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LOGIC IN THE TRACTATUS

MAX WEISS

Abstract. I present a reconstruction of the logical system of the Tractatus, which differs from
classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which
suffices to express some effectively generated countably infinite disjunctions. And its attendant
notion of structure is relativized to the fixed underlying universe of what is named.

There follow three results. First, the class of concepts definable in the system is closed under
finitary induction. Second, if the universe of objects is countably infinite, then the property of being
a tautology is �1

1-complete. But third, it is only granted the assumption of countability that the class
of tautologies is �1-definable in set theory.

Wittgenstein famously urges that logical relationships must show themselves in the structure of
signs. He also urges that the size of the universe cannot be prejudged. The results of this paper
indicate that there is no single way in which logical relationships could be held to make themselves
manifest in signs, which does not prejudge the number of objects.

We have by now a quite systematic and rigorous grasp of the logical work of two of
Wittgenstein’s teachers, Frege and Russell. This is thanks in part to decades of flour-
ishing scholarship, and thanks also to Frege and Russell themselves. In contrast, despite
comparably voluminous commentary there is still no received understanding of anything
describable as the logical system of the Tractatus (Wittgenstein, 1921). It is hard to resist
the conclusion that the Tractatus did not, despite its professed program and its large repu-
tation, offer any systematic alternative conception of the nature of logic.

But the conclusion is mistaken. To the contrary, there is a system, or a class of similar
systems, which can be understood to explicate the development of logic in the Tractatus.
They differ rather sharply from those of Frege or Russell, as well as from classical first- or
second-order logic. Nonetheless they can be exactly described and investigated metamath-
ematically, for epistemological and metaphysical evaluation. In this paper, I will present
one such system, and investigate some of its properties. These turn out to be of surprising
and indeed independent interest.

In seeking to understand what logic is supposed to be according to the early
Wittgenstein, we may distinguish two kinds of evidence. First, there are the contours of his
own construction, famously, for example, in the truth-functionality thesis and its enactment
through iterated joint denial. Second, there are in the Tractatus apparent declarations of
epistemological constraints on the nature of logic: some of these, for example, have been
taken to suggest that according to Wittgenstein, logic must be decidable.

I wish to separate these two strands. In the early decades of the 20th century, it was
entirely possible for a proficient researcher to develop a computationally intractable system
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2 MAX WEISS

under the misapprehension of its decidability. Of course, it might be worthwhile to inves-
tigate systems which now can be seen to resonate with purported epistemological declara-
tions of the Tractatus. The question still remains: what system, if any, did Wittgenstein in
fact describe? The undecidability of logic being so deeply rooted in our own understanding,
it is hard to take up in imagination the computational intuitions of researchers in the era
which preceded its discovery. But in seeking to understand how someone tried to climb
a mountain, we should study the climber’s movements and the mountain’s contours, not
transpose the climber to a molehill.

A large body of literature exhibits accelerating progress in our understanding of the
development of logic in the Tractatus. Thanks especially to Geach (1981) and Soames (1983)
and more recently Wehmeier (2004), (2008), (2009), and Rogers and Wehmeier (2012), it
has become nearly received wisdom that Wittgenstein both intended and managed, if only
haphazardly, to accommodate the expressive resources of first-order logic with equality.

However, when the Tractatus was in preparation, first-order logic had not attracted much
attention as an autonomous logical system. So it would be surprising to say the least to find
that something like first-order logic, as it might be now understood, is the logic of the
Tractatus. I want to explore two respects in which Wittgenstein’s logic differs. They can
each be understood to characterize a conception of logic which is a kind of intermediate
between the logicisms of Frege and Russell on the one hand, and what became classical
logic on the other.

First, Wittgenstein’s conception of logic differs from what became classical logic in
regard to what is now understood as interpretation. Although the exact height of metalogical
perspective reached by Frege or Russell has been a matter of some scholarly controversy, it
seems nonetheless safe to deny that anything like the modern notion of first-order satisfia-
bility or logical consequence plays a central role in their logical writings. Rather, for Frege
and Russell, the notion of axiomatic derivability sets for logic a basic standard of rational
organization, and thence also of logical correctness. But Wittgenstein denied such a role for
proof. So it remains to be said just how the signs of a formalism could be subject to some
standard of logical correctness by the lights of the Tractatus. Here, Wittgenstein propounds
truth-conditional analyses of the notions of logical validity and of logical consequence.
These analyses resemble the now classical reduction of consequence to the notions of truth-
in-a-structure and class-of-all-structures. But while classically, a structure for a language
may have as its domain any nonempty set, for Wittgenstein all structures relevant to the
determination of validity have an underlying domain in common, the universal collection
of all objects. It has been both claimed and denied, in commentary on Tarski (1936)—see
Mancosu (2010) for a review—that this feature disrupts certain rudiments of model theory.
But as we’ll see, Wittgenstein’s conception is yet further from the classical one, since like
Russell he holds that each object has its own proper representative in a proposition.

Second, Frege and Russell understood logic to include what we recognize as non-first-
order resources. Frege’s 1879 Begriffsschrift culminates with what, by Frege’s lights, would
be a purely logical analysis of the concept of the ancestral. Likewise, Russell’s intro-
duction of the axiom of reducibility was motivated in part by the desire to reduce to
logic the principle of mathematical induction. First-order logic not having been isolated
as an autonomous logical system, it is natural to suppose that Wittgenstein inherited the
expectation, regarding such non-first-order notions, that they were nonetheless logical.
As Geach (1981), Potter (2009), and Ricketts (2012) among others have observed, he
introduced a notion of “form-series” variable, which permits the expression, in finite space,
of some countably infinite disjunctions. However, the literature contains no attempt at an
exact reconstruction of the device. For example, although it’s agreed that the disjuncts
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LOGIC IN THE TRACTATUS 3

must be generated in some vaguely “effective” manner, it’s not at all clear what this is
supposed to mean. Moreover, the logical significance of the form-series device depends
on the intelligibility of quantifying into the contexts it creates, but this in turn involves
subtleties hitherto unaddressed in the secondary literature.

I will construct a notion of formal series exactly. As an approximation from below, my
assumption will be that it lies well within the system of constructions Wittgenstein did
intend to admit. But then I will show that adding to first-order logic this approximation of
the form-series device yields an expression of every concept definable by finitary induction.
I’ll also give some interpretive evidence to suggest that this was the point.

So for present purposes, Wittgenstein’s two main divergences from classical logic are
these. The domain of every structure is one and the same collection of uniquely named
objects. And, basic logical resources include the notion of iterated formal procedure. By
making these divergences explicit, it becomes possible to give a mathematically definite
characterization of the complexity of Wittgenstein’s logical system. Let me quickly sum-
marize the results to be established here; the technical notions are standard but will be
defined in later sections. It has been widely recognized that Wittgenstein could respect
a commitment to decidability of logic by presupposing that the domain of quantification
is finite. This already implies that the complexity of logic depends on the cardinality of
the domain; in §4 I’ll evaluate the dependence precisely. I will show that if the domain
is countably infinite, then the property of being a tautology in the logical system of the
Tractatus is �1

1-complete in a suitable analogue of the analytical hierarchy. But moreover,
it is only granted the assumption of countability that the concept of tautology is �1 in
the Levy hierarchy of formulas of set theory. Since, in any case, the notions of countable-
and of arbitrary-domain tautology are �1

1 and �ZF
1 a priori, these results are just about as

strong as possible. When the form-series device is dropped from the system, then the notion
of tautology returns to its familiar �1 position in the arithmetical hierarchy; however, the
underlying notion of consequence remains just as intractable.

There are several further respects in which logic as elaborated in the Tractatus may
seem to differ from classical first-order logic. First, Wittgenstein takes as primitive not
ordinary connectives like negation, disjunction or existential generalization, but rather a
truth-functional operator N together with a variety of means of specifying the multiplicities
of formulas to which it may be applied. Second, through a nonstandard interpretation of
the objectual variables, Wittgenstein tries to eliminate the equality predicate. Third, the
role of higher logical types in the Tractatus is a matter of some controversy. The first
two of these features do not essentially alter the complexity-theoretic situation, but it
considerably expedites the mathematics to abstract from them. On the other hand, the
introduction of higher-order variables can only raise the complexity of the system. My
primary aim is to establish lower bounds, so I could simply duck the controversy by
introducing no higher types. Nonetheless, the complexity of, for example, the class of valid
second-order formulas is far above the lower bounds established here (Väänänen, 2001).
So, I argue on textual and systematic grounds that higher-order quantification does not
figure centrally in Wittgenstein’s account of the expressive resources of logic, and that
impredicative quantification cannot figure at all. Thus, my contention will not just be
that such-and-such are lower bounds, but moreover that significant strengthenings do not
warrant comparable credence.

A project to understand the purported nature of logic in the Tractatus encounters two
kinds of difficulty. First, there are the well-known exegetical difficulties raised by the text
itself. It is highly compressed, with its use of logical notation somehow both telegraphic
and inconsistent. But a little reflection reveals technical subleties too, even within relatively
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uncontroversial features of the program. Of particular concern here will be the problem
of implementing within quantificational logic Wittgenstein’s proposal to compress some
infinitary disjunctions into finite expressions. So in this paper, I will confine exegetical
discussion to §1, with the aim there to justify interpretive hypotheses which underwrite the
subsequent complexity-theoretic analysis. The point of the remainder of the paper is to give
a mathematical explication of the hypotheses and then to investigate their consequences.
I freely use notation and techniques which did not mature until after Wittgenstein’s death.

In outline, the rest of the paper runs as follows. §1 lays out some interpretive back-
ground. After briefly sketching the outlines of the Tractatus system, I introduce the two
departures from classical logic under investigation, summarizing relevant literature and
briefly sketching the importance of these eccentricities for the philosophical project of the
Tractatus. §2 opens the mathematical developments. I begin by explicating Wittgenstein’s
notion of a structure as truth-possibility for elementary propositions, and show that it yields
an embedding of the concept of truth in the concept of consequence. I then introduce an
approximation of the form-series device, and propose an analysis of quantification into
form-series contexts. Thanks to this analysis, it becomes possible to establish a founda-
tional result, that the addition of the form-series device to first-order logic does preserve
a decent form of extensionality. In §3, I turn to a question of the power of the form-series
device, and show that as explicated here, it yields the effect of adding to first-order logic an
operator for expressing finitary inductive definitions. At this point, the stage is set for the
investigation of complexity. In §4 I present a detailed characterization of the complexity-
theoretic effects of Wittgenstein’s conception of structure and of his introduction of the
form-series device, both separately and jointly: §4.1, §4.2, and §4.3 respectively treat
the cases in which the underlying domain is supposed to be finite, or some fixed infinite
cardinality, or considered in advance of any cardinality constraints at all. After sketching
in §5 what I conjecture to be some philosophical significance for these results, the paper
concludes in §6 with suggestions for future work.

§1. Interpretive background. In broad outline, Wittgenstein’s conception of logi-
cal structure in the Tractatus is straightforward. The upshot is a collection of sentences,
together with a relation on the collection which might be called “direct denial”. The direct
denial relation distinguishes some sentences as atomic, namely those which directly deny
no sentences. A nonatomic sentence is to be true if and only if each of the sentences it
directly denies is not true.

The relation of direct denial is supposed to secure that the truth or falsehood of each
sentence be determined by the truth or falsehood of the sentences which are atomic. To
this end, Wittgenstein prescribes that the collection of sentences and the relation of direct
denial must together satisfy a certain structural condition, a so-called “general proposi-
tional form”. Accordingly, atomic sentences may be regarded as having been given initially,
and any other sentence must be presented as a joint denial of some sentences presented
before it. As Geach (1981, 170) pointed out, the structural condition cannot be understood
to require that anybody actually construct all sentences which precede a given sentence in
the ordering, because in general, a sentence will have infinitely many antecedents. Rather,
the condition purports to indicate when some finite manipulation of signs could secure for
them a sense. The crux of the condition is that the relation of direct denial on the class of
sentences be wellfounded.

It is clear that if the relation of direct denial exhibited circularities, then it might not
be intelligible as realizing a logical relationship of denial at all. For example, a sentence
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which appears to deny itself could be so understood only by taking it both to be both
true and to be not true, which for early Wittgenstein would not be an understanding.
But although Russell claimed to locate the origin of paradoxes in circularity, the mere
exclusion of circularity does not suffice to secure the coherent interpretability of direct
denial as denial: for example, it would still admit the construction of a sequence of sen-
tences A0, A1, . . . each of whose terms is the direct denial of all its successors (see Yablo
(1993)). In practice, Russell enforced the acyclicity of logical dependence by a metaphor
of bottom-up construction in the ramified hierarchy of types; in imposing the stronger con-
dition of wellfoundedness, this hierarchy is a clear conceptual antecedent of Wittgenstein’s
general propositional form. In neither Principia nor the Tractatus does the notion of
wellfoundedness occur explicitly; so far as I know the concept is first explicitly formulated
in Mirimanoff (1917).

The existence of a wellfounded direct denial relation is supposed to give a condition on
the construction of signs, according to which signs would be capable of expressing a sense.
This means that wellfoundedness of direct denial should characterize the signs themselves,
so that the relation can be determined from the mere signs without reference to their sense
(cf. 3.33–3.331). To this end Wittgenstein prescribes that each nonatomic sentence have
two parts. One part, which at 5.501 Wittgenstein calls a “bracket-expression”, serves to
present some possibly infinite multiplicity of other sentences. The other part is the famous
operator N , which, attached to the bracket-expression, yields a sentence which directly
denies precisely those sentences which the bracket-expression presents. Thus, to determine
for any two sentences whether one directly denies the other, it should suffice to check
whether the second is among the sentences presented by the bracket-expression of the first.

It is clear that the complexity of logical dependence exhibited by the system will depend
on the methods available for constructing bracket-expressions. Wittgenstein describes three
methods at T5.501. The first method is simply to make a list of sentences outright; the
resulting expression presents the sentences listed. Using joint denial on the lists, this
obviously yields an analysis of negation and disjunction: the negation of a sentence is a
sentence which directly denies just it, and the disjunction of two sentences is the negation
of a direct denial of just those two. The second method is intended to yield an analysis
of generalization over objects, and ultimately together with the first method to recover the
expressive power of first-order logic with equality, at least under a certain “Russellian”
construal. The third method goes rather farther, and was billed by Wittgenstein to yield at
least a means of expressing the ancestral, or transitive closure, of expressible relations. In
the rest of this section I will briefly sketch a somewhat anachronistic and oversimplified
account of these two further methods which will suffice for the main purpose of this paper,
which, again, is primarily analytical.

