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Selection response in traits with maternal inheritance
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Suminary

Maternal inheritance is the non-Mendelian transmission of traits from mothers to their offspring.
Despite its presence in virtually all organisms, acting through a variety of mechanisms, the
evolutionary consequences of maternal inheritance are not well understood. Here we review and
extend a model of the inheritance and evolution of multiple quantitative characters with complex
pathways of maternal effects. Extensions of the earlier model include common family
environmental effects not associated with maternal phenotype, sexual dimorphism, and paternal
effects (non-Mendelian influence of the father on offspring traits). We find that, in contrast to
simple Mendelian inheritance, maternal inheritance produces qualitatively different evolutionary
dynamics for two reasons: (1) the response to selection on a set of characters depends not only on

their additive genetic variances and covariances, but also on maternal characters that influence
them, and (2) time lags in the response to selection create a form of evolutionary momentum.
These results have important implications for evolution in natural populations and practical
applications in the economic improvement of domesticated species. We derive selection indices that
maximize either the economic improvement in a single generation of artificial selection or the
asymptotic rate of improvement in long-term selection programmes, based on individual merit or a
combination of individual and family merit. Numerical examples show that accounting for
maternal inheritance can lead to considerable increases in the efficiency of artificial selection.

1. Introduction

Maternal inheritance is the non-Mendelian trans-
mission of phenotypic traits from mothers to their
offspring. This can occur through a variety of
mechanisms: cytoplasmic heredity (e.g. mitochondrial
and chloroplast DNA and maternal RNA transcripts
packaged in eggs) or physiology and development
(e.g. body size of the mother or egg or seed size
affecting the body size of the offspring). Maternal
effects are usually strongest early in life and are
diluted during development as an individual’s own
genes are expressed (Rutledge er al. 1972; Cheverud
et al. 1983; Schaal, 1984). However, some maternal
effects can persist into adulthood, as for litter size in
mice and pigs (Falconer, 1965; Van der Steen, 1985)
and age at maturity in springtails (Janssen et al. 1988).
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Despite the widespread influence of maternal effects in
microorganisms (Grun, 1976), plants (Roach & Wulff,
1987) and animals (Boycott et al. 1930; Cundiff, 1972;
Bondari et al. 1978; Resnick, 1981; Price & Grant,
1985), their evolutionary consequences are poorly
understood.

In this paper we review and extend a model
(Kirkpatrick & Lande, 1989) of the inheritance and
evolution of multiple characters with complex path-
ways of maternal inheritance. The extensions include
common family environmental effects not associated
with maternal phenotype, sexual dimorphism or sex-
limitation of some characters, and paternal effects
(non-Mendelian influence of the father on offspring
traits). We also derive selection indices that maximize
the rate of economic improvement after a single
generation of artificial selection, or in long-term
selection programmes, based on individual merit or
using information from relatives.
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2. Models of maternal inheritance and selection
response

(1) Basic models

Dickerson (1947) and Wiltham (1963) described a
model of maternal inheritance in which a single
maternal trait, inherited in a purely Mendelian
fashion, produces a non-Mendelian effect on a
separate trait in the offspring. This model has been
used in the animal breeding literature to describe
generalized maternal influences on offspring charac-
ters such as juvenile growth rate (Cundiff, 1972).
Falconer (1965) described a model in which a single
character with a partly Mendelian basis exerts a
maternal effect on itself in the next generation, and
used this to analyze results of breeding and selection
experiments on litter size in mice. His model has also
‘been applied to litter size in pigs (Van der Steen,
1985). Riska et al. (1985) described a model in which
a single maternal trait has a non-Mendelian influence
on both itself (in the next generation) and on a
separate offspring trait. Although the form of response
to a constant intensity of selection is known for the
model of Dickerson and Willham (Dickerson, 1947;
Hanrahan, 1976; Van Vleck et al. 1977) and for
Falconer’s model (Van der Steen, 1985), a theory of
selection response in multiple characters with complex
maternal inheritance has only recently been derived
by Kirkpatrick & Lande (1989).

