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WEAK PARALLELOGRAM LAWS FOR 
BANACH SPACES 

BY 

W. L. BYNUM(1) 

It has been shown previously that the LP(JJL) spaces for K p < 2 satisfy a 
weak parallelogram law, and the same methods can be used to show that the 
Lp(jLt) spaces for 2<p<oo satisfy a related weak parallelogram law. This paper 
obtains several equivalent characterizations of Banach spaces which satisfy one 
of these two weak parallelogram laws. One such characterization involves the 
conditions on the moduli of convexity and smoothness analyzed by Linden-
strauss. 

1. Introduction. This paper is an outgrowth of the following two theorems. 
Theorem 1 was established in [1] and Theorem 2 is a new result. Its proof is 
quite like that of Theorem 1 and need not be given here. As noted in [1], the 
proof of Theorem 1 (and thus of Theorem 2) is valid for an abstract Lp(ix) 
space with at least two disjoint sets of positive finite measure. 

THEOREM 1. If 1 < p < 2 and 0<b<p-l, then for all x, y e €p, 

(1) ll* + y f+HI*-y lN2H 2 + 2||y||2; 
moreover, p - 1 is the largest number b satisfying inequality (1) for all x and y in 

THEOREM 2. If 2 < p < o ° and p - l < b < o o ? then inequality (1) is reversed for 
all x,ye £p\ moreover, p — 1 is the smallest number b such that inequality (1) is 
reversed for all x and y in €p. 

It is well-known and easy to show that a Banach space satisfying inequality 
(1) (or the reverse of inequality (1)) for b = 1 must satisfy the parallelogram 
identity and by the paper of Jordan and von Neumann [6] must be an inner 
product space. Inequality (1) for 0 < b< 1 and the reverse of inequality (1) for 
1 < ft < oo are two ways to weaken the well-known parallelogram identity. This 
paper characterizes Banach spaces which satisfy one of these two weak 
parallelogram laws. 

The following terminology will be used. 

DEFINITIONS. A Banach space V is a lower weak parallelogram space with 
constant b (or briefly V is LWP(b)) if inequality (1) if satisfied for each x and y 
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in V. V satisfies a lower weak parallelogram law on its sphere with constant b (or 
briefly V is LWPS(b)) if inequality (1) holds for all x and y of norm one. V is 
an upper weak parallelogram space with constant b (or briefly V is UWP(b)) is 
inequality (1) is reversed for each x and y in V, and finally V is UWPS(b) is 
inequality (1) is reversed for all x and y of norm one. If V is LWP(b) (resp. 
UWP(fc)) for some value of b, the best LWP (resp. UWP) constant for V is 
defined to be max{b : V is LWP(fc)} (resp. min{fc : V is UWP(fc)}). The best LWP 
(or UWP) constant for the unit sphere of V is defined similarly. 

Throughout this paper, V will denote a Banach space of dimension greater 
than one with real scalars and V* will denote its dual. 

The definitions imply that any Banach space is LWP(b) for b < 0, and if V is 
UWP(fc) then b > 0 . For these reasons all WP constants are assumed to be 
non-negative. Note also that if V is LWPS(fe) or LWP(fe) then b < 1, and if V is 
UWPS(fc) or UWP(fc) then fc>l. 

The following observation will be useful in what follows. The substitutions 
u = x + y and v = x-y in (1) show that V is LWP(b) if and only if for each 
u,veV, 

(10 2||«||2+2M|tf^ll« + HI2+ll«-HI2, 
and V is UWP(fc) if and only if inequality (T) is reversed for all u,veV. 

This paper obtains several alternate characterizations of LWP and UWP 
space. Theorem 3 of section 2 characterizes WP spaces in terms of the 
normalized duality mapping of the space. Theorems 4 and 5 of section 3 show 
that if a WP law holds on the unit sphere of a Banach space, then the entire 
spaces satisfies a WP law of the same type. Although the proofs of Theorems 4 
and 5 are too crude to show in general that the best WP constant for the unit 
sphere is equal to the best WP constant for the whole space, this more precise 
result is obtained in Theorem 6 for the LP(JLL) spaces for 1 <p<o° . Theorems 7 
and 8 of section 4 show that the LWP and UWP laws are equivalent, 
respectively, to the conditions on the moduli of convexity and smoothness 
analyzed by Lindenstrauss in [7], and these results are used in Theorem 9 to 
obtain a duality between LWP and UWP spaces. 