1.1. Objectual generality. Wittgenstein’s account of quantification is rather sparse,
mentioning only the N -operator, its application to finite lists, and its application to the
collections of terms of bracket expressions constructed by a second method. According to
T5.501, this second method consists in “giving a function fx, whose values for all values
of x are the propositions to be described.” Suppose, then, that some bracket expression
presents the values of fx. Then, the result of attaching the sign of joint-denial to the
bracket expression amounts, in some sense, to the same as the ostensibly Principian for-
mula ∼ E

x.fx. Wittgenstein seems to intend this mysterious “function” fx to be something
like a propositional function in the sense of Principia. However, it would appear to be
only in the 3.31s that there appears anything approaching an explanation: “if we turn
a constituent of a proposition into a variable, there is a class of propositions which are
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values of the resulting variable proposition” (3.315). Very roughly speaking, the second
method might now be summarized as follows. The result of turning a constituent of a
proposition into a variable is supposed to determine a propositional function; then an
existential generalization is to be analyzed as the negation of the direct denial of the totality
of the function’s values.

1.1.1. The grammar of quantification. The abstractness of this account has abetted
some controversy. In particular, Fogelin (1976) argued that since Wittgenstein does not
mention any device for indicating the scope of the generalization, therefore he cannot
distinguish between, say, the negation of the joint denial of the values of a function,
and the joint denial of their negations. However, Soames (1983, 583ff) responded that
Wittgenstein does not in his brief remarks purport to analyze quantification by supplying
a notational system with definite syntax. Rather, the proposal purports merely to schema-
tize the construction of one truth-condition from others. Thus, Fogelin’s argument can be
taken to show, unsurprisingly, that any particular instance of Wittgenstein’s constructional
schema must include a device for the identification of those subformulas whose semantic
role is to present the totality of values of a propositional function. Geach and Soames
conclude the debate by observing that the schema for construction of truth-conditions is
satisfied by a notation tricked out with Principia-like scope indicators. Such a notation can
be understood as an “intended model” of the schematic description. Thus, for example,
within the model one might distinguish elements NNxfx and NxNfx as respectively truth-
conditionally equivalent to the disjunction and conjunction of the collection of values of fx.
Henceforth, I will simply work in such an intended model. In fact, I will assume that the
model includes an image of a classical syntax of quantificational logic, in a signature which
contains at least a few individual constants and at least a few monadic and dyadic predicate
letters. This assumption can actually be weakened in some philosophically interesting
respects, but I will not explore the possibility here.

We can now similarly explicate the notion of propositional function. Recall that a pro-
cedure of turning a constituent of a proposition into a variable is supposed to determine
a function, which given some argument, returns a proposition. Without reference to any
particular model of syntax, it is not at all clear just what could be meant by “constituent”
(Bestandteil), let alone by turning one into a variable. But having assumed a classical
syntax, then propositions may be identified with closed formulas. The notion of constituent
may then be taken to include at least the individual constants which occur in the formula.

Wittgenstein’s construction by way of propositional variables and the N -operator estab-
lishes an interesting asymmetry between disjunctive and conjunctive truth-operations. The
signs ∨ or

E

of a disjunctive truth-operation can be disabbreviated trivially as N N . In con-
trast, conjunctive expressions can be disabbreviated only in the context of their occurrence
with propositional variables. Fogelin has therefore correctly noted that in Wittgenstein’s
framework, the admissibility of conjunctive truth-operations entails nontrivial constraints
on the class of propositional variables. Suppose, for example, that there were added to
finitary truth-functional logic a one-off propositional variable whose range were the totality
of elementary propositions. The resulting system could express the disjunction but not the
conjunction of the totality of elementary propositions. Now about the more interesting
system developed in §2, it does hold that conjunctions can be taken wherever disjunctions
can, but this must be proven (see Proposition 3.3 of §3.1).

1.1.2. Higher-order logic? One might wonder if the notion of constituent might not
best be understood to include other syntactically related items as well, for example complex
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expressions constructible from a proposition by abstraction. Michael Potter, for example,
writes:

Take some sign expressing a proposition and single out part of the
sign. Now keep this part fixed and let the rest of the sign vary. All the
propositions that can be obtained by varying the sign in this way form
a class. The variable used to pick out this class is called a propositional
function, but Wittgenstein invariably refers to it simply as a function.
(Potter, 2009, 269)

Although Potter cites only 5.501 in the vicinity of this proposal, its strongest support
may come from 3.315. According to the proposal, it is not a singled-out “part” which is
initially allowed to vary, but rather “the rest” of a proposition. Potter does not actually say
that the rest is a part at all, nor does he explicitly link his use of the term “part” directly to
any usage in the text. But, since Wittgenstein only says that parts can be varied (or really:
“turned into variables”), therefore Potter’s gloss appears to presume that for any part of
a proposition, the “rest” of the proposition besides it is also a part. However, in general,
it is not the case that for any part of a given proposition, the rest of the proposition is a
simple or elemental part. Thus, Potter would appear to understand the usage of Bestandteil
to include parts or aspects of propositions which are other than simple parts.

Both Ogden-Ramsey (Wittgenstein, 1922) and Pears-McGuiness (Wittgenstein, 1961)
translate Bestandteil not as “part” but as “constituent”. As with Bestandteil, one might say
that a thing which has constituents is somehow formed by them in a naturally privileged
way. For example, molecules are constituted by atoms. In contrast, a mere part can be
understood as a result of projection or abstraction, as with the northern hemisphere of the
earth. So, one might say that something which has constituents is already “articulated”
in terms of them, for they are simple or elemental in contrast to it; on the other hand a
decomposition into mere parts or segments in general requires choosing one path rather
than another. Moreover, one might say that something depends on its constituents, but its
mere parts—like the top half of the earth—conversely depend on it (Fine, 2010, 586).

The heuristic metaphysics of Russell’s ramified hierarchy of propositions provides a
historically apposite example. Russell motivates the construction of the ramified hierar-
chy along an ordering of metaphysical dependence, if only as a convenient fiction. The
ordering begins with the constitution of the universe by various objects and relations
(Whitehead & Russell, 1913, 45); these objects and relations are the constituents of the
earliest propositions (57ff). In contrast, a proposition can be seen to fall in the range of
various propositional functions, these functions being obtained from the proposition by
the abstraction, or “turning into variables” of constituents. Since propositional functions
follow their values in the order of dependence, therefore propositional functions are not
constituents of their values. This motivates the requirement in Russell that a propositional
function cannot take itself as argument: the function depends on its values, the argument
of the function which yields a value is a constituent of that value, and the value depends on
its constituents.

There are a couple of reasons to suppose that at 3.315 and elsewhere, by Bestandteil
Wittgenstein doesn’t just mean part, but part which is simple or elemental. The first is cir-
cumstantial. Wittgenstein himself accepted the rendering by Ogden-Ramsey of Bestandteil
as “constituent”. As I’ve just sketched, a usage of the latter term was already established by
Russell in the exposition of the ramified theory of types. And in claiming at 3.333 that “the
sign for a function already contains the prototype of its argument”, Wittgenstein borrows a
plank of that theory.
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The second reason is internal. Wittgenstein identifies what he refers to as Bestandteile
with those expressions whose meaning is chosen, or determined by arbitrary convention.
Thus, at 3.315 he says what might be turned into a variable are “those signs whose mean-
ing is arbitrarily determined” (jene Zeichen, deren Bedeutung willkürlich bestimmt wurde),
and indeed so determined “by arbitrary convention” (willkürlich Übereinkunft). In contrast,
the meaning of expressions which are not Bestandteile is determined not by arbitrary con-
vention but by their structure, given the choice of meanings for the Bestandteile. Thus, at
4.024 he says that to understand a sentence it suffices to understand its Bestandteile. And
at 4.025 he remarks, heuristically, that in translation only the propositional—or perhaps
here sentential—constituents (Satzbestandteile) are translated; presumably Satzbestandteil
is supposed to pick out the sort of thing that is listed in a dictionary, and so is intended, with-
out modification by any adjective like “simple”, to evoke a contrast with expressions com-
posed of several words. Now, at 4.025 Wittgenstein does mention Bindewörter—translated
“conjunctions”—among the Satzbestandteile which are translated. But, this is because 4.025
really presents an heuristic analogy of the dependence on convention of propositions with
the dependence on convention of unanalyzed sentences of English or German. Ultimately,
there is only one essential respect in which the identity of a proposition must depend on a
conventional choice of meanings, and this is the assignment of meanings to names. Thus,
at 4.5, Wittgenstein proposes to give a general description of symbols, such that everything
satisfying the description can express a sense given only a suitable choice of meanings of
names. And this matters philosophically, because it’s by boiling down the choice of meaning
to the choice of meanings of names that Wittgenstein works out what’s announced as his
“fundamental thought”, that logical constants are not representatives (4.023).

So, Bestandteile are the parts of a proposition whose meaning is chosen, or immediately
fixed by convention. And the parts of a proposition whose meaning is chosen are precisely
the names, i.e., the simple propositional constituents. But, at 3.315 Wittgenstein describes
propositional functions as the results of turning into variables not mere parts, i.e., Teile, but
Bestandteile, or constituents. Hence, the sort of thing which yields a propositional function
upon being turned into a variable is a name.

Now, it’s true that some kind of higher-type quantification appears to be mentioned twice
in the Tractatus (3.333 and 5.5261). The two mentions can both be glossed with multi-
sorted first-order quantification, which entails no increase in logical complexity (Henkin,
1950). Still, Wittgenstein does leave room for some kind of higher-order generality. For,
at 5.501, Wittgenstein introduces his three ways of presenting propositional multiplicities
without clearly suggesting that the ways are exhaustive. In particular, predicative higher-
order generality might be introduced through some fourth or fifth method of presentation
of propositional multiplicities.

However, the range of any such higher-order generality would be constrained by the
requirement of wellfoundedness of logical evaluation. To see this, consider, for example,
“Napoleon has all the qualities of a great general.” This sentence can be seen as predicating
something, say ψ , of Napoleon; let’s call the sentence ψ(n). Now, further suppose that
ψ(n) generalizes over everything predicable of Napoleon. Then, the truth-value of ψ(n)
would be determined as the conjunction of all sentences f (φ) ⊃ ϕ(n), for ϕ anything
predicable of Napoleon. So ψ itself falls in the range of ϕ, and the determination of
the truth-value of ϕ(n) would depend on that very determination. In other words: the
conception of generality as depending for its truth-value on those of its instances rules
out higher-order quantification which is impredicative.

So, while Wittgenstein’s remarks do leave room for some kind of “higher-order” quan-
tification, this would have to be interpreted predicatively. Precisely what expressive power
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Wittgenstein might’ve sought from such supplementations of the three stated methods of
construction remains, to my knowledge, an open question in the literature.

In sum, a cursory examination of the text suggests that the notion of turning a con-
stituent into a variable is reasonably interpreted on the syntactical model of propositions as
replacing a constant term a with a variable term x . Just as propositions become closed
formulas, propositional functions are canonically explicated here as formulas containing at
least one free variable.

1.1.3. Identity. This syntactical model of propositional functions suggests a natural
account of their courses of values. We might identify the application of a propositional
function with the instantiation of a formula. So the totality of values of a propositional
function would become the class of closed instances of a formula, and an existential
generalization becomes the disjunction of the elements of such a class. However, the
reality is not quite so simple. As Hintikka (1956) and Wehmeier (op. cit.) have shown,
Wittgenstein introduced a reinterpretation of the objectual variable, which helps to sustain
a contention that the equality predicate is dispensable. This reinterpretation, which I’ll
call the “sharp” as opposed to the “natural” reading, amounts to requiring that a variable
omit from its range those objects which are mentioned in its scope. Thus, the result of
replacing a free variable with an appropriately sorted constant in a formula is a value of the
function if and only if the constant does not already occur in the formula. Or equivalently,
a proposition is a value of a propositional function if and only if that function is the result
of turning some constant into a variable in the proposition.

This amendation yields a sharp divergence from classical first-order semantics. Hintikka
and Wehmeier have shown, in a sense to be made precise, that every truth-condition of
a formula of first-order logic with equality under the natural interpretation is the truth-
condition of a formula of first-order logic without equality under the sharp interpretation.
The translation of a naturally into a sharply read formula requires just two changes. Each
existential quantification is disjoined with its omitted instances. And, each predication of
equality is replaced with either a tautology or a contradiction containing the same con-
stants and free variables, according as the two arguments of the predication, as linguistic
expressions, are the same or distinct.

The Hintikka-Wehmeier result certainly helps to justify Wittgenstein’s claim that the
equality predicate is dispensable. But the justification is not obviously complete, for as
Rogers and Wehmeier (2012, 547) point out, the result has a seemingly important qualifi-
cation: the sharp reading affords an equality-free rephrasing of truth-conditions only when
the class of all structures is restricted to those in which no distinct constants codenote. So,
the translations eliminate the equality predicate only if there is no nontrivial distinction to
be drawn between structures according as they do or do not assign the same denotation
to a given term. In response to this apparent difficulty, Rogers and Wehmeier (2012, 546)
cite Wittgenstein’s remark (5.526) that “the world can be completely described by means
of completely generalized propositions”. But this remark could be used to show that there
don’t need to be any simple predications of equality only by being taken to show that
there don’t need to be any elementary propositions. It’s more likely that at 5.526 means
just that there are some completely generalized propositions such that their truth leaves no
further question how the world is. It doesn’t follow that generalities could be susceptible to
truth and falsehood independently of their instances. For example, waxing psychologistic
Wittgenstein says “the understanding of general propositions depends palpably on that of
the elementary propositions” (4.411). It’s unlikely that 5.526 is an offhand remark that
the truth-functionality thesis is optional. Rather, the purported elimination of the equality
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predicate would appear to require some independent justification for the claim that simple
predications of equality do not distinguish between structures.

Wittgenstein’s position regarding the equality predicate cannot be just that the equality
predicate is, like disjunction, not primitive, for its purported uses are not all accommodated.
But nor does Wittgenstein hold that the conventions governing the sign underwrite no
symbols at all; one might express by their means a proposition to the effect that there are
at least two authors of Principia Mathematica. The position is rather that the conventions
do not suit the logicosyntactic role of a predicate. Specifically, the basic function of an
equality predicate would have to be, completed with some other occurrences of terms,
to yield a proposition which is true iff those terms denote the same object. But, claims
Wittgenstein, there is no such function: what would fulfill such a purported function must
be either nonsensical or empty (5.5303).

I suggest that the situation should be understood like this. Wittgenstein derived his notion
of proposition from early Russell, for whom at the end of analysis each object has only
one representative, which is that very object. Then for anything at all, there is only one
true proposition to the effect that it is the same as a given object, namely the proposition
that the thing is the same as itself. And as Russell remarked: “when any term is given,
the assertion of its identity with itself, though true, is perfectly futile” (Russell, 1903,
65). Famously, he proceeded in “On Denoting” (1905) to explain the value of apparent
statements of identity on the ground that they aren’t identities after all. The hypothesis that
each object has one and only one representative reduces the truth or falsehood of simple
predications of equality to their own mere identity as propositions, making it plausible that
they draw no genuine distinctions between structures.