We generalized previous models to describe the
joint Mendelian and maternal inheritance of a set of k
quantitative traits. The phenotypic value of the i
trait in a newborn individual in generation ¢+1 is

z(+ D) =a(t+D)+e(t+D+c(t+ D)+ i Mz} (D),
Q)

where a; is the additive genetic component of the trait,
e, is the component attributable to individual en-
vironment effects and genetic dominance, and ¢, is the
effect of common family environment not including
maternal influences. Following standard quantitative
genetic theory (Falconer, 1981; Bulmer, 1985), we
assume that the column vectors a, e and ¢ are
statistically independent of each other and are
multivariate-normally distributed with covariance
matrices G, E and E_ respectively; the mean values of
the environmental components are zero, e = 0 and
¢ = 0; the population mates at random and epistasis is
absent. We also assume for simplicity in this section
that the population is sexually monomorphic and that
selection acts in the same way on males and females.
Important modifications of the equations to describe
sexually dimorphic or sex-limited traits, such as many
maternal characters, are described in the next section.

The summation in (1) represents the component of
the trait attributable to maternal inheritance: M|, is
the maternal effect coefficient of trait j in the mother
on trait 7 in her offspring, and z}(z) is the phenotype
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for trait j of the mother (that is, a female who
reproduced in generation ¢). M, is defined as the
regression of the phenotypic value of trait i/ in offspring
on the phenotypic value of trait j in their mothers,
holding the genetic component of trait / and the
phenotypic values of all other traits constant. This
coefficient measures the strength and sign (since M,
can be negative) of effects that mothers have on their
offspring through cytoplasmic, physiological, devel-
opmental, or other pathways of maternal inheritance.
Any network of such pathways between the traits can
be described using appropriate values for the Mgs.

The model in equation (1) differs from that in
Kirkpatrick & Lande (1989) and Lande & Price (1989)
only by the addition of the term ¢+ 1) accounting
for common family environmental effects apart from
maternal influences. All of their results can be applied
to the present model if E_ is added to E in various
expressions for the phenotypic covariance matrix P in
the former paper. Aside from this change, all of their
formulae, including offspring-parent phenotypic co-
variances and regressions, remain unchanged. (Of
course the common family environmental effect
c,(t+1) contributes to the resemblance between full
siblings.)

By taking expectations, we can deduce from
equation (1) that the evolutionary change caused by
selection in the vector of trait means between
generations ¢ and ¢+ 1 is

AZ(t) = [C,, + MP]B(r) + MAZ(t — 1) — MPB(t — 1). (2)

where C,, = Covl[a(s),z()"] * GI—-IM")"}, and the
superscript T denotes matrix transposition (Kirk-
patrick & Lande, 1989). P is the phenotypic covariance
matrix, M is the matrix of maternal effect coefficients,
and I is the identity matrix; these are square matrices
of dimension k. The selection gradient vector
B(H) =P 's(r) is defined in terms of the vector of
selection differentials in generation ¢, s(r), the differ-
ence in mean phenotype between selected and un-
selected individuals. The elements of the selection
gradient indicate the strength and direction of selection
acting directly on each trait, and are equivalent to
partial regression coeflicients of relative fitness on the
phenotypic value of each trait (Lande & Arnold,
1983). In the special case that all the M s are zero,
C,. =G and (2) becomes the standard equation for
the evolution of quantitative traits under pure
Mendelian inheritance, AZ(:) = GB(r) (Lande, 1979).

The three terms on the right side of equation (2)
have the following interpretation. The first term is the
response to current selection pressures, based on
parent-offspring resemblance, since C_,+MP is the
covariance between midparents and offspring (Kirk-
patrick & Lande, 1989). The second term represents
the delayed effect of evolution in maternal traits on
the change they produce in offspring traits; that is, an
evolutionary response in maternal traits produces a
response in offspring traits in the next generation,
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Fig. 1. Numerical example of the evolution of three
maternally inherited traits. Top left: schematic of
pathways of maternal inheritance, with its corresponding
maternal effects matrix. Selection acts only on trait 1 for
generations 1-4 (heavy horizontal bars). (@) Correct
evolutionary trajectories of phenotypic means from
equation (2). (b) Incorrect trajectories predicted using
offspring-midparent regression to estimate the selection
response in the first generation and assuming later

even in the absence of selection on maternal or
offspring traits in either generation. The last term in
(2) represents the delayed effect of selection on
maternal characters on the response of the offspring
characters in the next generation.