2. Normalized duality mapping. 

DEFINITION (cf. [3]). For a Banach space V, the normalized duality mapping 
of V into V* is a map J:V-+2V* such that for each xeV, 

Jx = {feV*:f(x) = (f,x) = \\x\\2 = \\f\\2}. 

The characterization of a WP space in terms of its normalized duality 
mapping is as follows: 

THEOREM 3. Let V be a Banach space with normalized duality mapping J. 
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Then: 
(A) V is LWP(b) if and only if for each x, y e V and fe Jx, 

(2) l|x + y||2^W2+Mly||2+2(/,y). 

(B) V is UWP(b) if and only if for each x, y e V and fe Jx, inequality (2) is 
reversed. 

Proof. To prove part (A), suppose that V is LWP(fc). For x, y e V and each 
integer n > l , we shall first prove the following inequality: 

(3) ||x + y | | 2 -W 2 ^Ml-2- ' , ) | |y | r + 2"(||x + 2-"y||2-||x||2). 

Indeed, note that the LWP law applied to (x + y)/2 and x/2 yields the case 
n = l, which, when combined with mathematical induction, establishes the 
desired result for n>\. 

If an denotes the right-most term of inequality (3) and if feJx, then because 
//||JC|| has norm one, ||x + 2-ny||>||x|r1/(jc + 2-ny), and so 

(4) an>2(/,y) + 2-nW-2( / ,y)2 , 

from which inequality (2) follows. The reverse implication part (A) is 
obvious. 

To prove part (B), assume that V is UWP(fc). This implies that inequality (3) 
is reversed for all x, y e V and n > 1. If an is defined as before, then 

(5) a„<21-"ft||y||2 + 2"(W2-||x-2-"y||2)) 

by the reverse of inequality (1'). For feJx, the right-most term of inequality (5) 
is not greater than the right side of inequality (4), and this establishes the 
desired result. 

By replacing y with -(x + y), Theorem 3 can be restated as follows: 

THEOREM 3'. Let V be a Banach space with normalized duality mapping J. 
Then: 

(A) V is LWP(b) if and only if for each x, y e V and fe Jx, 

Hx + y|NNI2+||y||2+2(/,y). 

(B) V is UWP(b) if and only if for each x, y e V and fe Jx, the inequality of 
part (A) is reversed. 

3. Weak parallelogram laws on the unit sphere. It seems natural to expect a 
Banach space satisfying a WP law on its unit sphere to be a WP space, and the 
next two theorems support this expectation. 

THEOREM 4. If a Banach space V is LWPS(b2), then V is LWP(b/(l + b))2. 

Proof. Assume the contrary; i.e., that V is LWPS(b2) and V is not LWP(c2) 
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where c = fc/(l + b). Then there must exist u, v e V such that ||u|| = 1 ^||i>|| and 

||u + u||2 + c 2 | | u - u | | 2 > 2 + 2||i)||2. 

Thus by the triangle inequality c | |u -u | |> | | t> | | - l , and if w = u/||u|| then 
||M — W| |S: (1 + fe)_1 ||w-u|l- Therefore, 

4> | |u + w||2 + &2 | |u-w||2 

>||« + t ; | | 2 -2( |H | 2 - l ) + ( | H | - l ) 2 + c 2 | | M - U | | 2 

> 4 + ( |M|- l ) 2 , 

which is contradictory. 

THEOREM 5. If a Banach space V is UWPS(b), then V is LWP(4b + l) . 

Proof. From the assumption that V is not UWP(4b + l) , there exist u,veV 
which violate the UWP law with constant 4b+ 1 and satisfy | |M||= 1 ^||u||. The 
remainder of the proof is similar to the proof of Theorem 4 and is omitted. 

