the Lundberg fundamental equation (8.4).
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We denote the left-hand side of (8.4) by k(s). Note that δ > 0. It is obvious from (8.4) that
k(0) = 0 and k(−β2+) = +∞; hence, there must be one solution ρ ∈ (−β2, 0) for k(s) = δ.
We also have a solution γ1 ∈ (0, β1) as k(β1−) = +∞, and a solution γ2 ∈ (β1,+∞) as
k(β1+) = −∞ and k(+∞) = +∞.

Since limu→+∞ ψδ(u) = 0, we must have C2 = C3 = 0, i.e.

ψδ(x) = C1eρx.

Substituting this into (8.6) gives

cρC1eρx − (λ+ δ)C1eρx + λπβ1 exp{β1x}
∫ ∞

x

C1 exp{−(β1 − ρ)y} dy

+ λπβ2 exp{−β2x}
∫ x

0
C1 exp{(β2 + ρ)y} dy + λ(1 − π) exp{−β2x}

= 0.

Rearranging terms yields,[
cρ − (λ+ δ)+ λπβ1

β1 − ρ
+ λ(1 − π)β2

β2 + ρ

]
C1eρx − λ(1 − π)β2C1

β2 + ρ
exp{−β2x}

+
(
λ(1 − π)β2

∫ ∞

0
f (z) exp{−β2z} dz

)
exp{−β2x}

= 0.

Note that the algebraic expression in square brackets is Lundberg’s equation and, hence,
vanishes. Therefore,

C1 = (β2 + ρ)

∫ ∞

0
f (z) exp{−β2z} dz.

When δ = 0, ψδ reduces to the case

ψ(x) = Ex[f (|Xτ0 |) 1(τ0 < ∞)].
Corollary 8.2. If Q is the double exponential distribution (8.2), ψ admits an explicit solution
given by

ψ(x) =

⎧⎪⎨
⎪⎩
((β2 + ρ)

∫ ∞
0 f (z) exp{−β2z} dz)eρx if θ > 0,∫ ∞

0 f (z) exp{−β2z} dz

β2
if θ ≤ 0,

where the safety loading factor θ = (c − λµ)/(λµ), µ = λ[(1 − π)/β2 − π/β1], and

ρ = (λ− cβ2 + cβ1)−�

2c

with
� =

√
(λ− cβ2 + cβ1)2 − 4c[λ(1 − π)β2 − λπβ1 − β2λ+ β1λ− cβ1β2].

Proof. It is not hard to see that the Lundberg equation reduces to

cs3 + (cβ2 − cβ1 − λ− δ)s2 + [λ(1 − π)β2 − λπβ1 − β2λ+ β1λ− cβ1β2]s = 0. (8.7)
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It is obvious that s = 0 is a solution and the other two roots are given by

γ = (λ− cβ2 + cβ1)+�

2c
and ρ = (λ− cβ2 + cβ1)−�

2c
.

We can show that if c > λµ = λ[(1 − π)/β2 − π/β1] then ρ < 0 and γ > 0. Otherwise,
γ > ρ > 0. If the negative root ρ to the Lundberg equation exists, the result follows from
Corollary 8.1.

When the Lundberg equation does not have a negative solution, we must have ψ(x) = C1,
where C1 is determined from the integro-differential equation

cψ ′(x)− λψ(x)+ λπ

∫ ∞

0
ψ(x + y) dQ+(y)+ λ(1 − π)

∫ x

0
ψ(x − y) dQ−(y)

+
(
λ(1 − π)β2

∫ ∞

0
f (z) exp{−β2z} dz

)
exp{−β2x}

= 0.

We find out that in this case

C1 = 1

β2

∫ ∞

0
f (z) exp{−β2z} dz.

Since

l′(0) = c + λπ
1

β1
− λ(1 − π)

1

β2
,

and recall that

c = (1 + θ)E[Y ] = (1 + θ)

(
λπ

1

β1
− λ(1 − π)

1

β2

)
,

whether (8.7) has a negative or zero solution depends solely on θ .