Two important conclusions follow from equation
(2). The first is that the evolution of a set of genetically
correlated traits depends not only on additive genetic
variances and covariances of those traits, but also
involves the inheritance and maternal effect co-
efficients of all traits exerting maternal effects on the
traits of interest. This contrasts with the case of purely
Mendelian inheritance, for which hereditary infor-
mation and selective forces on the characters of
interest are sufficient to predict the response to
selection (see Fig. 1).

The second conclusion from equation (2) is that the
evolution of the trait means depends not only on the
current force of selection, (), but also on the force of
selection in the previous generation, B(z—1), and the
evolutionary change in the previous generation,
Az(t—1). This also contrasts with purely Mendelian
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generations will have the same selection response. (¢)
Incorrect trajectories predicted using the correct genetic
covariance matrix but ignoring maternal effects. Models
(b) and (¢) incorrectly predict the rank order of the
characters by generation 9 as well as the per-generation
rates of change. Parameters for all cases: G=41 L, E=1,
B = (1, 0, 0)T. Other parameters in equation (2) calculated
as in Kirkpatrick & Lande (1989).

inheritance, where the evolutionary response to
selection depends only on B(s). Maternal inheritance
therefore generates time lags in the response to
selection, producing a form of evolutionary mo-
mentum (Kirkpatrick & Lande, 1989).

In an artificial selection programme where gen-
eration ¢ is the last generation of selection, so that
B(t+7) = 0 for 7 = 1, the evolutionary response in the
next generation will be

AZ(r+ 1) = M{AZ(1) — PB(2)},
and thereafter the response will be
AZ(1+71) = MT'AZ(1 + 1).

Thus even after selection has ceased evolution will
continue for as many generations as there are steps in
unclosed pathways of maternal effects, or indefinitely
if there are closed pathways or cycles of maternal
effects. For example, in Dickerson’s (1947) and
Willham’s (1963) model of a maternal trait affecting a
distinct offspring trait, there is a single unclosed
pathway of maternal effect of length one; after
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selection has ceased, evolution of the offspring trait
will occur in the next generation and there will be no
further cvolution. (The complete dynamics of response
to selection in Willham’s model given in equation (10)
of Kirkpatrick & Lande (1989) are incorrect, although
their more general formula A26 is valid.) If the
pathways of maternal effects form cycles, so that M
has some non-zero eigenvalues, then evolution will
continue indefinitely after selection has ceased,
although the magnitude of the response will be damped
out in proportion to A" where A is the leading
eigenvalue (with the largest modulus) of M, which
must have modulus less than one, | A| < 1 (Kirkpatrick

& Lande, 1989). The simplest example of a cycle of

maternal effects is Falconer’s model of a single
character that maternally affects itself, forming a
cycle of length one. An interesting consequence of
the time lags is that it should be possible to observe
a transient response to selection within an inbred
line, based on maternally inherited environmental
variation.

Figure 1 shows the evolution of three traits
connected through a hypothetical network of maternal
effects that might correspond to body size (trait 1) and
two aspects of maternal performance such as lactation
and gestation (traits 2 and 3). Selection acts only on
trait 1, and the characters are genetically uncorrelated.
We assume for simplicity that the population para-
meters (M, C,, and P) and the force of directional
selection (B) remain constant, although changes in
these parameters can be accommodated by the model.
Two consequences of the time lags are evident. First,
the rate of evolution of the traits is different in the
second and subsequent generations of selection than it
is in the first. Second, after selection ceases the traits
continue evolving. It can also be seen that the evolution
of a trait under selection depends not only on the
strength of selection and genetic parameters of that
trait, but also the pathways of maternal inheritance
connecting that trait to maternal characters not under
selection. These features distinguish maternal inherit-
ance from Mendelian inheritance.