With regard to the well-known parallelogram law and the unit sphere, Day 
[2] has shown that if a Banach space satisfies the parallelogram law on its unit 
sphere, then the parallelogram law holds for all of V; or stated in the 
terminology of this paper, if V is both LWPS(l) and UWPS(l), then V is 
LWP(l). Schoenberg [8] later improved Day's result to show that if V is 
LWPS(l) (or UWPS(l)) then V is LWP(l). These results suggest the conjec
ture that if V is LWPS(fc) for 0 < b < 1 (or V is UPWS(b) for 1 < b <°°) then V 
is LWP(b) (or V is UWP(fo)), or equivalently stated, the best WP constant for 
the unit sphere of V is equal to the best WP constant of V. 

The argument given for the above theorems is too crude to establish this 
result; in the above argument, too much was given up to escape from the unit 
sphere. It is not clear whether the previous conjecture is true in general, but it 
does hold in the particular case of the Lp(ix) spaces for l < p < o ° . 

THEOREM 6. For K p < 2 , max{b:Lp(ju,) is LWPS(b)} = p - 1 , and for 2 < 
p<oo, min{6:Lp(|Li) is UWPS(b)} = p - 1 . 

Proof. Case 1. K p < 2 . Note that for a Banach space V the best LWP 
constant for the unit sphere of V is 

inf{(4-||x + y| |2)/ | |x-yf:| |x| | = | | y | | = l , x # y } . 

Denote this number by Av. If 8v(t) is the modulus of convexity of V (see 
section 4 for a definition), then we shall show in what follows that: 

(6) A v - i n f { 4 ( l - ( l - ô v ( 0 ) 2 ) / ^ : 0 < r < 2 } . 

Denote the number on the right side of equation (6) by Bv. For any x,yeV 
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such that ||JC|| = ||y|| = 1 and ||JC - y|| = t>0, it follows from the definition of 8v(t) 
that 

4 ( ( l - ( l - M 0 ) 2 ) ^ 4 - | | x + y f 

and therefore Bv ^ Av. Now pick 0 < t < 2 and e > 0. Select x, y e V with norm 
one such that | | x -y | |= f and 2-||jt + y | | < 2 M 0 + 2ef2. Then, 

4 -1|* + yf < 4(M0 + st2)(2 - MO) 

and so, 

A v ^ 4 ( l - ( l - M 0 ) 2 ) / ' 2 + 8e. 

Therefore AV<BV, and equation (6) is established. 
In the particular case of V = Lp(/x) for l < p < 2 , Hanner [5, Theorem 2] has 

shown that for 0 < f < 2 , M O is the unique solution of the equation: 

(7) (1 - M O + (t/2))p +11 - M O - C/2)|p = 2. 

It follows from (6) and (7) that A v is the infimum of the set 

{(l-u2)/v2:0<v<l,(u + v)p + \u-v\p = 2}, 

so that for 0 < b < a and ap + bp = 2, 

Av<(4-(a + b)2)/(a-b)2 

Two applications of L'Hopital's rule show that as ail the expression on the 
right approaches p - 1 , and hence Av<p-l. Since Theorem 1 yields the 
opposite inequality, the proof is complete. 

Case 2. 2 < p <oo. For a Banach space V and for 0 < t < 2, define y v (0 to be 

sup{l-(| |x + y||/2):W = ||y|| = l , | | x -y | | = f}. 

As in Case 1, the best UWP constant for the unit sphere of V turns out to be 

s u p { 4 ( l - ( l - y v ( 0 ) 2 / ' 2 : 0 < f < 2 } . 

A repetition of Hanner's argument for Theorem 2 of [5] shows that when 
V = LP(JLL) for 2<p<oo 5 yv(t) is the unique solution of the equation obtained 
from (7) by replacing 8v(t) with yv(0- The remainder of the proof of Case 2 is 
similar to the proof of Case 1 and is omitted. 