Now, the Russellian conception of propositions also makes it intelligible to suppose
that “the specification of all true elementary propositions describes the world completely”
(4.26), even if there are no elementary predications of equality. For example, if it is given
that there are just two elementary propositions, that Lisa and Lucy are cats on the mat,
then since the propositions themselves contain cats, the specification that both are true
determines that there are two cats on the mat. If, on the other hand, the propositions instead
contained proxies not in one-one correspondence with the objects, then knowing the truth-
values of elementary propositions would leave open the question of how crowded the mat
is. For Wittgenstein maintains that two objects might have all their properties in common
(5.5302).

But as is well known, Wittgenstein did pull away from the Russellian conception. On the
one hand he maintained that the proposition must by itself determine how things must stand
if it is true. Furthermore, he supposed that this could be the case only if the way constituents
stand to each other in the proposition were the same as the way that objects are thereby said
to stand. Yet if the constituents of the proposition just are what is mentioned, it follows that
every proposition is true. In the Tractatus, Russellian objectual propositional constituents
must therefore give way to proxies.

Surely there is no initial plausibility to the suggestion that each object has one and only
one representative, though things do not self-represent. But Wittgenstein fully imbibed the
doctrine that the world is completely determined by the truth and falsehood of elementary
propositions. So even as objects do not represent themselves, propositions retain a role
in Wittgenstein’s logical thinking which requires that each object has one and only one
representative. Or as Russell himself put it: “there will be one word and no more for every
simple object” (Russell, 1918, 198).

In summary, then, a simple predication of equality could distinguish between structures
only if it has both possibilities of truth and falsehood. But it can’t have both possibilities,
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if denotation essentially puts names and objects in one-one correspondence. Yet only if
names and objects are in one-one correspondence could a proposition be a truth-function
of elementary propositions. On pain of breaking the truth-functionality thesis, Wittgenstein
must hold in the Tractatus that there is no room for the equality predicate to distinguish
nontrivially between structures. In this way, the proviso on the Hintikka-Wehmeier result
is discharged. In the context of Wittgenstein’s other commitments, these authors have
indeed justified his claim to have exhausted what could count as the genuine expressive
contribution of the equality predicate.

1.1.4. The Russellian constraint and the fixed-domain conception. On the strength of
the arguments of Geach, early Soames, and Wehmeier, we can conclude that Wittgenstein
manages to accommodate the basic notions of first-order logic. But as we’ve seen, the
accommodation induces four eccentricities. First, Wittgenstein rejects the equality predi-
cate. Second, he recaptures some lost expressiveness by stipulating that a variable omits
from its range what is mentioned in its scope. Third, he maintains that no further first-order
expressiveness remains uncaptured, by stipulating that no two constants codenote. Finally,
the analysis of quantified propositions as truth-functions requires that every element of the
domain is denoted by a constant.

The point of this paper is to develop a complexity-theoretic analysis of Wittgenstein’s
logical system. From this point of view, the work of earlier interpreters licenses abstraction
from the first two eccentricities. For the translations of Hintikka and Wehmeier establish
that the consequence relations determined by the sharp and natural semantics of first-
order formulas are mutually Turing-reducible. It is not straightforward to extend these
translations to the outer reaches of Wittgenstein’s system; but enough will be clear for
present purposes. The second pair of eccentricities reflects Wittgenstein’s conception of
the relationship between names and the universe, which differs in two fundamental respects
from the classical model-theoretic treatment of the relationship between constants and the
domain of a structure. The argument that the equality predicate is dispensable requires that
simple statements of equality draw no nontrivial distinctions in the class of all structures,
and hence that there is no structure in which distinct constants codenote. The proposal
to analyze an existentially generalized proposition as the disjunction of the values of a
propositional function is extensionally adequate only to structures in which each element
of the domain is denoted by a constant.

Together these requirements are equivalent to what I’ll call a “Russellian” constraint
on structures, that the denotation relation be a one-one correspondence between the class
of names and the domain. The reason for the terminology is simply that the constraint is
canonically satisfied by a structure such that every element of its domain is the one and only
name of itself. Of course, the terminology isn’t intended to convey any characterization of
Russell himself. Rather, it’s intended to mark Russell’s deep effect on Wittgenstein.

We’ve seen that the Russellian constraint is well-rooted in the Tractatus, namely in the
doctrine that a proposition is a truth-function of elementary propositions. To say that a prop-
osition is a truth-function of some others is to say that, logically, its truth-value is a function
of theirs, so that any maximal consistent choice of elementary propositions and their
negations entails either the proposition or its negation. But this claim has counterexamples
if distinct constants codenote, and has counterexamples if not all elements of a domain
must be denoted by constants. Hence the truth-functionality thesis evidently presupposes
the Russellian constraint.

It might be wondered whether the truth-functionality thesis somehow obfuscates the
very notion of a quantifier. Doesn’t it just turn a universal generalization into a “big

https://doi.org/10.1017/S1755020316000472 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000472


12 MAX WEISS

conjunction”? However, the truth-functionality thesis follows from the Russellian con-
straint. And the Russellian constraint is only a restriction on the class of all structures.
Hence, the truth-functionality thesis cannot by itself entail any substantive change in the
theory of truth-conditions. It modifies only the universe of relata to which that theory might
be applied, namely the universe of structures. So, the truth-functionality thesis does not
affect the meaning of quantifiers, if the meaning of quantifiers depends only on their role
in fixing truth-conditions.

On the other hand, the truth-functionality thesis does modify the notion of consequence,
which Wittgenstein seems to give a proto- model-theoretic analysis (5.12). Say that an
elementary truth-possibility is a maximal consistent set of elementary propositions and
negations thereof, and that the truth-grounds of a proposition are the elementary truth-
possibilities which entail it. Then a proposition is a consequence of some others iff all
their common truth-grounds are truth-grounds of it. By the Russellian constraint, every
truth-ground common to all instances of a universal generalization is a truth-ground of the
generalization. So the generalization is a logical consequence of the class of its instances.
Thus, the truth-functionality thesis does modify the meaning of quantifiers if their meaning
is taken to depend essentially on their role in constituting the consequence relation.
However, a defender of the Russellian constraint might respond that the role of subsen-
tential expressions in constituting the consequence relation is exhausted by their contribu-
tion to truth-conditions. Thus, the charge that truth-functionality obfuscates the quantifiers
depends on a controvertible philosophical presumption.

Wittgenstein’s analysis of the consequence relation resembles that of Tarski (1936). The
similarity is not just that both analyses generalize over something like logically possible
distributions of truth and falsehood. For Tarski seems furthermore to have defined the
consequence relation under a “fixed-domain” conception of structure, according to which
they all have the same domain in common (Bays, 2001). The fixed-domain conception and
the Russellian constraint are closely related, for they both require that the domains of all
structures have the same cardinality. However, the fixed-domain conception of structure is
not as strong. For it implies neither that every object be denoted by a constant, nor that no
constants codenote.

The two conceptions differ significantly in their effects on the complexity of logic.
As with Russellian consequence, the complexity of fixed-domain consequence depends
on whether the domain is infinite. In case the domain is finite, the fixed-domain and
Russellian notions pretty much coincide. But suppose that the domain D is infinite, and
consider the corresponding notion of fixed-domain consequence for a countable signature.
Let I be the set of formulas to the effect that there are at least n objects for each n.
Since D is infinite, A must be a fixed-domain consequence of T if A is a classical con-
sequence of T ∪ I . Conversely, suppose that some classical structure satisfies T ∪ I
but not A. Since the signature is countable and D is infinite, the Lowenheim-Skolem
theorems imply that some structure with domain D satisfies T but not A. Therefore, if
the signature is countable, then the fixed-domain consequences of T are precisely the
classical consequences of T ∪ I . So fixed-domain consequence is recursively enumerable
on any infinite domain. In contrast, we’ll see in §2.2 and §4.3 that Russellian consequence
permits categorical axiomatizations of rich countable structures. On no infinite domain is
Russellian consequence even arithmetically definable, at least if the signature contains a
dyadic predicate. Finally, it should be noted that a fixed-domain theorist can follow nor-
mal mathematical practice in taking uncountable structures to have a countable signature.
So the fixed-domain theorist can generally avoid difficulties associated with uncountable
signatures.
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1.2. Formal generality. We have now considered two of the three methods of pre-
senting propositional multiplicities which Wittgenstein sketches at 5.501. I’ve indicated
how they can together be understood to yield something like the expressive resources of
first-order logic, but also argued that this understanding must inflect the underlying proto-
model-theoretic analyses of validity and consequence. Let’s now turn to the third method,
which Wittgenstein describes as “giving a formal law” according to which the presented
sentences are constructed. The sentences so presented constitute the terms of what he calls
a “form-series”.

Series which are ordered by internal relations I call formal series. The
series of numbers is ordered not by an external relation, but by an inter-
nal relation. Similarly the series of propositions aRb, (

E

x) :aRx .x Rb,
(

E

x,y) :aRx .x Ry.y Rb, etc. (4.1252)

The general term of the formal series a, O’a, O’O’a, . . . I write like so:
“�a, x, O’x�”. This expression in brackets is a variable. The first term of
the bracket expression is the beginning of a formal series, the second the
form of an arbitrary term x of the series, and the third the form of that
term of the series which immediately follows x . (5.2522)

As Geach (1981, 171) observed, Wittgenstein here announces an intention, by means
of a so-called formal series, to construct an expression of the ancestral. Frege’s analysis
of the ancestral required second-order quantification, indeed impredicatively. In contrast,
Wittgenstein begins with the natural idea of constructing the countably infinite disjunction
of all propositions to the effect that b is connected to a by R through this or that number
of steps. However, he then proposes a notation—the third kind of bracket-expression—
by means of which a series of disjuncts would be presented in finite space. The ancestral
would be expressed by the negation of the joint denial of the sentences which the bracket
expression presents.

So, the form-series variable extends first-order logic to include the simulated presence of
some countably infinite disjunctions. Clearly, not every countably infinite set of formulas
will correspond to some such simulated disjunction, for the disjuncts must be generated
by means of what Wittgenstein calls an “operation”. In turn, an operation should return
some sentence B when applied to a sentence A only in virtue of some “internal relation”
which B bears to A. Sundholm (1992, 61) points out that the apostrophe in Wittgenstein’s
notation O’a apparently borrows from the description in Principia of the object to which a
bears the relation O . Thus, the question what counts as an operation reduces to the question
which relations are “internal”.

Wittgenstein’s handling of technical matters is not widely celebrated for its precision.
But the remarks about quantifiers borrow some clarity from Russell and Frege. And of
course quantifiers became a standard part of the logical education of philosophers. On
the other hand, the origins of the concept of operation are obscure, and corresponding
extensions of quantificational logic never got much traction.

What is widely acknowledged is that the form-series device is supposed to yield an
analysis of the ancestral in terms of an idea of iterated operation. There are few published
attempts to propose any general comprehension principles for operations to do the job.
Geach (1981, 170) suggests “the notation [aRb, aSb, aR/Sb] gives us the series of propo-
sitions aRb, aR/Rb, aR/(R/R)b etc. ad inf.. . . .” Here, an expression like aR/Rb is
presumably supposed to abbreviate an ordinary first-order formula. However, the disab-
breviation for nonelementarily expressed relations is left obscure; and the proposal makes
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the concept of operation seem tailored to a particular one of what are presumably various
possible uses. In a similar vein, Potter (2009, 272) writes: “the formal series [of 4.1252] is
expressed by the variable [ aRb, aχb, (

E

x) :aRx . xχb ]”. The grounds of this declaration
aren’t made explicit: it’s not clear why, for example, the third term of the series of indi-
cated propositions shouldn’t be something like (

E

x) : aRx .(

E

x): x Rx .x Rb. The notation
proposed by Potter appears to indicate what’s intended only granted an understanding of
what the whole thing is supposed to mean. So the proposal runs afoul of Wittgenstein’s
complaint about Russell, that “he had to mention the meaning of signs when establishing
the rules for them” (3.331). Of course, Wittgenstein himself never established those rules
clearly. But as I’ve urged, the question whether anything could realize the conception of
logic in the Tractatus can’t be answered without going beyond what Wittgenstein actually
did. For better or for worse, the job is ours to make something clear.

There has also been disagreement about what should count as an operation and what
shouldn’t. For example, Sullivan (2004) contends that no internal relation distinguishes
nontrivially between names, or—though this terminology is neither Sullivan’s nor
Wittgenstein’s—that internal relations are “permutation-invariant” (see also Sundholm,
1992, 69). In contrast, Ricketts (2012) conjectures that form-series disjunctions might serve
to simulate predicative higher-order existential generalization. Textual issues aside, the
proposal would require enumerating the class of sentences f (a), f (b), . . . for all names
a, b, . . . , by means of logically insignificant features like spelling. However, it is reason-
able to assume that the class of operations should be closed under composition. But then
supposing O to enumerate the names as in Ricketts’ proposal, the result of composing O
once with itself would enumerate, as it were, “every other name”. It may then so happen
to turn out that in the actual world, the thereby enumerated names would denote just those
objects which are spacetime points interior to Russell’s left hand. In another language,
differing only in what would seem to be a logically insignificant manner, the probability
would be zero that Russell’s left hand is definable, but his nose might be definable instead.
Ricketts’ proposal implies that languages which differ over logically insignificant features
are not intertranslatable.

Textual evidence suggests that Wittgenstein does countenance a formal enumeration
of names in the Notebooks (e.g., 23.11.16d). But such suggestions largely disappear in
the Tractatus. Disagreements about the precise extent of the concept of operation may
need to be resolved on systematic grounds, which I leave to further work. In this paper’s
formal development, I will adopt a fairly strict policy: operations will be invariant under
permutations of all names except those which occur as parameters in the operator-sign. The
key mathematical results depend only on operations which are fully permutation invariant.

1.2.1. Motivations for form-series. Textual evidence suggests that two motives drove
Wittgenstein to supplement the logic of objectual generality and truth-functions with for-
mal series. Wittgenstein seems to have postulated quite early the presence of some propo-
sitional structure which shares the necessities inherent in a fact. The postulation gets
expressed in a remark, at 4.023, that thanks to some “logical scaffolding”, a person can
“see” how things must be if a proposition is true. An example from the Notebooks of this
sort of visibility might be the following:

For example, perhaps we assert of a patch in our visual field that it is to
the right of a line, and we assume that every patch in our visual field is
infinitely complex. Then if we say that a point in that patch is to the right
of the line, this proposition follows from the previous one, and if there
are infinitely many points in the patch then infinitely many propositions
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of different content follow LOGICALLY from that first one. And this of
itself shows that the proposition itself was as a matter of fact infinitely
complex. That is, not the propositional sign by itself, but it together with
its syntactical application. (Wittgenstein, 1979, 18.6.15g)

A year earlier, Wittgenstein had identified a similar complexity in the fact that a chair
is brown, and sketched a formal series of propositions which would reproduce it (1979,
19.9.14, pp. 5 and 134).