The time lags can cause the initial and final rates of
evolution of traits to be substantially different even
under a constant intensity and direction of selection,
f. The response after a single generation of selection
on a population initially at equilibrium at generation
0 is, from equation (2),

AZ(0) = (C,,+ MP)B. (3)

This can be compared with the population’s final rate
of evolution, again assuming the parameters remain
constant. We find from (2) that the vector of
phenotypic means will approach the asymptotic rate
of evolution

AZ(0) = (I-M)"'C,,B. ®

If there are no cycles of maternal effects in the matrix
M then under a constant intensity and direction of
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selection the asymptotic rate of evolution will be
achieved after a number of generations equal to one
plus the length of the longest pathway of materngl|
effects. If there are cycles of maternal effects, then the
asymptotic rate of evolution will be approached in
proportion to A* where A is the leading eigenvalue of
M. From data on the magnitude of maternal effect
coefficients in papers cited in the introduction, we
expect that the asymptotic rate of evolution usually
will be approached rapidly, within a few generations
in most cases.

(1) Sexual dimorphism and sex-limited traits

Because many maternal traits are sexually dimorphic
or sex-limited, it is important to specify how the
models can be altered to describe such traits. Hanra-
han & Eisen (1973) have experimentally studied the
influence of maternal effects on a sexually dimorphic
trait, body weight in mice. For a single character with
maternal inheritance expressed only in females, such
as litter size in mice, C,, should be multiplied by 1 in
equations (2) through (4) and the selection gradients,
B, then refer to selection on females. This is readily
apparent from the fact that the covariance between
mothers and daughters is 1C,,+ MP (Kirkpatrick &
Lande, 1989). To describe multiple characters with
sexual dimorphism or sex-limited expression, the
character vector and the selection gradient vector can
be enlarged by treating each trait in each sex as a
separate character, such as body size in males and
females. The matrices in the above equations can also
be enlarged accordingly, allowing for paternal effects
(the non-Mendelian influence of father’s characters on
offspring traits) as well as maternal effects. Details are
given in Appendix 1.

3. Artificial selection

The major goal of breeding programs is to econ-
omically improve domesticated species by selecting
individuals on the basis of a set of correlated
characters. The classical approach is to find the
combination of characters on which selection will
maximize the rate of economic improvement. Equa-
tions (3) and (4) suggest two possible strategies: to
maximize the immediate improvement following only
a single generation of selection, or to maximize the
long-term rate of improvement. We consider in turn
the cases of selection on unrelated (or distantly
related) individuals, and the use of information from
relatives.

(1) Individual selection

The selection criteria are determined by finding the
index weight vector b such that artificial selection on
the linear combination of characters b'z maximizes
the rate of economic improvement. The classical
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solution, under the assumption of purely Mendelian
inheritance, is

b =P'Gd, : )

where d is a vector of relative economic values of the
phenotypic traits (Falconer, 1981; Bulmer, 1985).
From equation (4), however, we find in Appendix 2
that.with maternal effects the ultimate rate of economic
improvement is maximized using

b=PIC,0-M")d. 6)

Another alternative is to use the matrix of actual
phenotypic regression coefficients of offspring on
midparents, C,, P~* + M, in place of that in the classical
selection index, GP™!, so that

b= (P'CL+MNd. )

It can be shown from equation (3) that this index
maximizes the improvement in the first generation,
but in later generations it does not do as well as that
based on equation (6).

To compare the rates of economic improvement
using these three selection indices on a population
with maternal inheritance, consider the example from
Fig. | and assume trait 1 is the only character of
economic value. With equal intensities of selection,
using equation (6) yields a 28 % increase in the final
rate of economic improvement over that using parent-
offspring regression and a 27% increase over the
classical solution ignoring the maternal effects, as
shown in Fig. 2. In this example, using offspring-
midparent regression is initially better but ultimately
worse than is completely ignoring the maternal effects.
Since these are per-generation differences that ac-
cumulate across generations, the benefits of account-
ing for maternal inheritance can be substantial even
when the per-generation advantage is modest. The
amount of improvement depends on the parameters
of genetic and maternal inheritance ; other values can
produce differences larger or smaller than those seen
here.