Note that when θ ≤ 0, the safety loading condition is violated and the surplus process has
a negative drift; hence, ruin is deemed to occur ultimately. If we take f (y) = 1 in ψ then
ψ(x) = Ex[1(τ0 < ∞)] = 1.

8.1. A perpetual American put option with two-sided jumps

In Gerber and Shiu (1996), (1998b), it was successfully demonstrated that the Gerber–Shiu
discounted penalty function can be applied to price a perpetual American put option. The
underlying stock price is driven by an exponential of a shifted compound Poisson process. It
turns out that the price of a perpetual American option is the discounted expected value of a
payoff function, which can be regarded as a penalty function, evaluated at an optimal hitting
time. In the same line of logic, we shall derive the price of a perpetual American put option
based on a underlying stock price driven by an exponential of a compound Poisson process with
two-sided jumps. To obtain explicit solutions, we need as given the assumption of two-sided
exponential jumps.

Assume that the stock price process is given by

S(t) = eX(t) = exp

{
x + ct +

N(t)∑
i=1

Yi

}
,

where c is the expected yield rate, the counting process {N(t), t ≥ 0} is Poisson process with
intensityλ, and the sequence of random movements {Yi, i = 1, 2, . . .} are mutually independent
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and follow the common distribution

Q(y) = π(1 − exp{−β1y}) 1(y ≥ 0)+ (1 − π)[1 − (1 − exp{−β2y}) 1(y < 0)].
It is known in mathematical finance that the price of an American put option is given by

P(x) = sup
a

Ex[exp{−δτa}�(S(τa))] = sup
a

Ex[exp{−δτa}�(exp{X(τa)})], (8.8)

where the payoff function
�(s) = (K − s)+,

K is the exercise price, and

τa = inf{t : S(t) < ea} = inf{t : X(t) < a}
with a < lnK ≤ x. Now we are able to derive an analogous result with the perpetual American
put option with only negative jumps obtained in Gerber and Shiu (1998).

Corollary 8.3. When δ > 0, the solution to F(x) in (8.8) is given by

P(x) = (β2 + ρ)K

β2(1 − ρ)

(
K
ρ(β2 + 1)

β2(ρ − 1)

)−ρ
eρx,

where ρ is the unique negative solution to (8.4).
When δ = 0, the solution to F(x) is given by

P(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(β2 + ρ)K

β2(1 − ρ)

(
K
ρ(β2 + 1)

β2(ρ − 1)

)−ρ
eρx if θ > 0,

K

β2
2

if θ ≤ 0.

Proof. If we define a new process Y = {Yt , t ≥ 0} such that Yt = Xt − a and its
corresponding time of default τYd = inf{t : Y (t) < d}, then it is easy to see that τY0 = τa .
We have to keep in mind that Y (0) = x − a. Therefore, the discounted payoff function upon
which the supremum is taken can be written as a special case of ψδ(x):

Ex[exp{−δτa}�(exp{X(τa)})] = Ex−a[exp{−δτY0 }�(exp{Y (τY0 )+ a})].
When δ > 0, it follows immediately from Corollary 8.1 that

Ex[exp{−δτa}�(exp{X(τa)})] =
(
K − β2

β2 + 1
ea

)
β2 + ρ

β2
eρ(x−a),

which is maximized at

a = ln

(
K
ρ(β2 + 1)

β2(ρ − 1)

)
.

Since ρ ∈ (−β2, 0), we can show that a < lnK .
When δ = 0, a similar result follows from Corollary 8.2. When θ ≤ 0,

Ex[exp{−δτa}�(exp{X(τa)})] = K

β2
2

− ea

β2(β2 − 1)
,

which is maximized at a = −∞. This completes the proof.