The second motivation for the form-series device stems from problem of giving the
general propositional form. Although the problem is mentioned already in the 1914 notes
of Moore (1979, 113) it is not until April 1916 that there appears a sketch of Wittgenstein’s
eventual approach: “suppose that all simple propositions were given me: then it can simply
be asked what propositions I can construct from them. And these are all propositions and
this is how they given” (16.4.16; cf. T4.51). So, the notion of form-series here finds a
second use, in an account of the way in which propositions are constructed by elementary
propositions through repeated application of a formal procedure. As Avron (2003) argues,
this technical task provides a natural motivation for adding to first-order logic a device
to express the ancestral. Goldfarb (2012) speculates that it was a conviction that logic
must comprehend the grounds of people’s understanding of logic, and particularly the
underpinnings of recognition of formulas and proofs, which sustained in Wittgenstein the
view that induction is logical.

The two roles of formal series in the pre-Tractatus manuscripts lead to two roles in the
Tractatus. On the one hand, T4.1252, T5.252 and T5.501 invoke and explain an “imma-
nent” use of formal series in articulating the structure of facts; paradigmatic of such use is
the expression of the ancestral. On the other hand, a “transcendent” use at T6 purportedly
fulfills the promise of 4.51 to say how all propositions can be constructed from certain
simple ones.

Sundholm (1992, 66) remarks of the transcendent use that it is at least superficially
more complicated than the immanent one: it acts on a higher-order relation which takes
as one argument not a single item but a potentially infinite multiplicity. In consequence,
the use of a form-series variable to specify the totality of propositions flirts with impred-
icativity (Sundholm, 1992, 70). Why couldn’t that variable be used to specify the basis of a
truth-operation?

Here it may help to note a textual detail. The Prototractatus (Wittgenstein, 1971)
antecedent of the explanation in the T5.252s addresses not the simpler, immanently admit-
ted form but the higher-order form instead. So, in deriving the Tractatus from this earlier
draft, Wittgenstein restricted his explanation of formal series to the immanent use. This
clearly deliberate reversal suggests that Wittgenstein eventually decided to admit only the
lower-level form under constructional procedures described at T6 by a use of the higher-
level form.

The separation of “immanent” and “transcendent” form-series variables introduces a
couple of potential responses to the problem about impredicativity raised by Sundholm.
First, it might be proposed that there is some fixed type to which all meaningful uses
of the form-series device must conform, while allowing that the expression at T6 does
not conform to that type. To this proposal, it might be objected that once a system of
propositional construction has become surveyable by means of a definite, though higher-
level form-series variable, the higher-level expression should itself become susceptible to
significant use in a yet broader collection of sentences. On this second proposal, any char-
acterization of a system of propositions would yield eo ipso a further method of proposi-
tional construction, which the whole would still transcend. In that case, the general form of
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the truth-function given at T6 would be understood as in some sense open-ended (cf. Floyd,
2001). A difficulty for this proposal is that Wittgenstein repeatedly attempts to justify the
postulation of a general propositional form precisely on the grounds that every possible
form of a proposition must be foreseeable (4.5c; see also Wittgenstein (1979, 21.11.16)).
Developing the open-endedness proposal would require clarifying Wittgenstein’s notion of
foreseeability.

1.2.2. Toward an explication. Luckily, the goals of this paper do not extend to
explicating the general propositional form in detail. But the above gloss would license
one helpful assumption, that the form-series method mentioned at 5.501 isn’t intended to
handle the apparently more complicated induction of T6. Rather, following the 5.2522s,
we might naturally consider only form-series variables constructed from unary operations.
However, even the notion of unary operation is of course still unclear, and no purportedly
exhaustive reconstruction could be uncontroversial.

For several reasons I will take a minimalist approach to the positing of operations. First,
the goal of the paper is to establish lower bounds on the complexity of the system, not
upper bounds. Second, it is nice to see how much can be got from how little. Third, details
of implementation do not just take care of themselves, but become complicated quickly
(see §2.3, particularly Lemma 2.13).

The minimal analysis of operation I propose to investigate is roughly this. An operation
is presented by a schematic letter together with a formula; the presented operation returns
the result of substituting the operand for the letter in the presenting formula.

A bit more concretely, suppose that

ξ �→ 	(ξ)

is a procedure which, applied to a formula, returns another formula. Then in something
like Wittgenstein’s notation,

�A, ξ,	(ξ)�

would signify the series of formulas

A, 	(A),	(	(A)) . . . .

Now, consider a first-order formula B which is ordinary except in that someplace where
an atomic formula might have occurred, there occurs instead a schematic letter p. This can
be supposed to determine, with respect to p, a function

ξ �→ B[p/ξ ] (1)

which, applied to the formula A, returns the result B[p/A] of replacing each occurrence
of p in B with A. In turn, the notation

�A, ξ, B[p/ξ ]� (2)

can be understood to signify the series of formulas

A, B[p/A], B[p/B[p/A]], . . . .

Of course, there are many other reasonable notions of operation besides those of the form
of (1). But I’ll consider just these. This justifies a notational economy: instead of (2) I’ll
just write

�A, p, B�.

As we’ll see in §3, this ostensibly weak reconstruction suffices to express all notions
which can be defined by induction, including in particular the ancestral. There will actually
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be various ways of doing it, but they’ll all have in common that they contain only finitely
many variables. Thus, it’s clear that they don’t express the ancestral in quite the way that
Wittgenstein envisaged at 4.1252. And more generally, it is certainly not the case that
every formal procedure hazarded by Wittgenstein has the form A �→ B[p/A]. Conversely,
however, it is plausible that everything of that form should count as a formal procedure.

On the present reconstruction, the form-series device does not simulate the occurrence
of infinitely many variables in a formula. The form-series Wittgenstein gives at 4.1252 to
express the ancestral does use infinitely many variables, though of course inessentially. One
might take this to license essential uses too. A familiar concept which might then become
expressible is the quantifier “there are infinitely many”. The interpretive grounds for such a
strengthened line of reconstruction should be supplemented with some systematic consid-
erations. Wittgenstein does say that number is a “formal” concept (4.1272); perhaps then
“there are infinitely many” ought to be a logically definable. However, by Wittgenstein’s
lights a concept’s being formal doesn’t imply that it’s definable at all. For example, identity
is supposed to be a formal concept but is not definable (see §1.1.3). Although the logicality
of an infinity quantifier doesn’t seem to be precluded by the text, the quantifier is not
logically definable by induction, yet induction handles all the envisaged applications of the
form-series device for which there is textual evidence.

1.2.3. Programmatic background. Let me conclude this section by sketching some
interpretive context for the two logical eccentricities to be investigated in this paper—the
restriction to Russellian structures and the addition of the form-series device. In the preface
to the book Wittgenstein promises to solve philosophical problems by clarifying the nature
of logic. A superficial survey indicates that the centrally organizing task of the book is to
give a general propositional form, a purported common nature of whatever can be said or
thought. It is not clear at first blush how such a task could itself complete the understanding
of logic which is needed for the solution to philosophical problems.

In the Tractatus, the purported general propositional form gets presented twice. At first,
Wittgenstein keeps it short:

[. . . ] The general propositional form is: es verhält sich so und so. (4.5c)

It’s not really clear how this could be a philosophical cure-all. In fact there is more to
consider:

A proposition constructs a world with the help of a logical scaffolding,
so that one can actually see from the proposition how everything stands
logically if it is true. (T4.023e)

Such scaffolding may be supposed to constitute the sort of logic whose misunderstand-
ing is the purported source of philosophical problems. If that’s right, the solution to philo-
sophical problems might be seen to require attention to the nature of those manipulations
of signs through which signs come to have sense: that is, to lay out the pieces of scaffolding
clearly. Wittgenstein announces such a consideration of details at T5, which leads at T6 to
a refinement of the general propositional form:

A proposition is a truth-function of elementary propositions. (T5)
The general form of the truth-function is [p, ξ , N ’(ξ)]. That is the

general form of the proposition. (T6)

So, Wittgenstein’s promised solution to philosophical problems would appear to depend,
at least in part, on the progress from T4.5 to T6. In particular, the progress is supposed to
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clarify just how it could be of necessity that if some propositions are true, then some other
propositions are true as well. Accordingly, possibilities reappear as distributions of truth-
value over propositions. And a fundamental problem of logic becomes to clarify how the
structure of propositions constrains what distributions of truth and falsehood are possible
for them.

As we’ll see, the program leads to a realization of logic whose complexity turns on the
number of objects that exist. In particular, if the number of objects might be uncountably
infinite, then the complexity of the resulting notion of tautology seems to rule out any
reasonable sense in which, after all, logical validity or logical consequence could be a mere
matter of propositional structure. Under the assumption that validity and consequence can
depend only on propositional structure, the significance of the main results of this paper
can be stated as follows: it is only if the universe is countable that the conception of logic
in the Tractatus might be coherent.

§2. Framework. We’ve now seen that Wittgenstein’s conception of logic differs from
the classical understanding of first-order logic in at least the following two ways. First,
the notion of structure is subjected to a Russellian constraint, so that the elements of its
domain are in one-one correspondence with the constants of its signature. Second, the
logical vocabulary contains a device for the expression in finite space of countably infinite
disjunctions.

In this section, I’ll assemble a framework for studying those features. After sketching in
§2.1 a suitable variant L of first-order logic, I’ll show in §2.2 that the Russellian constraint
yields an interpretation of some familiar slogans from the Tractatus. In §2.3, I’ll show
that L can be extended to a system LF which implements an analysis of Wittgenstein’s
form-series device. But first some common background.

A signature S consists, for all k, of a set of k-place predicates and a set of k-place
function symbols. I will say that a signature R is Russellian provided that R contains at
least one predicate and at least one function symbol, but no function symbol of arity greater
than zero. Function symbols of arity zero are also known as constants.

A structure M for S consists of a nonempty set, its domain D, plus a mapping which
takes k-place function symbols and k-place predicates to k-ary functions and k-ary relations
on D. Let R be a Russellian signature. I will say that a structure M for R is Russellian, or
is a D-structure, if it meets the following further conditions:

• every constant of R is its own image under M, and
• every element of D is the image of a constant.

The convention that constants denote themselves is purely for notational convenience, and
all subsequent results will extend transparently to the general situation in the Tractatus
where denotation is any bijection between the constants and the domain.

Finally, a logic maps a signature to the collection of classes of its structures. Typically
the mapping is determined in two steps. First a syntax generates from the signature a class
of formulas. Then a semantics associates with a formula the class of structures in which it
is true. Let’s now see how this works for L and LF .

2.1. The system L. As indicated in §1.1, the system of the Tractatus can be understood
as including a variant of first-order logic. I’ll refer to this variant as L. Let me begin by
rehearsing its mostly familiar construction.

Given a Russellian signature, first-order logic determines a language like this. There is
a set of individual variables x, y, . . . , x0, y0, . . . , which, given the function symbols of S ,
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determines the class of terms of the language. Second, the class of L-formulas is given by
an induction with just these clauses:

• R	t is a formula if R is a k-ary predicate and 	t is a list of terms of length k
• t = u is a formula if t, u are terms
• ¬A, (A∨B), and ∃x A are formulas whenever A, B are formulas and x is a variable.

I will refer to formulas so generated as the proper formulas of L.
It will be useful to have extended L with a category of schematic letters, p, q, r, p1, . . . ,

adding the inductive clause

• every schematic letter is a formula.

Improper formulas will not be assigned semantic values directly. Rather, they support the
implementation of the form-series device in LF (see §2.3).

Just to fix notation, here are some fairly standard niceties. Free, bound, and binding
occurrences of a variable should be taken in the usual way. I’ll write A[x/t] for the
result of replacing each free occurrence of x in A with the term t , unless this replace-
ment introduces new bound occurrences. Vectors over terms for expressions indicate finite
sequences of expressions of the indicated type. Then A[	x/	t] signifies the result of simul-
taneously substituting each element of the sequence 	t for the corresponding element of
the sequence 	x , relettering variables bound in A where necessary. Finally, A[	a] abbrevi-
ates A[	x/	a] where 	x is the canonically ordered sequence of all variables occurring free
in A.

The definition of truth for L is straightforward. I will specialize for the notion of
Russellian structure the approach of Shoenfield (1967). Let R be a Russellian signature
with D its class of constants, and let M be a D-structure for R. Now suppose that A is a
proper closed formula of L. The atomic, equality, and truth-functional cases are handled
as usual. But suppose that A is ∃x B. In this case we stipulate that

• M |� ∃x B iff M |� B[a] for some a in D.

2.2. Effects of the Russellian constraint. The specialization to Russellian structures
has deep effects on the notions of validity and consequence, which are nonetheless defined
in a familiar-looking way.

DEFINITION 2.1. Let R be a Russellian signature with domain D. A proper closed for-
mula A over the signature R is D-valid if M |� A for all D-structures M for R. Likewise,
A is a D-consequence of the set X of proper closed formulas, or X ⇒D A, provided that
there is no D-structure M for R such that M 
|� A while M |� B for all B in X.

With the notion of D-consequence in hand, we can begin to interpret some basic slogans
of the Tractatus. According to 4.26, “the world” is supposed to be completely described by
specifying which elementary propositions are true and which false. Say that the diagram

(M) of a structure consists of the atomic sentences true in M, plus the negations of
the atomic sentences false in M. The remark of 4.26 now becomes that a structure is
axiomatized up to identity by its diagram.

PROPOSITION 2.2. Let M and M′ be D-structures. If M′ |� 
(M), then M′ =M.

Proof. Since M and M′ are both D-structures, they have the same domain. So
suppose R is an R-predicate. Then (	a) ∈ RM iff R	a ∈ 
(M), and R	a ∈ 
(M) iff
(	a) ∈ RM′

. �
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Note that if the notion of D-structure is relaxed so as to require only that denotation
of constants be a bijection, then diagrams axiomatize structures only up to isomorphism.
Subsequent results don’t depend on this difference.

When every structure is axiomatized by its diagram, consequence becomes a general-
ization of truth. Or in other words, truth is what follows from a diagram.

PROPOSITION 2.3. Let M be a D-structure. Then M |� A iff 
(M)⇒D A.

Proof. Since M |� 
(M), therefore 
(M) 
⇒D A if M 
|� A. Conversely, suppose
M |� A. By Proposition 2.2, if M′ |� 
(M), then M′ = M, so M′ |� A. Hence

(M)⇒D A. �

Proposition 2.3 records a radical departure from the classical concept of consequence:
for Wittgenstein, the concept of consequence embeds the concept of truth. See Martin-Löf
(1996) for discussion of this approach. Of course, it is the left-to-right direction of Propo-
sition 2.3 which does not hold for the classical or fixed-domain consequence relations.

Another slogan of the Tractatus is that a proposition is a “truth-function” of elementary
propositions. In the present framework, this slogan becomes that each sentence or its
negation is a Russellian consequence of the diagram of a structure.

PROPOSITION 2.4. 
(M)⇒D A iff 
(M) 
⇒D ¬A.