(ii) Information from relatives

The result in equation (6) can also be applied to
construct a selection index that maximizes the long-
term rate of economic improvement using information
from relatives. Thus, in a population consisting of full
sib or paternal half sib families, we can derive an
optimal index for selection on a combination of
individual and family merit. By defining the family
mean and the individual deviation from the family
mean as separate traits all of the above equations
continue to apply, but with vectors and matrices
having dimensions twice as large as in the case of
individual selection. The special structure of the
vectors and matrices are given in Appendix 3. Consider
for example the case of a single character, litter size.
Falconer (1965) estimated the heritability of litter size
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Fig. 2. Comparison of economic improvement under
equal intensities of selection obtained by three different
methods for calculating the index weight vector, b: (i)
maximum long-term rate, from equation (6); (i)
maximum first-generation rate, from equation (7); and
(iii) the classical solution in equation (5), which ignores
the maternal effects entirely. The selection gradient vector
is calculated using p = ib/(b"Pb):, where i is the
standardized selection differential on the index b'z. Other
parameters are as in Fig. 1, with i = 1 and economic
weights d = (1, 0, 0).

in mice to be A% = 0-22, the maternal effect coefficient
to be m = —0:13, and the proportion of phenotypic
variance due to common family environment not
including maternal effects to be about ¢ = 0-01. The
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Fig. 3. Cumulative response to sclection in units of io, for
a single character, z, expressed only in females. i is the
standardized selection differential on the selection index,
and o, is the phenotypic standard deviation of the
character. Parameters are those estimated by Falconer
(1965) for litter size in mice (see text). The response to
individual selection is given by equation (2) with C,,
multiplied by % to account for sex-limitation of the
character, and responses using an optimal selection index
combining individual and family merit (with data on

n = 4 individuals per family) are described in Appendix 3.
The dashed line gives the response to selection only
within full sib families, as in Falconer’s experiments; note
the reversed response to selection in the first generation.
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parameters for litter size in pigs are similar (Van der
Steen, 1985). Because of the substantial negative
maternal effect and the low heritability, the regression
of daughter’s litter size on that of their mothers,
h?/(2—m)+m, is negative. Falconer applied selection
within full sib families and observed a marked reversed
response to selection in the first generation in both the
upward and downward selection lines. Figure 3
compares the dynamics of response to artificial
selection on this trait under various schemes of
selection.

4. Discussion

Most applications of maternal inheritance theory in
animal breeding have been based on the models of
Willham (1963, 1972), in which maternal performance
is assumed to be unobserved. Without direct ob-
servation of the maternal traits it is difficult to
estimate the parameters of maternal inheritance, which
requires information on many types of relatives (Eisen,
1967). Neither Willham’s models nor Van Vleck’s
(1970, 1976) generalizations can account for closed
pathways or cycles of maternal effects, as in Falconer’s
(1965) model of a single character with a maternal
effect on itself in the next generation. The limitations
of previous models make it difficult or impossible to
incorporate a realistic network of maternal effects.
Basic developmental and physiological considerations
suggest there are multiple maternal characters that
can exert complex pathways of non-Mendelian influ-
ence on offspring traits.

Our results indicate that it will be important for
evolutionary biologists and breeders to identify
networks of maternal effects influencing traits of
interest and to measure the relevant parameters,
instead of the common practice of lumping all non-
Mendelian inheritance into a single maternal effect.
Equation (2) demonstrates that to predict the response
to selection on a set of characters it is necessary to
know not only the phenotypic and additive genetic
variances and covariances of the characters, but also
the inheritance and maternal effect coefficients of all
traits that have maternal effects on the characters of
interest. Measurement of maternal characters along
with other traits of interest permits both the maternal
effect coefficients and the additive genetic variances
and covariances of all the characters to be estimated
simply from offspring-parent regressions; in some
cases this can be accomplished using only daughter-
mother regression if it can be assumed that most of the
characters do not exert maternal effects (Lande &
Price, 1989).

Hayes & Hill (1981) analysed the statistical proper-
ties of the classical selection index for multiple
characters [equation (5)], and recommended ‘ bending’
the additive genetic variance-covariance matrix, G, to
reduce the loss of efficiency in artificial selection
caused by sampling errors in the index coefficients
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(Harris, 1963). Bending consists of finding the
eigenvalues of G and contracting their range (on the
real line) around their mean value until there are no
negative eigenvalues left, since these correspond to
negative additive genetic variance for some com-
bination of characters caused by sampling variance in
the estimation of G (Hill & Thompson, 1978). A
‘bent’ G matrix for use in a selection index is then
constructed from the contracted eigenvalues and the
original eigenvectors. A similar procedure applied to
the matrix of maternal effect coefficients, M, may
improve the efficiency of selection indices in equations
(6) and (7) based on estimates of G and M. By
analogy, this would consist of finding the eigenvalues
of M and contracting their range (in the complex
plane) around their mean value until there are no
eigenvalues with modulus greater than one, since these
should not occur except for sampling errors (Kirk-
patrick & Lande, 1989). A bent M matrix can then be
constructed from the contracted eigenvalues and the
original eigenvectors.