The last part of the corollary makes sense because the investor is better off delaying exercising
the option as late as possible, as the safety loading condition θ > 0 is violated and the stock
price process will eventually drift towards 0.
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Appendix A

Proof of Proposition 3.1. First, we define a counting process associated with Xt by

N(t, A) =
∞∑
i=1

1(Ti ≤ t) 1(XTi −XTi− ∈ A), t ≥ 0,

whereA is a subset of (−∞,∞). Obviously,N(t, A) is a Poisson process from the definition of
the PDCP process. Hence, its compensator process denoted by Ñ(t, A) is given by Ñ(t, A) =
λQ(A)t, t ≥ 0.

Then, in terms of the associated counting process measure N(dt, dy), the expectation in
(1.2) can also be written as

C(x) = Ex
[∫ τ0

0

∫ ∞

−∞
e−δt�(Xt−, Xt− + y)N(dt, dy)

]
. (A.1)

By similar arguments used in Section 2 of Chapter II of Brémaud (1981), we know that the
expectation in (A.1) can be expressed as the expectation in terms of the compensator process
measure, namely,

C(x) = Ex
[∫ τ0

0

∫ ∞

−∞
e−δt�(Xt−, Xt− + y)N(dt, dy)

]

= Ex
[∫ τ0

0

∫ ∞

−∞
e−δt�(Xt−, Xt− + y)Ñ(dt, dy)

]

= Ex
[∫ τ0

0
e−δtλ

∫ ∞

−∞
�(Xt−, Xt− + y) dQ(y) dt

]

= Ex
[∫ τ0

0
e−δtλ

∫ ∞

−∞
�(Xt ,Xt + y) dQ(y) dt

]
.

The last equality can be explained as follows. Since the process Xt can only have countable
discontinuities, then, for each ω ∈ �, {t : Xt−(ω) �= Xt(ω)} is a countable set. Hence, almost
surely, ∫ τ0

0
e−δtλ

∫ ∞

−∞
�(Xt(ω),Xt (ω)+ y) dQ(y) dt

=
∫ τ0

0
e−δtλ

∫ ∞

−∞
�(Xt−(ω),Xt−(ω)+ y) dQ(y) dt.

Proof of Theorem 3.1. Let T = T1 ∧ td , where td = inf{t | φx(t) < d}, with the convention
that inf{∅} = ∞. Note that T is a stopping time with respect to {Ft }. Then,

H(x) = Ex
[∫ T

0
e−δs l(Xs) ds

]
+ Ex

[∫ τd

T

e−δs l(Xs) ds

]
. (A.2)

Note that when T1 > td , we have τd = td = T . While T1 ≤ td , we have T = T1. Thus,

Ex
[∫ τd

T

e−δs l(Xs) ds

]
= Ex

[
1(T1 > td)

∫ τd

T

e−δs l(Xs) ds

]

+ Ex
[

1(T1 ≤ td )

∫ τd

T

e−δs l(Xs) ds

]

= Ex
[

1(T1 ≤ td )

∫ τd

T1

e−δs l(Xs) ds

]
,
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where

Ex
[

1(T1 ≤ td )

∫ τd

T1

e−δs l(Xs) ds

]
= Ex

[
Ex

[∫ τd

T1

1(T1 ≤ td )e
−δs l(Xs) ds

∣∣∣∣ FT1

]]
.

For any given constant M > 0, it follows from the strong Markov property that

Ex
[

Ex
[{

1(T1 ≤ td )

∫ τd

T1

e−δs l(Xs) ds

}
∧M

∣∣∣∣ FT1

]]

= Ex
[

EXT1

[{
1(T1 ≤ td )

∫ τd−T1

0
e−δ(T1+s)l(XT1+s) ds

}
∧M

]]
.

Let Y (s) = X(s + T1), s ≥ 0, and define τYd = inf{t | Y (t) < d, t ≥ 0}. Note that
τYd = τd − T1 when T1 ≤ td . Thus,

Ex
[

EXT1

[{
1(T1 ≤ td )

∫ τd−T1

0
exp{−δ(T1 + s)}l(XT1+s) ds

}
∧M

]]

= Ex
[

EXT1

[{
1(T1 ≤ td ) exp{−δT1}

∫ τYd

0
e−δs l(Ys) ds

}
∧M

]]
.