Proof. Of course M |� A iff M 
|� ¬A. But by Proposition 2.3, 
(M) ⇒D A iff
M |� A, and M 
|� ¬A iff 
(M) 
⇒D ¬A. �

Consider, for example, the concept of arithmetical truth. Let R be a Russellian signature
with a couple of three-place predicates, while the set D of constants of R is countably
infinite. Now, let N be a D-structure for R which is isomorphic to the structure of the
natural numbers under the ternary relations of sum and product.

PROPOSITION 2.5. Under the D-consequence relation, the set
(N ) axiomatizes N up
to identity. Thus, the set of arithmetical truths is decidable relative to the set of
D-consequences of 
(N ).

Proof. Immediate from Propositions 2.2 and 2.3. �
Of course, there’s nothing special about the structure N in this context; Proposition 2.5

holds for any structure whatsoever.

2.3. The system LF . In §1.2, I argued that Wittgenstein envisions logic also to include
a method of expressing some countably infinite disjunctions, though in finite space. Let’s
now develop an extension LF of L, which implements this idea. The goal is to become able
to express a disjunction whose disjuncts are the results of applying repeatedly some finitely
presented “operation”. We will pursue the proposal of §1.2.2, to consider only operations
of substituting the operand for a schematic letter in a formula.

2.3.1. LF-syntax. The rules for building formulas of LF are precisely those of L, plus
just one more:

• ∨
�A, p, B� is an LF-formula provided that A is an LF-formula and B is an

L-formula.

Let’s call the indicated occurrence of p a binding occurrence of p; its scope will be said
to be the formula B. An occurrence of p is bound iff it falls in the scope of a binding
occurrence of p.
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I’ll say that a formula of LF is proper iff it contains no free occurrence of a schematic
letter. Note that an improper formula B may be a subformula of a proper formula iff B
is actually a formula of L. Improper formulas which don’t belong to L remain only for
theoretical convenience. It will be just the proper closed formulas which receive a truth-
value in a structure.

2.3.2. LF-operations. A formula
∨

�A, p, B� is to become understood as a disjunc-
tion. Its terms are to be the results of repeatedly applying the operation presented by p, B
to the initial formula A. The pair p, B presents the operation which substitutes the operand
for each occurrence of p in B. To spell this out, let’s fix some notation.

DEFINITION 2.6. (i) The formula B[p/A] is the result of substituting A for every free
occurrence of p in B. (ii) If C = ∨

�A, p, B�, then write C0 = A and Ci+1 = B[p/Ci ].

Regarding clause (i), note that operator-signs contain no bound schematic letters, so the
qualifier “free” isn’t necessary for intepreting form-series formulas. But it will be useful to
have the more general concept of substitution on hand throughout. The clause (ii) begins to
spell out how form-series disjunctions present a series of disjuncts. I will sometimes write
�A, p, B�k for (

∨
�A, p, B�)k .

An alternative characterization of iterated substitution will become useful shortly, in
proving the fundamental Lemma 2.13. Write [p/B]k for k successive applications of the
substitution [p/B].

LEMMA 2.7. Let
∨

�A, p, B� be a formula of LF . Then

�A, p, B�k = p[p/B]k[p/A].

Proof. Let’s use induction on k. The result is clear for k = 0. So suppose it to hold
for k. Then

�A, p, B�k+1 = B[p/�A, p, B�k]

= B[p/p[p/B]k[p/A]]

= B[p/p[p/B]k][p/A]

= B[p/B]k[p/A]

= p[p/B]k+1[p/A]. �
Before proceeding to the semantics, let’s consider a nontrivial application of the form-

series device. Let R be a dyadic predicate. The ancestral of the relation expressed by R can
be expressed by an infinite disjunction of a series of formulas like

Rxy

∃z0(Rxz0 ∧ Rz0 y)

∃z1(∃z0(Rxz0 ∧ Rz0z1) ∧ Rz1 y)

∃z2(∃z1(∃z0(Rxz0 ∧ Rz0z1) ∧ Rz1z2) ∧ Rz2 y)

...

These formulas altogether contain infinitely many variables z0, z1, . . . , and so they can’t
be generated merely by an operation of the sort postulated here. But, each quantifier ∃zk+2
doesn’t bind any variable in the scope of ∃zk . So the indices should be recyclable by some
trick or other. For example, write A0, A1, . . . for the first, second, . . . terms of the series
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Rxy

∃z(Rxz ∧ Rzy)

∃z(∃y(Rxy ∧ Ryz) ∧ Rzy)

∃z(∃y(∃z(Rxz ∧ Rzy) ∧ Ryz) ∧ Rzy)

...

Let B = ∃z(∃y(p ∧ Ryz) ∧ Rzy). Then

A2k = p[p/B]k[p/A0], and

A2k+1 = p[p/B]k[p/A1]

for all k < ω. So by Lemma 2.7, the disjuncts Ai of an expression of an ancestral are
precisely the ‘disjuncts’ of (∨

�A0, p, B�
) ∨ (∨

�A1, p, B�
)
.

Of course, I have not yet said what it is for a formula of LF to express something. Let’s
fix that.

2.3.3. LF-semantics. Developing a semantics for LF will take a little more effort. To
construct a definition of truth it is tempting simply to extend the classical definition directly,
evaluating bound variables by assignment or instantiation. Unfortunately, this does not
work. The reason is that, roughly speaking, we would like form-series formulas to behave
like countably infinite disjunctions—but that’s not what they are.

To see the difficulty, note that the substitution of terms does not commute with the
expansion of form-series formulas into their infinitary counterparts. Consider, for example,
a formula A = ∨

�Fx, p, ∃x(Gx ∧ p)�. Applying directly the usual notion of substitution
of terms would yield A[x/a] = ∨

�Fa, p, ∃x(Gx ∧ p)�, and so, for example, A[x/a]1 =
∃x(Gx ∧ Fa). On the other hand, A1 = ∃x(Gx ∧ Fx), and so A1[x/a] = ∃x(Gx ∧ Fx).
Of course, quantification doesn’t quite require the good behavior of substitution, but here
the mischief is deeper: the introduction of form-series into first-order logic disrupts the
expected notion of free occurrence of a variable.

To solve this problem, let’s play a trick: run two stages of evaluation. First expand form-
series variables into the formal series they present, and only then evaluate the quantifiers.

Formulas of LF thus get expanded into an infinitary extension of first-order logic LF .
This results by adding, to the formation rules of L, the clause

• ∨
k<ω Ak is a formula if each Ak is a formula,

and to the evaluation rules of L the corresponding clause

• M |� ∨
k<ω Ak iff M |� Ak for some k < ω.

As with L, I’ll say that a formula of LF is proper if it contains no schematic letters.
We want to define recursively a mapping · · · which expands a formula of LF into some

corresponding formula of LF . To justify the recursion we need a further idea.

DEFINITION 2.8. The level of a formula A of LF is the pair (iA, jA), where

• iA = 0, if A is atomic or schematic; iA = iB+1 if A = ∨
�B, p,C�, and otherwise

iA is the maximum of the iB for all immediate subformulas B of A;
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• jA = 0 if A is atomic or schematic, and otherwise jA = k + 1, where k is the
maximum of the jB for B an immediate subformula of A.

The level of A is lower than the level of B iff either iA < iB or iA = iB and jA < jB .

The ordering of levels is clearly wellfounded. Unlike ordinary syntactical complexity, it
fulfils the following useful condition.

LEMMA 2.9. Suppose that C = ∨
�A, p, B� is a formula of LF . Then Ck has lower

level than C.

Proof. The result is clear since iCk ≤ iC0 and iC0 < iC . �
Lemma 2.9 now justifies the desired analysis of form-series expansion.

DEFINITION 2.10. The form-series expansion of a formula A is the LF-formula

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∨
k<ω Ak, if A is

∨
�B, p,C�

∃x B, if A is ∃x B

B ∨ C, if A is B ∨ C

¬B, if A is ¬B

A, if A is atomic or schematic.

In ordinary quantificational logic, a formula is truth-evaluable if closed. That is not
the case in LF , because a formula with no free variables may still contain an unbound
schematic letter. But a proper closed formula is one that contains neither free variables nor
unbound schematic letters. The following somewhat tedious lemma guarantees that proper

closed formulas expand into proper closed formulas of LF .

LEMMA 2.11. Suppose that A is a merely proper formula of LF . Then A is a proper

formula of LF whose free variables are among those of A.

Proof. We argue by induction on the level of A. Only two cases are nontrivial.

First suppose that A is ∃x B. By induction hypothesis, B is a proper formula of LF
whose free variables are among those of B. Then A = ∃x B is a proper formula of LF ,
whose free variables are among those of A.

Now suppose A = ∨
�B, p,C�. By Definition 2.10, A = ∨

k<ω Ak . Clearly B = A0

must be proper if A is, and the free variables of B are among those of A. Suppose now that
Ak is proper and that its free variables are among those of A. Then Ak+1 = C[p/Ak]. The
free variables of C must be among those of A. And since A is proper, a schematic letter q
can occur free in C only if q = p. Hence Ak+1 is proper, and its free variables are among
those of A. Since each Ai has lower level than A, it follows by outer induction hypothesis

that each A
i
, and hence A itself, is a proper formula of LF whose free variables are among

those of A. �
After that bit of ground-clearing we can extend the definition of truth to LF .

DEFINITION 2.12. Let A be a proper closed formula of LF . Then M |� A iff M |� A.

2.3.4. Extensionality. A primary goal of this paper is to determine the expressiveness
of LF . We have just seen a definition of truth which does not proceed by syntactical
complexity. So it is not at all obvious that LF can be given a robust semantics.
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I’ll now show, however, that LF is extensional. Toward this end, let me first record a
basic lemma, that the expansion of a form-series formula into its infinitary counterpart
commutes with substitution of formulas.

LEMMA 2.13. Suppose that A is proper, and that B[p/A] is a formula of LF . Then

B[p/A] = B[p/A].

Let’s now use the lemma to derive the promised extensionality. Then I’ll prove the lemma
to conclude the section.

PROPOSITION 2.14. Suppose that C[p/A],C[p/B] are proper formulas of LF , and
that A and B are proper. If

M |� ∀	u(A ↔ B)

then

M |� C[p/A] ↔ C[p/B].

Proof. By the definition of |� and · · ·, the condition M |� ∀	u(A ↔ B) implies

M |� ∀	u(A ↔ B).

By the extensionality of infinitary logic it follows that

M |� C[p/A] ↔ C[p/B].

So by Lemma 2.13,

M |� C[p/A] ↔ C[p/B].

The result now follows by the definition of |�. �
Lemma 2.13 owes its relatively straightforward proof to the parsimonious implementa-

tion of formal series in LF .
Proof of Lemma. The goal is to prove that B[p/A] = B[p/A], under the assumption

that A is proper. We argue by induction on the level of B. It suffices to handle the only
nontrivial situation, where B = ∨

�C, q, D�.
Let’s distinguish cases according to whether or not p = q. First suppose that p = q.

It is clear that

p[p/D]k[p/C[p/A]] = p[p/D]k[p/C][p/A].

By Lemma 2.7 together with Definitions 2.6 and 2.10, it follows that

B[p/A] = ∨
�C, p, D�[p/A] = ∨

�C[p/A], p, D�

=
∨
k<ω

p[p/D]k[p/C[p/A]] =
∨
k<ω

p[p/D]k [p/C][p/A]

=
∨
k<ω

Bk[p/A]. (3)

On the other hand, suppose that p 
= q. Using By Lemma 2.7 together with Definitions
2.6 and 2.10 again,
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B[p/A] = ∨
�C, q, D�[p/A] = ∨

�C[p/A], q, D[p/A]�

=
∨
k<ω

q[q/D[p/A]]k[q/C[p/A]]. (4)

Let’s now argue by induction on k that

q[q/D[p/A]]k[q/C[p/A]] = q[q/D]k[q/C][p/A]. (5)

The case of k = 0 is trivial. So assume (5) to hold for k ≥ 0. Using p 
= q and the propriety
of A, straightforward considerations about substitution imply that

q[q/D[p/A]]k+1[q/C][p/A] = q[q/D[p/A]][q/D]k[q/C[p/A]]

= q[q/D][p/A][q/D]k[q/C][p/A]

= q[q/D]k+1[q/C][p/A]. (6)

This proves (5). But (5) together with (4) imply by Lemma 2.7 that

B[p/A] =
∨
k<ω

q[q/D]k[q/C][p/A] =
∨
k<ω

Bk[p/A] (7)

holds in the case that p 
= q as well as in the case that p = q.
However, Bk has lower level than B. So the outer induction hypothesis applies:

Bk[p/A] = Bk[p/A]. (8)

From (3), (7), and (8), we obtain the desired conclusion

B[p/A] =
∨
k<ω

Bk[p/A] =
∨
k<ω

Bk [p/A] = B[p/A]. �

§3. Expressiveness. We’ve now got a reconstruction LF of Wittgenstein’s logical
system. Let’s see what it can do. In §3.1, I’ll begin by developing the semantics a bit further,
spelling out what it is for formulas to define relations and operators. I’ll then show that LF
has some further nice properties: one result settles an issue about definability of infinitary
conjunctions, and another gives a semantic characterization of form-series formulas. In
§3.2, I’ll apply that semantic machinery to show that LF is capable of expressing finitary
inductive definitions; we’ll see in particular that the form-series device yields a categorical
analysis of arithmetic. Finally, in §3.3 I’ll sketch the rather diffuse system of relationships,
in point of expressiveness, between LF and other extensions of first-order logic.

3.1. Definability of relations and operators. Recall that by Proposition 2.14 of §2.3,
the system LF enjoys a strong form of extensionality: in any reasonable situation, a
subformula can be exchanged with any of its logical equivalents without change of truth-
value. Exploiting extensionality everywhere, we can now complete the task of wrangling
the unruly syntactical manipulations into a denotational semantics. This will sharpen later
talk of expressiveness, for example in the treatment of induction in §3.2.

By Lemma 2.11, a formula which is closed and proper has a truth-value. So such formu-
las have truth-values as suitable semantic values. What about other formulas? Regarding
those which are proper but not closed, we can follow an approach which is typical to first-
order logic. Take an n-ary relation over a domain D to be a set of n-tuples of elements
of D. As a limiting case, assume that there is exactly one 0-tuple ∅. Now, suppose that A
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is any proper formula containing exactly k ≥ 0 free variables. Then the formula A defines
over M a k-ary relation |A|M over D as follows:∣∣A

∣∣M = {(a1, . . . , ak) : M |� A[a1, . . . , ak]}.
This stipulation subsumes the treatment of closed formulas, once the truth-values are iden-
tified with the zeroary relations {∅} and ∅ (Krivine, 1998, 63).

To interpret form-series expressions, we also need to make some sense of improper
formulas. Here it is easiest to proceed indirectly. Say that a operator on D is a function
from j-ary relations on D to k-ary relations on D; let’s call the pair j, k its type. Now, let
M be a structure. Where R, S . . . are predicates not in the signature of M, let M, X, Y, . . .
be the result of expanding M to interpret R as X , S as Y , and so on. As with the treatment
of satisfaction, the notation M, X, Y, . . . tacitly assumes a lexicographic ordering of the
predicates interpreted.