We thank C.S.Haley and W.G. Hill for helpful dis-
cussions, and J. P. Gibson and two reviewers for comments
on the manuscript. Supported by U.S. Public Health Ser-
vice grant GM27120 to R.L. and National Science Foun-
dation grant BSR8604743 to M.K.
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Appendix 1
Sexual dimorphism and sex-limited traits

Let the female and male characters, which may differ
in number, be represented by the vectors z, and z;
respectively, and let the corresponding selection
gradient vectors be fi; and B . The model of inheritance
analogous to equation (1), allowing for both maternal
and paternal (non-Mendelian) effects, is

z(t+1) = a(t+ D +e(t+ 1) +c(t+1)
+M,z3() +Foz3(1),

z(1+1) =a,(t+1)+e,;(t+ 1)+ (1+1)
+M; 23 () +F,z3(1),

(A1)

in which the matrices M, and F, contain the coefficients
of maternal and paternal effects on female offspring,
whereas M ; and F; contain the coefficients of maternal
and paternal effects on male offspring. Again we
assume that the population mates at random and that
the Mendelian part of the inheritance is autosomal
with no epistasis. By taking expectations and ac-
counting for the sex-limited expression of the charac-
ters the following dynamical equations can be derived
for the vector of mean phenotypes z' = (z}, Z}) in
response to the selection gradient p'(1) = (BY(1), B3(1),

AZ(r) = 3C, () + M{AZ(t — 1)+ PAB(: — 1)}, (A2

in which again C,, = Cov[a(:),z(1)"] ~ GA—~-1M")™L.
The variance-covariance matrices of the phenotypic
vector and the vector of breeding values, a” = (al,a}),
have the forms

P 0 G G
P= ( * ) and G =( % %), (A3)
0 Py Gy Gy

in which P, and P, are the phenotypic variance-
covariance matrices for females and males, respect-
ively. Gg and G, are the corresponding additive
genetic variance-covariance matrices of the female
and male characters, and the ijth element of the matrix
G, is the additive genetic covariance between female
trait / and male trait j. The square matrix of maternal
and paternal effect coefficients is

M = (M9 FE), (A 4)

M, F,

and T is an identity matrix of the same size. In the
absence of non-Mendelian inheritance, when M = 0,
equation (A2) is equivalent to the usual model for the
evolution of sexually dimorphic characters (Lande,
1980).
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Appendix 2
Individual selection index

Given the vector of economic weights, d, corre-
sponding to the character vector z, we wish to find the
vector of relative weight coefficients b in the linear
selection index /= b'z that maximizes the rate of
economic improvement, R = d'Az, in a population
under a given intensity of artificial selection on the
index. With maternal inheritance, text equation (4)
shows that the rate of economic improvement in
response to a constant direction and intensity of
selection asymptotically approaches

R = d"Ab/(b"Pb),

in which the matrix A = (I-M)™'C,, is non-sym-
metric, / = §,/0, is the intensity of selection on the
index (selection differential in units of phenotypic
standard deviations), and we have used the fact that

B = ib/(b"Pb): (Harris, 1963). Applying the gradient

operator V| = (3/0b,, 8/db,, ... 0/0b,) to (A 5) gives
VIR = d"Ai(b"Pb):—b"P(b"Pb):d"Ab. (A 6)

With the condition for an extremum, VR = 0, and
assuming that P is non-singular (positive definite)
this yields the solution in text equation (6),

b= P-IATd’ (A 7)

from which we have omitted a scalar multiplier.
Substituting the optimal solution into (A 5) gives the
long-term rate of economic improvement

R = i(b"Pb):. (A8)

We can show that the solution in (A7) maximizes R by
applying the gradient operator to (A 6) to obtain the
matrix of second partial derivatives, H = V, V]R.
When evaluated at the extremum, using A'd = Pb, this
simplifies to

H = {Pbb"P — P(b"Ph)} i(b"Pb) .