In view of (3.2), we obtain, by the dominated convergence theorem,

Ex
[

1(T1 ≤ td )

∫ τd

T1

e−δs l(Xs) ds

]

= lim
M→∞ Ex

[
Ex

[{
1(T1 ≤ td )

∫ τd

T1

e−δs l(Xs) ds

}
∧M

∣∣∣∣ FT1

]]

= lim
M→∞ Ex

[
EXT1

[{
1(T1 ≤ td ) exp{−δT1}

∫ τd−T1

0
e−δs l(Xs) ds

}
∧M

]]

= Ex
[

EXT1

[
1(T1 ≤ td ) exp{−δT1}

∫ τYd

0
e−δs l(Ys) ds

]]
= Ex[1(T1 ≤ td ) exp{−δT1}H(XT1)].

Once again by the dominated convergence theorem we have

Ex[1(T1 ≤ td ) exp{−δT1}H(XT1)]
= lim
M→∞ Ex[1(T1 ≤ td ) exp{−δT1}H(XT1) ∧M]

= lim
M→∞ Ex[Ex[1(T1 ≤ td ) exp{−δT1}H(XT1) ∧M | XT1−]]

= lim
M→∞ Ex

[{
1(T1 ≤ td ) exp{−δT1}

∫ ∞

−∞
H(XT1− + y) dQ(y)

}
∧M

]

= Ex
[

1(T1 ≤ td ) exp{−δT1}
∫ ∞

d−XT1−
H(XT1− + y) dQ(y)

]
,

where the last equality follows from the fact that H(x) = 0 when x < d.
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Recall from property 4 of Definition 2.1 that XT1− is solely determined by the continuous
piece {φx(t), 0 ≤ t < T1}. Returning to (A.2), we now have

H(x) = Ex
[∫ T

0
e−δs l(φx(s)) ds

]

+ Ex
[

1(T1 ≤ td ) exp{−δT1}
∫ ∞

d−φx(T1−)
H(φx(T1−)+ y) dQ(y)

]
.

Recall from property 2 of Definition 2.1 that T1 is exponentially distributed with mean 1/λ.
Hence,

H(x) =
∫ td

0
λe−λt

∫ t

0
e−δs l(φx(s)) ds dt +

∫ td

0
λe−(λ+δ)t

∫ ∞

d−φx(t)
H(φx(t)+ y) dQ(y) dt

+ exp{−λtd}
∫ td

0
e−δs l(φx(s)) ds. (A.3)

We now discuss the two cases in which g(x) = 0 and g(x) �= 0.

In the case where g(x) = 0, it is easy to see thatφx(t) = x, t ≥ 0. Hence, td = inf{∅} = ∞
since d < x. Thus, (A.3) reduces to

H(x) =
∫ ∞

0
λe−λt

∫ t

0
e−δs l(x) ds dt +

∫ ∞

0
λe−(λ+δ)t

∫ ∞

d−x
H(x + y) dQ(y) dt

= 1

λ+ δ
l(x)+ λ

λ+ δ

∫ ∞

d−x
H(x + y) dQ(y),

which is a special case of (3.3) when g(x) = 0.