Suppose that A is a formula in the signature of an expansion M, X of M to R. Then A
defines through R over M the operator∣∣A

∣∣R:M : X �→ ∣∣A
∣∣M,X

.

The type of A is j, k, with j the arity of R, and k the arity of |A|M,X . I will say that an
operator is L- or LF-definable if some formula of L, or of LF , defines �.

For example, the formula ∃y Rx1 · · · xk y defines through R the operator of type k + 1, k
such that ∣∣∃y R	x y

∣∣R:M
(X) = {(	a) : M, X |� ∃y R	x y[	a]}

= {(	a) : (	a, b) ∈ X for some b ∈ D}.
We can now give a method of interpreting improper formulas. It will only be needed

here to interpret an improper formula B with at most one free letter, say p. Suppose that
R is not in the signature of M. The above stipulations imply that the formula B[p/R	x]
defines through R over M the operator∣∣B[p/R	x]

∣∣R:M : X �→ ∣∣B[p/R	x]
∣∣M,X

.

In this way, an improper formula B is interpreted relative to a substitution of some R	x for
p. The type of the defined operator is j, k where j is the length of 	x , and k is the number of
variables free in B[p/R	x]. Clearly, the choice of 	x affects the type of the operator defined.
In form-series contexts, normal uses will involve an operator of type j, j for some j .

The following lemma will clarify the semantics of LF’s form-series device.

LEMMA 3.1. Suppose that B[p/C] is a proper LF-formula, that C is proper, and that
the variables free in C are precisely 	x. Then∣∣B[p/C]

∣∣M = ∣∣B[p/R	x]
∣∣R:M

(|C |M)

Proof. Immediate from extensionality plus the notion of defined operator. �
Before applying Lemma 3.1 to interpret formal series, we just need to smooth out one
wrinkle. Say that a form-series expression �A, p, B� is normal if the variables free in each
�A, p, B�k are precisely the variables free in A. It suffices to interpret normal expressions:∨

�A, p, B� is equivalent to A ∨∨
�B[p/A], p, B�, and the latter is normal. At last, we

interpret a normal form-series disjunction as the union of results of applying a L-defined
operator zero or more times to a defined relation.
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PROPOSITION 3.2. Suppose that �A, p, B� is normal and proper, and that the variables
free in A are 	x. Then∣∣∨�A, p, B�

∣∣ = ⋃
k<ω

(∣∣B[p/R	x]
∣∣R:M)k(∣∣A

∣∣M)
.

Proof. Lemma 3.1 implies for all k that∣∣�A, p, B�k+1
∣∣ = ∣∣B[p/R	x]

∣∣R:M(∣∣�A, p, B�k
∣∣)

from which the claim is immediate by induction and the definition of truth. �
We can now take care of a puzzle which has been left hanging for a while. Recall that

in building up LF , form-series disjunctions were adopted as primitive. But what about
conjunctions? As noted in §1.1.1, an adequate reconstruction of Wittgenstein’s system
ought to predict the question is not trivial.

Note that by Proposition 3.2, it is reasonable to understand a formula C to express the
conjunction of �A, p, B� provided that∣∣C∣∣M =

⋂
k<ω

(∣∣B[p/R	x]
∣∣R:M)k(∣∣A

∣∣M)

for all M. We now have the following.

PROPOSITION 3.3. Suppose that �A, p, B� is normal and proper. Then

¬∨
�¬A, p,¬B[p/¬p]�

expresses the conjunction of �A, p, B�.

Proof. Suppose that � = |B[p/R	x]|R:M. Let’s write X for the complement of X

relative to the domain of M. Let �̂ be defined by �̂(X) = �
(
X

)
.

Applying Lemma 3.1 twice,∣∣¬B[p/¬R	x]
∣∣R:M

(X) = ∣∣B[p/R	x]
∣∣M,X = �̂(X).

By Proposition 3.2, it follows that∣∣¬∨
�¬A, p,¬B[p/¬p]�

∣∣ = ⋃
k<ω

�̂k
(
X

)
.

It therefore suffices to show that⋃
k<ω

�̂k
(
X

) = ⋂
k<ω

�k(X).

To this end, let’s argue by induction on k that �̂k
(
X

) = �k(X). The claim is trivial for
k = 0. So suppose it to hold for k. Then

�̂k+1(X
) = �̂

(
�̂k(X

)) = �̂
(
�k(X)

)
= �

(
�k(X)

) = �k+1(X). �
Before pressing further, let’s get a routine syntactical lemma out of the way. In §2.3,

I sketched a method of expressing the ancestral of a relation, which relies on a trick for
recycling bound variables. The following lemma generalizes that trick. Note that it relies on
the presence of an equality predicate. I’ve found this to be the main obstacle to interpreting
LF under Wehmeier’s 2004 semantics of variables.
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LEMMA 3.4. Each formula A of LF is equivalent to a formula of the form A′[p/R	x]
such that R does not occur in A′, for any predicate R.

Proof. Let A be a formula of LF . Then there are some sequences 	t1, . . . , 	tk of terms
such that A has the form A′[p1/R	t1] · · · [pk/R	tk], where R does not occur in A′. Let R	x 	ti
be the formula

∃	x(ti,1 = x1 ∧ · · · ∧ ti,n = xn ∧ R	x),
where x1, . . . , xn = 	x and ti,1, . . . , ti,n = 	ti . Then, R	x 	ti is logically equivalent to R	ti . So
by Proposition 2.14, the formula A is equivalent to A′[p1/R	x 	t1] · · · [pk/R	x 	tk]. �

3.2. Induction. Let’s now turn to the main goal of this section: to clarify the relation-
ship between form-series disjunctions and finitary inductive definitions. The essential idea,
attributed by Barwise (1977) to Arthur Rubin, is that a finitary inductive definition can be
regarded as a countably infinite disjunction which contains only finitely many variables.
I’ll aim to show that every finitary inductive definition can be expressed by a form-series
disjunction. To this end, we need first to spell out what is a finitary inductive definition and
what it is for a logic to express one.

Consider some examples.

(A) the empty set is hereditarily finite; every finite set of hereditarily finite sets is hered-
itarily finite.

(B) the empty set is hereditarily countable; every countable set of hereditarily countable
sets is hereditarily countable.

Each of these clauses can be used to specify the totality of results of repeatedly applying
a rule to some initially given objects. The rule determines an operation, �, which takes a
class X and returns the class �(X) of all results of once applying the rule to any of its
elements. The rule is applied again to X ∪ �(X), and so on. Write �∪ : X �→ X ∪ �(X).
Then the inductively specified totality should certainly include all elements of the classes
X, �∪(X), �∪(�∪(X)), . . . , each class being obtained by some finite number of applica-
tions of �. Consider the union of all those classes. Does it contain every result of applying
the rule to its elements? Say that the induction is finitary if this is so. Thus, example (A) is
finitary but (B) is not.

Now for some notation. Let I0
� = �(∅), let Iα+1

� = Iα� ∪�(Iα�), and for λ a limit ordinal
let Iλ� = ⋃

α<λ Iα� . If α is the least ordinal such that Iα+1
� = Iα� , then write I� = Iα� .

Induction transforms the operator � into the class I� . So the induction determined by � is
finitary if I� = Iω� .

The notation just introduced assumes induction always to take the empty class as a “base
case”. Of course this implies no loss of generality. Let �X (∅) = X and �X (Y ) = �(Y )
otherwise. I’ll sometimes write Iα�(X) for Iα�X

.

PROPOSITION 3.5. Suppose that � is L-definable. Then Iω� is LF-definable. And so is
the operator X �→ Iω�(X).

Proof. Write � = |A|R:M, where the variables free in A are 	x . Also suppose that

A = A′[p/R	x], with R not in A′. Clearly,
∣∣(p ∨ A′)[p/R	x]

∣∣R:M = �∪. So using
Proposition 3.2, ∣∣∨�⊥, p, p ∨ A′�

∣∣M =
⋃
k<ω

I k
� = Iω�,

https://doi.org/10.1017/S1755020316000472 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000472


LOGIC IN THE TRACTATUS 29

where ⊥ is any unsatisfiable L-formula. For the second part, take the defining formula to
be

∨
�R	x, p, p ∨ A′�. �

As a first application of Proposition 3.5, let’s reconsider the ancestral. Suppose that X is
a two-place relation. Following Russell (1903, 210), let’s write X1 = X , and write Xk+1

for the class of all (a, b) such that (a, c) ∈ Xk and (c, b) ∈ X for some c. The ancestral
can now be interpreted as an operator �∗ : X �→ ⋃

0<k<ω Xk .

PROPOSITION 3.6. In the logic LF , the ancestral operator is definable.

Proof. Let A be the formula Rxy ∨ ∃z(Rxz ∧ Rzy). Then |A|R:M :
⋃k

i=1 Xi �→⋃2k
i=1 Xi . So Iω|A|R:M(X) = ⋃

k<ω Xk = �∗(X). By Proposition 3.5, it follows that there

is a formula, call it Ancestral, such that |Ancestral|R:M = �∗. �
Toward a second example, let’s develop an analysis of arithmetical concepts within LF .

For Wittgenstein unlike for Frege and Russell, this will not be a matter of specifying rela-
tions between distinctively numerical objects. Rather, arithmetical concepts are techniques
for reporting factual relationships (see Tractatus 6.2ff). Accordingly, let’s now build a
method of arithmetical reporting.

Let X be an ordinary two-place relation on D. Then X can be understood to determine
counterparts of arbitary arithmetical relations. For example, consider the one-place arith-
metical relation which holds just of the natural number k. To this there will correspond
a two-place relation on D which holds of just those a, b ∈ D such that (a, b) ∈ Xk .
Similarly, if ρ is the arithmetical relation which holds of just those j, k, l such that l =
j + k, then the choice of X determines as corresponding to ρ the four-place relation on D
which holds of just those a, b, c, d such that (a, b) ∈ X j , (a, c) ∈ Xk , and (a, d) ∈ X j+k .

Now since numbers are not objects, arithmetical relations are not relations on objects.
Therefore no particular choice of material relation X belongs in the analysis of arithmetic.
Instead, an arbitrary k-place arithmetical relation ρ will be analyzed as an operator �ρ of
type 2, k + 1:

�ρ(X) = {(a, b1, . . . , bk) : (a,b1) ∈ Xn1 , . . . , (a, bk) ∈ Xnk

for some (n1, . . . , nk) ∈ ρ}. (9)

Specifically, addition and multiplication determine operators �+ and �× of type 2, 4.

PROPOSITION 3.7. The addition and multiplication operators are LF-definable.

Proof. In the case of addition, the idea is to show how to build a minimal four-place
relation between initial object, left and right summands, and sum, so that (i) any initial
object has itself as a sum of itself with itself and (ii) any successor of a sum of left and
right summands is a sum both of the left summand with the successor of the right, and of
the right summand with the successor of the left.

Let R, S be two- and four-place predicates not in the signature of M. For the base case,
let A be the formula w = x = y = z. For the induction step, let B be the formula
∃y∃z(Swxyz ∧ Ryy1 ∧ Rzz1). Then

|B|S:M,X : Y �→ {(a, b, c1, d1) : (a, b, c, d) ∈ Y for some c, d

with (c, c1) ∈ X and (d, d1) ∈ X}.
Now similarly, let C be an L-formula which describes the effect of at once taking successor
in the left summand and the sum. Then

Iω|B∨C |S:M,X (|A|M) = �+(X).
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By Proposition 3.5, it follows that in the signature of an expansion of M to R, there is a
formula Plus such that |Plus|R:M = �+.

Let’s now turn to multiplication. In handling the successor steps, the strategy will be
to refer to addition by passing the buck to the base case. More precisely, I’ll prove the
definability of an operator �+× of type 2, 7 such that

�+× : X �→ {(a, b, c, d, e, f, g) : (a, b, c, d) ∈ �+(X) ∧ (a, e, f, g) ∈ �×(X)}.
For the base case let A be an LF-formula, in the signature of an expansion of M to a

new dyadic predicate R, such that

|A|M,X = {(a, b, c, d, a, a, a) : (a, b, c, d) ∈ |Plus|M,X }.
Now let S be a new seven-place predicate. Then there is a first-order formula B in the
signature of an expansion of M to R, S such that

|B|S:M,X : Y �→ {(a, b, c, d, e, f1, g1) : (a,b, c, d, e, f, g) ∈ Y for some f, g

with ( f, f1) ∈ X and (a, g, e, g1, a, a, a) ∈ Y }.
Similarly, let C be a formula which specifies the effect of taking successor in the left
multiplicand rather than in the right. Then

Iω|B∨C |S:M,X (|A|M) = �+×(X).
By Proposition 3.5 there is, in the signature of an expansion of M to R, a formula

PlusTimes such that |PlusTimes|R:M = �+×. Existentially generalizing out the three
addition placeholders of PlusTimes gives a formula Times such that |Times|R:M = �×,
as desired. �

PROPOSITION 3.8. If ρ is an arithmetically definable relation on the natural numbers,
then �ρ is an LF-definable operator.

Proof. It suffices to show that for any arithmetically definable relation ρ, there is an
operator �ρ satisfying (9) above. We argue by induction on the complexity of formulas in
a language of arithmetic with signature 0,′ ,+,×, where ′,+,× are treated as relations.

The proof is trivial. Let WeakAncestral be the formula x = y ∨ Ancestral. Let φ� be the
image of φ under the translation

• 0(x) �→ x = w; ′(x, y) �→ Rxy; +(x, y, z) �→ Plus[w, x, y, z];
×(x, y, z) �→ Times[w, x, y, z];

• x = y �→ x = y; ¬φ �→ ¬φ�; φ ∨ ψ �→ φ� ∨ ψ�;
∃xφ �→ ∃x(WeakAncestral[w, x] ∧ φ�).

Now define Aφ to be the formula WeakAncestral[w, x1] ∧ · · · ∧ WeakAncestral[w, xk] ∧
φ�, where x1, . . . , xk are the variables free in φ. If φ defines ρ over a standard model of

arithmetic, then
∣∣Aφ

∣∣R:M = �ρ . �
From a given relation X , the addition and multiplication operators determine relations

which look only as much like addition and multiplication as X looks like successor. For
example, if X looks like the successor relation on the hours of a clock, then the corre-
sponding addition and multiplication relations look like those of arithmetic modulo twelve.
However, in the odd event that ω itself happens to be lying around somewhere, then that
can certainly be reported. The proposal that Wittgenstein’s form-series operator ought to
yield a categorical axiomatization of arithmetic is due to Goldfarb (2012).
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PROPOSITION 3.9. Suppose that the domain of M is infinite, and that M contains a
dyadic predicate. There is a single formula A of LF such that M |� A iff M contains
a corresponding copy of the natural numbers under the successor relation. Moreover, if
M |� A, then any counterpart of an arithmetically definable relation is definable on M.