The solution maximizes R if x"Hx < 0 for an arbitrary
vector x, which implies

(x"Pb)? < (x"Px)(b"Pb).

Letting y = Pix and v = Pfb this condition becomes
(y'V)? < (y"y)(v'v), which is the vector form of
Cauchy’s inequality, the left side being smaller than
the right by a factor of cos®6 where 6 is the angle
between the vectors y and v.

Appendix 3
Information from relatives

When characters of low heritability are involved,
information from relatives is often incorporated into
the selection criterion. We consider two cases of
selection on a combination of individual and family
merit, full sib families and paternal half sib families in
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which each offspring has the same father but a
different mother. Assume that all families are of equal
size », and that there is no sexual dimorphism. Define
the Vector of family mean phenotypes as z; and the
vector of individual deviations from the family mean
as z,,, which are statistically uncorrelated components
that sum to produce the individual phenotype (Robert-
son, 1955). The optimal selection index,
I =bjz,+b]z, that maximizes the long-term rate of
improvement in economic value in the population,
incorporating information from relatives, has the
same general form as in equation (A 7) where the
vector of weight coefficients for the 2 k-dimensional
trait vector z' = (z},2},), is denoted as b" = (b},b) and
I is the 2 k-dimensional identity matrix. Because z,
and z, sum to produce the individual phenotype, they
have equal economic value and the transpose of
enlarged vector of economic value is (d7,d"). By
considering the matrix analog of equations (1) for the
enlarged vector of characters z we can deduce that the
enlarged matrix of maternal effect coefficients is

M M 0 0

0 0 M M)’
for full sibs or half sibs respectively. The enlarged
additive genetic covariance matrix is

r,G 0
(0 (1—rn)G)’

in which r, =r+(1—r)/n is the additive -genetic
correlation between siblings in families of size =,
with r = 3 for full sibs and r = } for half sibs (Falconer,
1981). The enlarged phenotypic covariance matrix for
full sibs or half sibs is respectively

(P—(l ~DEG+E) 0 ) o
0 (1-1)4G+B)
(%G +1(P-1iG) 0
0 (1-HP-i6)

(A9)

(A 16)

). (A 11)

Single character

In the case of artificial selection on a single character,
using information from relatives, the bold-faced
matrices in equations (A 9)(A 11) are scalars:
M=m, G=0¢, P=¢% E=¢% E =0 and the
enlarged P matrix can be simply expressed as

t,of 0
0 (I=t)ol)’

in which ¢, = 14 (1 —t)/n is the phenotypic correlation
between siblings in families of size n (Falconer, 1981).
For half sibs ¢ = 4*/4 and for full sibs t = #*/2+c*+
m*+mh®/(1 —m/2), where the heritability #* = ¢%/0?
is the proportion of the total phenotypic variance due
to additive genetic effects and ¢* = o%/02? is the
proportion of the total phenotypic variance due to

(A 12)
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Selection response with-material inheritance

common family environmental effects not including
maternal effects. The optimal selection index for full
sib families then has weight coefficients

(bf _ h? ( [r,+(—r pml/t, )
bw) T (=1 —m\(—r )1 —3m)/(1—1,)
(A 13 q)

corresponding to a long-term rate of economic
improvement

R_ P [Ir+(—r)ymp
o, (I—tm)(1—m) :

n

L A= —my?
1—1,

}E. (A 13b)

The optimal selection index for half sib families has
weight coefficients

(bf _ h? ( r.(1—tm)/t, )
(A 14q)
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corresponding to a long-term rate of economic
_improvement

R h2i rd=ym?®  0-r,d-ml d

o, B (1-%"’1)(1—”1) tn l—tn ‘

(A 14b)

For a family size of one, n =1, these methods
reduce to individual selection which has the long-term
rate of economic improvement
R hti
—_——— Al5
7, (=Jm(i—m) (A1)
The asymptotic rates of response. for a character
expressed and selected only in females would be half
as large as in equations (A 135), (A 14b) and (A 15).
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