It is mildly surprising that the trick used in [1] to show that p - 1 is the best 
LWP constant for / p ( K p < 2 ) does not work here to prove Case 1 of 
Theorem 6. In [1], yt is defined to be (1 + t)ex + (1 - t)e2 where ex and e2 are the 
first two unit coordinate vectors in €p, and the limit of (2||y0||

2 + 2||yf||
2-||yo + 

yt||
2)/||y0- yt||

2 as t -> 0 is shown to be p - 1 . However, if y0 and yt are replaced 
by y0/||y0|| and yj\\yt\\9 the limit as f-> 0 turns out to be 2 ( p - l ) / ( 3 - p ) which is 
larger than p - 1 . 

2 
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4. The convexity and smoothness conditions of Lindenstrauss. Duality. It 
turns out that a UWP law (or LWP law) is equivalent to a smoothness (or 
convexity) condition investigated by Lindenstrauss in [7]. These conditions are 
given below. First, recall that the modulus of convexity of a Banach space V is 
a function, Sv(t), defined for t in [0, 2] to be: 

inf{l-(| |x + y||/2):W = ||y|| = l , | | x - y | | = r } , 

and the modulus of smoothness of V is a function, pv(0> defined for f > 0 to be: 

(è)sup{||x-rry||4-||x-ry||-2:W = | |y | |=l}. 

Recall also that V is uniformly convex if 8v(t)>0 for 0 < f < 2 , and V is 
uniformly smooth if the right derivative of pv at 0 is 0. 

DEFINITION. A Banach space V is said to satisfy a Lindenstrauss convexity 
condition with constant b (or briefly, V is LC(b)) if b is a positive number such 
that for each t in [0,2] 8v(t)>bt2. A Banach space V is said to satisfy a 
Lindenstrauss smoothness condition with constant b (or briefly, V is LS(b)) if for 
each t>0 pv(t)<bt2. 

It is clear from the definitions that an LC space is uniformly convex and that 
an LS space is uniformly smooth. 

The next two theorems establish the equivalence of LC and LWP spaces and 
of LS and UWP spaces. 

THEOREM 7. (A) If a Banach space V is LC(b2), then V is LWP(2b/(l + 2b)). 
(B) If V is LWP(b), then V is LC(b/S). 

Proof. The proof follows immediately from equation (6) and Theorem 3. 

THEOREM 8. (A) If a Banach space V is LS(b), then V is UWP(1 +4fc + 2b2). 
(B) / / V is UWP(b), then V is LS(b/2). 

Proof. For x,yeV of norm one and 0 < f < l , let c = ||x + fy|| and d = 
\\x-ty\\. 

To prove (A), note that V is LS(ft), then 

c2 + d2 + 2 c d < 4 + (8fc + 4fc2)f2. 

If feJx, then l - f 2 < l - f 2 ( / , y)2<cd, from which (A) follows. 
To prove (B), note that 

c + d - 2 < a ) ( ( c + d) 2 -4)<(è) (c 2 + d 2 - 2 ) . 

If V is UWP(fe), then the last expression is not greater than bt2, which 
establishes part (B). 

A reasonable conjecture is that if V is both UWP and LWP, then V is 
isomorphic (linearly homeomorphic) to a Hilbert space, and this is indeed true. 
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In fact, Figiel and Pisier in [4] have shown much more; namely, if V has an 
equivalent LC (or LWP) norm and an equivalent LS (or UWP) norm, then V is 
isomorphic to a Hilbert space. 

Lindenstrauss has already shown in [7] that LC and LS spaces are dual. In 
particular, using Theorem 1 of [7] and Theorems 7 and 8 above, we obtain: 

THEOREM 9. Let V be a Banach space. 
(A) If V is LWP(b), then V* is LWP(l + 2b~~1 + 2"12T2). 
(B) If V is UWP(b), then V* is LWP(l + (b/2)1/2)~2. 

There are two facts which indicate that the WP constants in Theorem 9 can 
perhaps be improved. First, for K p < ° ° the WP constant for LP(JJL) is p - 1 
while the WP constant for Lp(/x)* is l / ( p - 1 ) (for JUL cr-finite). Second, using the 
normalized duality mapping, one can show that if V is LWP(ft) then V* is 
UWP(l + 16/fc), and this UWP constant is smaller than the UWP constant of 
Theorem 9(A) when 0<b<e-
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