Proof. Immediate from Propositions 3.6 and 3.8. �
After that foray into applications, let’s return to the general theory. The operator of

an inductive definition is often specified by reference to a previously inductively defined
concept: in this way, for example, the usual definition of multiplication invokes the concept
of addition. But the syntax of LF does not allow operator-signs to contain form-series
expressions. So it might be wondered whether this technique can always be simulated
in LF . In the proof of Proposition 3.7, we saw that multiplication can be defined from
addition by folding the concept of addition into a second-order parameter of the base case.
Let me conclude this section by sketching a result to the effect that the method is general.
Any LF-defined relations can be treated like primitives of the underlying structure.

PROPOSITION 3.10. Suppose that � is L-definable over M, Y1, . . . , Yn and that
Y1, . . . , Yn are LF-definable over M. Then Iω� is LF-definable over M.

Proof. By hypothesis, there is an L-formula A such that |A|R:M,Y1,...,Yk = �; and there
are LF-formulas B1, . . . , Bn with |Bi |M = Yi for each of the Bi . We may assume A
to have the form A′[p/R	x, q1/S1 	y1, . . . , qn/Sn 	yn], where A′ is an L-formula containing
none of R, S1, . . . , Sn . Indeed, suppose that the free variables of A are precisely 	x , and
that the free variables of each Bi are 	yi , with the 	yi distinct from all 	x and from all 	y j with
j 
= i .

For any relations V,W , write V×W for set of all (	a, 	b)with (	a) ∈ V and (	b) ∈ W . And
write �i Vi for V1 × V2 × . . . . Now it would be nice to define in L an operator satisfying

Ik
� ×�i Yi �→ Ik+1

� ×�i Yi (10)

for all k. Sadly, such an operator will not in general exist unless Ik
� and each of the Yi =

|B|M are nonempty. So, the construction must be split into cases.
Note that Iω� = Iω�∪ . So we can assume that � = �∪. We can at once get a trivial case out

of the way, namely where �(∅) = ∅. For in this case, Iω� = ∅, and so |⊥|M = Iω� .
To motivate the handling of the other cases, let’s first work the end of the proof. Let e

be a selection e1, . . . , em of numbers from 1, . . . , n. For every such e, we’ll aim to have
constructed a formula De such that if it is precisely Be1 , . . . , Bem amongst B1, . . . , Bn

which have nonempty extension, then |De|M = Iω� . Now let Ee be a formula which says
that it is precisely the Be1 , . . . , Bem with nonempty extension. Take Ce to be the formula
Ee → De. For the trivial case, we can choose C0 to be the formula ¬∃	x A′[p/⊥,
q1/B1, . . . , qn/Bn] → ⊥. Finally, let C be the conjunction of C0 with each of the 2n

formulas Ce. The construction of the De will then give the desired result that |C |M = Iω� .
It remains to build each formula De, under the hypothesis that �(∅) and precisely

Ye1 , . . . , Yem are nonempty. Write 	ye for 	ye1 , . . . , 	yem . Let Te be a new predicate whose
arity is the length of 	x, 	ye. Now for 0 ≤ j ≤ n, let

Ge, j =

⎧⎪⎨
⎪⎩
∃	yeTe 	x 	ye, if j = 0;
∃	x 	ye1 · · · 	yei−1 	yei+1· · · 	yem Te 	x 	ye, if j = ei

⊥, otherwise.

Then |Ge,0|M,�i Yei = �(∅), and |Ge, j |M,�i Yei = Y j if 1 ≤ j ≤ n.
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Let Fe be the formula A′[p/Ge,0, q1/Ge,1, . . . , qn/Ge,n] ∧ Ge,e1 ∧ · · · ∧ Ge,em . Then
Fe defines over M an approximation of the operator (10), so that

Iω|Fe|Te :M : �(∅)×�i Yei �→ Iω� ×�i Yei . (11)

Since Fe is a formula of L, we can apply the induction of Proposition 3.5 to define the
operator mentioned in (11). Using A′ and the Bi , it is also clear that �(∅) × �i Yei is
LF-definable over M. So, the relation Iω� ×�i Yei is itself definable over M. Existentially
generalizing out the 	ye yields the formula De desired for the case in question, namely such
that |De|M = Iω� . �

3.3. Comparisons. Let’s now zoom way out, and compare LF with some other
extensions of first-order logic. First, it is obvious from the double-bar semantics that LF
is a subsystem of the infinitary logic Lω1ω which results by adding to first-order logic
countably infinite disjunctions. However, even L∞ω has no wellfoundedness quantifier
(Lopez-Escobar, 1966). Indeed, LF is a subsystem of the fragment Lωω1ω

in which no
formula contains infinitely many variables (Barwise, 1977); and Lωω1ω

lacks a quantifier
“there are infinitely many”. The system LF is also related to some subsystems of second-
order logic. For example, the �1

1 fragment of second-order logic (�1
1SOL, as defined in

Heck (2011)) expresses finitary inductive definitions, so it is at least as expressive as
LF . But it also has an infinity quantifier, so it is strictly more expressive. The situation
is different with monadic second-order logic (MSOL), which a priori expresses finitary
inductive definitions only of monadic properties. And indeed, since the monadic second-
order theory of the successor relation is decidable (Büchi, 1960), it follows that unlike LF ,
monadic second-order logic cannot define both addition and multiplication from successor.
Conversely, the monadic fragment, like the �1

1 fragment, does have a wellfoundedness
quantifier. Thus monadic second-order logic and LF are incomparable. Strictly weaker
than all of these systems is the result LA of adding an ancestral operator to first-order
logic. In sum, we have

PROPOSITION 3.11. Write X → Y to mean that logic Y is strictly more expressive than
logic X. Then

Lω1ω �1
1SO L M SO L

Lωω1ω

��

LQ∞

�����������

�����������
LQWF

�����������

������������

LF

���������������������

��

LA.

�����������������������

��

§4. Definability. One way to characterize the consequence relation in first-order logic
is through a universal generalization over structures. Since a structure consists of a maybe
infinite collection of objects plus some relations on the collection, this analysis makes the
consequence relation look unmanageable: to verify that the relation obtains, it looks as
though we’d have to run through an infinity of in general infinite structures and determine
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that each is not a countermodel. However, first-order logic admits a complete notion of
proof: accordingly, whenever some formula is a first-order consequence of some others,
some finite pattern of formulas gives an effective witness. So, it turns out to suffice instead
to enumerate the finite patterns of formulas until a proof appears. This collapse in the
complexity of the consequence relation is a fairly special property of first-order logic.
Slight enrichments of the logic tend to complicate the consequence relation and outrun any
system of finite witnesses.

In this section, we turn to the problem of characterizing the complexity-theoretic effects
of the Russellian semantics and of the form-series device. On the one hand, the Russellian
constraint winnows the class of countermodels, so that the answers to old questions may
change. On the other hand, the form-series device introduces new formulas, hence raising
more questions.

In §4.1, I’ll develop an appropriate framework for measuring the complexity of met-
alogical concepts of LF . In §4.2 and §4.3, I’ll respectively consider the cases in which
the domain has been chosen to be some fixed finite or infinite collection. Finally, §4.4 will
address the complexity of D-validity and D-consequence considered prior to a choice of D.

4.1. Measuring definitions. Let’s start with a simple framework for measuring the
complexity of logical notions, which we can then apply to the notions of D-validity and
D-consequence for L and LF . A standard measure of logical complexity derives from the
theory of computable functions on the natural numbers. Its application to logic depends
on the technique of arithmetization, according to which formulas are “coded” as natural
numbers. In the present context, arithmetization is somewhat annoying, since it prejudges
nontrivial interpretive questions. First, it applies only if the signature is countable. Since a
Russellian signature includes the domain of its Russellian structures, this excludes struc-
tures with uncountable domains. Second, arithmetization yields the definability of, e.g.,
the class of names coded by the even integers. This leads to troubles of the sort indicated
in §1.2.

Sundholm (1992, 71) recommends an approach to this problem derived from Barwise
(1975, 78ff): code syntactical constructions not arithmetically but set-theoretically, treating
logical vocabulary as pure sets, and the terms of the signature as urelements. In a little more
detail, suppose S is a structure. Let HF(|S|) be the class of hereditarily finite sets over the
domain |S| of S; thus the elements of HF(|S|) are generated, given the elements of |S|
initially, by repeatedly forming all finite sets of what’s obtained already. This determines a
first-order structure HF(S) whose domain is HF(|S|), together with the natural member-
ship relation on HF(|S|), the property of belonging to the domain |S| of urelements, and
each of the relations and functions baked into S itself. I will write HF and HF for HF(∅)
and HF(∅) respectively.

We’ll be specially concerned with HF(S) for S not any old structure, but a Russellian
signature considered as a structure. The class HF(S) will be regarded as the universe of
possible syntactical constructions from the initially given assortment of nonlogical vocab-
ulary. For simplicity of coding, I will just identify the signature with its collection D of
names. This implies no serious loss of generality. For one thing, a signature with countably
many predicates can be interpreted as a signature with at most one predicate of each arity:
take the j th predicate of arity k to be the predicate whose arity is the numerical code of
the pair j, k. But second, a language with at most one predicate of each arity can take
an atomic formula to be simply a sequence of terms, so doesn’t need predicates. We will
therefore work over HF(D), where the underlying structure D is a bare class of urelements.
Logical vocabulary should be coded by pure sets. Atomic formulas are coded in HF(D) as

https://doi.org/10.1017/S1755020316000472 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000472


34 MAX WEISS

finite sequences of variables and of elements of D. Nonatomic formulas result from atomic
formulas through this or that finitary set-theoretic construction.

The structure HF(D) is of course itself a structure for a first-order language whose
two nonlogical predicates are those of membership and urelementhood, or ∈ and D. The
complexity of a class on HF(D) can now be measured by the logical complexity of the
simplest formulas which define it. I’ll just sketch the portion of the framework we’ll need;
the details can be found in Barwise (1975). A formula is 
0 if it is built up from atomic
formulas by negation, disjunction, and bounded existential quantification ∃x ∈ y . . . .
A formula is �1 (or �1) if it’s the result of prefixing a 
0 formula with a sequence of
existential (universal) quantifiers; also the result of prefixing a �n (or �n) formula with a
string of existential (universal) quantifiers is said to be �n+1 (�n+1). Now the complexity
of a subclass of HF(D) is given by the complexity of the simplest formula which defines it.
A class is said to be 
n if it is both �n and �n .

The definability-theoretic characterization of complexity of classes of hereditarily finite
sets generalizes naturally the recursion-theoretic measures of complexity on the natural
numbers. Note that each natural number is uniquely represented as a sum of powers of
two, and so it can be taken to code the set of whatever is coded by the powers (Ackermann,
1937). This gives a bijection between the naturals and HF. It’s now straightforward to
verify that a set of integers is recursive iff it is 
1 on HF (Barwise, 1975, 47ff), likewise
for r.e. and �1, and so on. As Kirby (2009) argues, HF can therefore be seen as a natural
home of finitary constructions.

Moreover, the extension of HF to HF(D) preserves the alignment of definability-
theoretic and computability-theoretic classifications. In particular, the introduction of D
does not affect first-order definability-theoretic complexity of pure classes.

PROPOSITION 4.1. Suppose X ⊆ HF. Then X is �n on HF iff X is �n on HF(D).
Proof. In one direction, note that the class HF is�1 on HF(D). So if φ is a�n definition

of X on HF, then the relativization of φ to HF is a �n definition of X on HF(D).
Conversely, the downward Löwenheim-Skolem theorem implies that HF(D) has a

countable elementary substructure HF(D)′. Let D′ be the least subclass of D such that each
element of the domain of HF(D)′ belongs to HF(D′). Each element of HF(D′) is definable
on HF(D) by a first-order formula with parameters in D′. So in fact, HF(D)′ = HF(D′).
So any HF(D) has a countable elementary substructure HF(D′). We may therefore assume
that D is countable.

Let p be a bijection from D onto the class of pure sets of the form (0, a). Define f :
HF(D)→ HF so that f (a) = p(a) for a ∈ D, and otherwise f (a) = (1, { f (b) : b ∈ a}).
Let HF(D)∗ = { f (a) : a ∈ HF(D)}; let D∗ = {p(a) : a ∈ D}, and let a ∈∗ b iff
b = (1, c) for some c such that f (a) ∈ c. Then f is an isomorphism of HF(D) onto
(HF(D)∗,D∗,∈∗), while D∗,∈∗ are �1 on HF. Now, suppose that φ is a �n definition of
X on HF(D). Let φ∗ be the relativization to HF(D)∗ of the result of replacing ∈ and D in φ
with the definitions of ∈∗ and D∗. Then φ∗ is a �n definition of X∗ on HF(D). Moreover,
the restriction of f to HF is �1 on HF. Therefore, φ∗[ f (x)] is a �n definition of X
on HF. �

4.2. The finite case. Let’s now apply this framework to analyze the metatheory of L
and LF . The first couple of results should be reassuring.

PROPOSITION 4.2. Suppose D is finite. Then D-validity for LF is 
1 on HF(D), and
D-consequence for L is �1.
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Proof. Consider the infinitary expansion A of a formula A. Let B be an unquantified
infinitary formula which results by successively replacing each existentially quantified

subformula of A with the finite disjunction of its D-instances. Now consider an infinite
disjunctive subformula C of B; suppose by induction that all subformulas of C are finitary.
Then C has the form

∨
(D, E[p/D], E[p/E[p/d]], . . .), where D and E are constructed

from some k atomic formulas by negation and finite disjunction, though E itself may also
contain p. By extensionality, Proposition 2.14, C must be equivalent to the disjunction of
its first 22k

disjuncts, and we can just drop the rest. Let A↓ be the formula, constructed from
atomic sentences by negation and finite disjunction, which results by eliminating from B
in this way each of its infinitary subformulas. Clearly there is a �1-definable function on
HF(D) associating A↓ to A. But validity for finitary formulas is 
1.

If D is finite, then D-consequence is compact. So, A is an D-consequence of X iff there’s
a conjunction B of elements of X such that B → A is valid; this can be expressed as a �1
formula on HF(D). �

Let’s now drop the assumption that D is finite. The second reassuring result is that, if
we drop form-series from the logic, and consider only the notion of D-validity, then this is
no more complicated than usual.

PROPOSITION 4.3. D-validity for L is �1 on HF(D), for all D.

Proof. It suffices to consider the case where D is infinite. Let I be a collection of
L-formulas to the effect that “there is at least one thing, there are at least two things, . . . ”.
For A a formula of L, Let TA be an L-formula a 
= b ∧ a 
= c ∧ . . . to the effect that no
two names in A denote the same thing.