In the case where g(x) �= 0, recall from property 3 of Definition 2.1 that φx(t) is uniquely
determined by

dφx(t) = g(φx(t)) dt, 0 < t < td,

with φx(0) = x. Furthermore, φx(td) = L if td = ∞ and φx(td) = d if td < ∞, which
holds since φx(t) is continuous in t . However, since neither L or d depends on x, we can
denote φx(td) = m, which is a constant. Thus, if we let z = φx(t) then dt = dz/g(z) and
td = ∫ m

x
dz/g(z), and, thus, (A.3) becomes

H(x) =
∫ m

x

λ exp

{
−λ

∫ z

x

1

g(y)
dy

} ∫ z

x

exp

{
−δ

∫ u

x

1

g(y)
dy

}
l(u)

g(u)
du

1

g(z)
dz

+
∫ m

x

λ exp

{
−(λ+ δ)

∫ z

x

1

g(y)
dy

} ∫ ∞

d−z
H(z+ y) dQ(y)

1

g(z)
dz

+ exp

{
−λ

∫ m

x

1

g(y)
dy

} ∫ m

x

exp

{
−δ

∫ z

x

1

g(y)
dy

}
l(z)

g(z)
dz, (A.4)

which implies that H is absolutely continuous.
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We denote the three terms on the right-hand side of (A.4) by I1, I2, and I3, respectively.
Thus, by taking derivatives on the both sides of (A.4), we have, for x �∈ D,

H ′(x) = λ+ δ

g(x)
I1 − l(x)

g(x)

∫ m

x

λ exp

{
−λ

∫ z

x

1

g(y)
dy

}
1

g(z)
dz+ λ+ δ

g(x)
I2

− λ

g(x)

∫ ∞

d−x
H(x + y) dQ(y)+ λ+ δ

g(x)
I3 − l(x)

g(x)
exp

{
−λ

∫ m

x

1

g(y)
dy

}

= λ+ δ

g(x)
(I1 + I2 + I3)− l(x)

g(x)
− λ

g(x)

∫ ∞

d−x
H(x + y) dQ(y)

= λ+ δ

g(x)
H(x)− l(x)

g(x)
− λ

g(x)

∫ ∞

d−x
H(x + y) dQ(y),

which implies (3.3).

Definition A.1. For any integrable function f defined on [0,∞) and a real number s ≥ 0, the
Dickson–Hipp transform of f is given by

Tsf (x) = esx
∫ ∞

x

e−syf (y) dy, x ≥ 0.

The transform Ts is called the Dickson–Hipp operator, which was introduced in Dickson and
Hipp (2001).

Note that the Laplace transform of f is indeed a special case of the Dickson–Hipp operator

Tsf (0) =
∫ ∞

0
e−syf (y) dy.

Definition A.2. For any integrable functions f andQ defined on [0,∞), the convolution of f
and Q is given by

f ∗Q(x) =
∫ x

0
f (x − y) dQ(y), x ≥ 0.

For convenience, however, in the derivation of the following lemmas we shall introduce
another definition of convolution. Readers may directly refer to Lemma A.3 for the major
conclusion of the appendix.

Definition A.3. For any integrable functions f and q defined on [0,∞), the convolution of f
and g is given by

f � q(x) =
∫ x

0
f (x − y)q(y) dy, x ≥ 0.

The following properties of the Dickson–Hipp operator are used in this paper. The proofs
and references to the following two lemmas can be found in Li and Garrido (2004) and Gerber
and Shiu (2006).

Lemma A.1. If s1 ≥ 0, s2 ≥ 0, and s1 �= s2, then

Ts1Ts2f (x) = Ts2f (x)− Ts1f (x)

s1 − s2
.

The lemma shows that the Dickson–Hipp operators are commutable with each other. Hence,
they are also commutable with Laplace transforms.
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Lemma A.2. If s ≥ 0 then

Ts{f � q}(x) = Tsq(0)Tsf (x)+ f � Tsq(x).

Lemma A.3. If Q is a distribution function and s ≥ 0, then

Ts{f ∗Q}(x) = q̃(s)Tsf (x)+ f ∗ B(x),
where q̃(s) = ∫ ∞

0 e−sy dQ(y) and B(x) = TsQ(x).

Proof. For simplicity, we assume that q = Q′. Hence, f � q = f ∗ Q and the results
follow by Lemma A.2 and the fact that T0Tsq(x) = TsT0q(x) = TsQ(x). The proof can be
generalized to a more general distribution Q.
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