We now argue that A is D-valid iff A is a classical consequence of I ∪ TA. In one
direction, suppose that A is not D-valid, so that M 
|� A for some D-structure M. Clearly
M |� TA since A is a D-structure, and M |� I since D is infinite. Hence A is not
a classical consequence of I ∪ TA. Conversely, suppose that there’s a classical structure
M such that M |� I ∪ TA but M 
|� A, where the signature of M consists just of
the nonlogical vocabulary of A. Since M |� TA, it follows by the Lowenheim-Skolem
theorems that M is elementarily equivalent to a structure M′ whose domain is D. Since
M′ |� I , therefore M′ is isomorphic to an M′′ such that aM′′ = a for each constant
a which occurs in A. In turn, M′′ may be expanded to an D-structure M′′′ such that
M′′′ 
|� A.

The completeness theorem for first-order logic implies that A is a classical consequence
of I ∪ TA iff there is a proof of A from I ∪ TA. Formally, however, the property “being a
proof of A from I ∪ TA” is 
1 on HF(D), so that “having a proof from T ∪ IA” is �1.
From the previous paragraph, it follows that the collection of D-valid formulas is �1 on
HF(D). �

So, D-validity is never more complicated than classical validity. Does this also hold for
D-consequence? By the compactness theorem, classical consequence is no more compli-
cated than classical validity. But if D is infinite, then D-consequence is clearly not compact.
For example, a universal generalization is a D-consequence of the set of its instances, but
not of any finite subset. In other words, the complexity of the D-consequence relation
remains to be determined.

4.3. Countability and categoricity. Let’s now fix the domain to be infinite. What,
then, is the complexity of D-validity and of D-consequence for LF in this case? Recall,
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from §2.2 and §3.2, that the Russellian constraint and the form-series device each lead
to categorical axiomatizations of the standard model of arithmetic. I’ll now show that
LF categorically axiomatizes another infinite structure as well: HF(D) itself. This leads
to an amusing application of Tarski’s theorem, which shows that validity is not first-
order definable on HF(D). After establishing the definability of satisfaction relative to
truth, we then conclude that in fact LF-validity is �1

1-complete. Finally I’ll show that
L-consequence is �1

1-complete as well.
Let M be a relational structure without constants. Now, say that M is D-axiomatized

up to isomorphism by some formulas X iff the formulas X are true in some D-structure,
and if by an addition of constants, M can be expanded to a structure which is isomorphic
to every D-structure satisfying X .

PROPOSITION 4.4. Suppose D is infinite. Then HF(D) is D-axiomatizable up to iso-
morphism by a single formula of LF .

Proof. We want to find a formula Z such that M |� Z iff M is isomorphic to HF(D),
for all D-structures M. Write D and E for a monadic and dyadic predicate of L; these can
serve, inside L or LF , as counterparts of the predicates “x is an urelement” and “x belongs
to y”.

Note that HF(D) can be seen as the smallest set which contains the empty set and all
urelements, and which is closed under the procedure x, y �→ x ∪ {y} of adjoining y to x .
This suggests that the class of D-structures which are isomorphic to HF(D) can be defined
by a single formula of LF . Using the predicate E for the counterpart of membership, it’s
straightforward to express the graph of the corresponding procedure of adjunction:

Adj = ∀w(Ewz ↔ Ewx ∨ w = y).

Let F be a new monadic predicate. Let

ClAdj = ∃x∃y(Fx ∧ Fy ∧ Adj)

and let � = |ClAdj|F :M. Let M0 = |¬∃yExy|M. By Proposition 3.5, let Z ′ be a formula
in the one free variable x such that |Z ′|M = Iω�(M0). And let Z1 = ∀x Z ′. Thus, Z1 is
true in just those M where everything results from things without elementsM by repeated
adjunctionM. Furthermore, let

Z2 = ∀x∀y∃!zAdj[x, y, z])

Z3 = ∃!x(¬Dx ∧ ∀y¬Eyx)

Z4 = ∀x(Dx → ∀y¬Eyx)

Z5 = ∀x∃y(Dy ∧ ¬Eyx).

And finally let

Z = Z1 ∧ Z2 ∧ Z3 ∧ Z4 ∧ Z5.

It remains to show that M |� Z iff M is isomorphic to HF(D). In one direction, it is
clear that any D-structure isomorphic to HF(D) satisfies Z .

Conversely, suppose that M |� Z . We want to construct an isomorphism from M onto
HF(D). Since M is a D-structure, its domain is just D.

By Z3 and Z4, the class M0 consists of the stuff in DM plus exactly one thing ∅M not
in DM. Conditions Z1 and Z2 ensure that the cardinality of D differs by at most ℵ0 from
the cardinality of DM. Moreover if D is countable, then Z5 together with Z2 ensures that
DM is infinite and therefore also countable. So in any case, there is a bijection f from
DM onto D. For a ∈ M0, let h(a) = ∅ if a = ∅M, and otherwise let h(a) = f (a).
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A couple of quick observations before extending h from M0 to all of D. First: it is routine
to show by induction on k that if a ∈ Ik

�(M0), then every EM-chain descending from a
has length at most k. Since D = Iω�(M0), therefore EM is wellfounded.

Second: the truth of Z2 implies that adjunctionM is functional; write a � b for the c such
that M |� Adj[a, b, c]. By Z1, each c ∈ D − M0 can be written in the form c = a � b for
some a, b. Now Z2 says that there is exactly one thing whose elementsM are b together
with the elementsM of a. So, c is determined by its elementsM. But c was arbitrary. So no
two setsM have the same elementsM.

For a ∈ D − M0, we may now define h(a) = {h(b) : EMba}. Let’s argue that h is an
isomorphism of M onto HF(D). Suppose s ∈ HF(D). Clearly if s = ∅ or s ∈ D, then
s is in the range of h. Otherwise s = {s1, . . . , sk}; by induction on rank we may assume
each si = h(ai ) for some ai , and so s = h(∅M � a1 � · · · � ak) where � associates to the
left. Conversely, suppose that h(a) = h(b) but a 
= b. Without loss of generality, we can
assume there’s a c such that EMca but not EMcb while h(c) ∈ h(b), so that h(c) = h(d)
for some d 
= c, contradicting the wellfoundedness of EM. Since h is a bijection, we must
therefore also have that h(b) ∈ h(a) iff EMba. �

We’re exploring the complexity of concepts of the metatheory of L and LF . So far it
has been enough simply to identify formulas of these object-languages with elements of
a certain convenient structure, namely HF(D). At this point we’ll need to begin making
explicit reference to expressions of the formal metatheory. Indeed, it will also be useful to
think of L as containing copies of the first-order expressions of the metalanguage.

To keep things clear, I will in the rest of this subsection never any longer use
unadorned logical notation to refer to expressions of L or LF . Whereas ∃,¬,∨, (, ),
x, y, . . . ,∈,D . . . , etc., now refer to expressions of the metalanguage, only ∃̇, ¬̇, ∨̇, (̇, )̇,
ẋ, ẏ, . . . , Ė, Ḋ . . . now refer to corresponding expressions of L, which are understood
as elements of HF(D). Where φ is a formula of the metalanguage, its L-copy is φ̇: for
example if φ is ∃x(x ∈ y → x ∈ z), then φ̇ is ∃̇ẋ (̇Ė ẋ ẏ→̇ẋ∈̇ż)̇. We’ll also consider
second-order quantification in the metalanguage; the coding scheme must then be
extended correspondingly. I’ll continue to use uppercase italic letters informally to range
over those elements of HF(D) which code formulas of L or of LF . Finally, the notions
of D-validity and D-consequence have obvious counterparts as relations on codes of
L- and LF-formulas; I’ll refer to these counterparts as VALIDL, IMPLIESL, VALIDLF
and IMPLIESLF .

With Proposition 4.4, we saw that the structure HF(D) can be D-axiomatized up to
isomorphism by a single formula of LF . This implies that the concept of first-order truth-
in-HF(D) is embedded in the concept of LF-validity.

PROPOSITION 4.5. Suppose that D is infinite. Then, there is a first-order formula θ in
the signature of HF(D), with one extra monadic predicate V, such that

HF(D),VALIDLF |� θ [φ̇] ↔ φ

for all first-order formulas φ in the signature of HF(D).
Proof. Let Z be the categorical LF-axiom for HF(D), which is given by the proof of

Lemma 4.4. Let ζ be a formula of the metalanguage such that HF(D) |� ζ [x/a, y/b] iff
a is an LF-formula A and b is Z→̇A. Let θ be the formula ∃y(ζ ∧ V y). Given that D is
infinite, HF(D) is isomorphic to an HF(D)-coded D-structure. Using this fact, it is routine
to verify that θ satisfies the claim of the lemma. �
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We are clearly in the vicinity of Tarski’s theorem, which has the following corollary.

LEMMA 4.6. Suppose that θ is a first-order formula in the signature of HF(D) together
with a single new predicate R, such that

HF(D), X |� θ [φ̇] ↔ φ

for every first-order formula φ in the signature of HF(D). Then X is not first-order defin-
able on HF(D).

Proof. Suppose to the contrary that X were first-order definable, say by a formula ψ
whose free variables are just 	x . Let θ ′ be the result of everywhere replacing R	x with ψ .
Then

HF(D) |� θ ′[φ̇] ↔ φ

for all φ, and this contradicts Tarski’s theorem. �

PROPOSITION 4.7. Suppose that D is infinite. Then the class of D-valid LF-formulas
is not first-order definable on HF(D).

Proof. Immediate from Proposition 4.5 and Lemma 4.6. �
In fact, something stronger is true. A formula is said to be (explicitly) �1

1 if it is the
result of prefixing a first-order formula with a string of universal second-order quanti-
fiers. The official definitions of D-validity and of D-consequence have the form “for all
D-structures. . . ”. Moreover, a D-structure is determined by its diagram. And under the
coding of L-formulas with elements of HF(D), a diagram is just a class on HF(D). So the
official definitions of D-validity and D-consequence are naturally expressed over HF(D)
with �1

1 formulas. Can this rendering be simplified?
A class P is said to be �1

1-complete over some structure if for every �1
1 formula φ,

there’s a first-order formula ψ such that φ[	a] ↔ ψ[P, 	a] holds for all 	a in the domain.
Thus, P is�1

1-complete if every class definable by a second-order universal generalization
of a first-order formula is first-order definable relative to P . Note that since HF(D) permits
coding finite sequences of classes as classes of finite sequences, it is enough to consider
the case of a single universal second-order quantifier.

I’ll now show that for formulas of LF , the concept of D-validity is �1
1-complete. To

this end, I’ll show that in HF(D), the concept of satisfaction can be reduced to the concept
of truth, and then show that the concept of truth for �1

1 formulas is first-order definable
relative to D-validity.

Reducing satisfaction to truth is somewhat like trying to replace de re mental states with
de dicto ones (except perhaps in being easier). As is well known, each element of HF has
a parameter-free first-order definition, so in that case, the satisfaction of a formula by an
element can be reduced to truth using something like Russell’s theory of descriptions.
This is not so for elements of HF(D), since the urelements are indiscernible. But for
present purposes, a notion weaker than that of definition will suffice. Say that sets a, b
are isomorphic if they are identical modulo swapping of urelements. Now let’s say that a
formula describes a if it is satisfied precisely by the sets isomorphic to a. The crucial fact
about descriptions will be this: that no objects satisfying the same description differ over
any parameter-free formula. As I’ll verify below, every element of HF(D) is first-order
describable. Indeed, a “canonical” description of a can be generated from a in a simple
uniform manner. This means that lying within HF(D), there is a definable “road back”
from each object to a bunch of codes of its canonical descriptions.
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LEMMA 4.8. There is a formula δ in the signature of HF(D), such that (i) if HF(D) |�
δ[a, b] then b codes a canonical description of a, and (ii) HF(D) |� ∀x∃yδ[x, y].

Proof. Let’s begin by associating to each element a of HF(D) a formula γa without
parameters which canonically describes it. First, write ν for a one-one association of vari-
ables νa, νb, . . . for some finitely many elements a, b, . . . of HF(D). Now, let’s construct
a formula βa,ν which says of the objects assigned to its free variables that they’re arranged
as the elements of the transitive closure of a:

βa,ν =
{

Dνa if a ∈ D, and

∀y
(
y ∈ νa ↔ ∨

b∈a y = νb
) ∧∧

b∈a βb,ν, otherwise.

Conjoin βa,ν with each formula νb 
= νc such that b, c are distinct urelements in the
transitive closure of a. Finally, let γa,ν be the result of existentially generalizing this with
respect to each variable νb such that b 
= a. Then HF(D) |� γa,ν[b] iff b is isomorphic to
a, and so γa,ν describes a.

Clearly the construction of γa,ν from a can be first-order definably replicated inside of
HF(D). The formula γa,ν is given relative to the choice ν of variables for sets. To wash
this out, we’ll now take as defined, by induction on rank, the relation that holds between
a and b iff b = γ̇a,ν for some ν. It remains only to conjoin the requirement that the one
free variable of γ̇a,ν is ẋ . The result is a first-order formula δ in the signature of HF(D)
such that

HF(D) |� δ[a, b] iff b = γ̇a,ν for some ν such that ν̇a = ẋ .

Then δ satisfies

if HF(D) |� δ[a, b], then there’s a φ such that b = φ̇ and φ describes a,

for all a, b. Thus, δ defines the graph of a function which takes an element of HF(D) to a
nonempty class of codes of its canonical descriptions. Since every element of HF(D) has
a canonical description, therefore also HF(D) |� ∀x∃yδ[x, y]. �

The definable describability of each element of HF(D) now yields the desired reduction
of �1

1 satisfaction. The reduction is more general, but I’ll just state the relevant case. Let
TRUE�1

1
be the class of codes of �1

1 formulas which are true in HF(D).
LEMMA 4.9. There is a first-order formula θ such that

HF(D) |� φ[a] iff HF(D), TRUE�1
1
|� θ [a, φ̇] (12)

for all a and all �1
1 formulas φ in the signature of HF(D).

Proof. Let δ be the formula provided by Lemma 4.8, and let T be the predicate inter-
preted by TRUE�1

1
. We can assume that the free variable of φ is x . Let’s work out how

to say that ∃̇ẋ (̇φ̇∧̇γ̇a )̇ belongs to TRUE�1
1

for some description γa of a.

Let η be the formula ∃w(Tw ∧ w = ∃̇ẋ (̇y∧̇z)̇ ). Then HF(D), TRUE�1
1
|� η[b, c] iff

b and c are codes of �1
1 formulas such that ∃̇ẋ (̇b∧̇c)̇ is in TRUE�1

1
. Let θ be the formula

∃z(δ[x, z]∧ η). Noting that any metalinguistic formula φ is parameter-free, it is routine to
verify that (12) holds of θ . �

PROPOSITION 4.10. If D is infinite, then TRUE�1
1

is first-order definable relative to
VALIDLF .
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Proof. Let θ be the formula V(Z→̇x) where V is a predicate not in the signature
of HF(D), and Z is the LF-formula of Proposition 4.4 which categorically axiomatizes
HF(D). Suppose φ is a first-order formula in the free second-order variables 	X . Then

HF(D) |� ∀ 	Xφ iff HF(D), 	P |� φ for all subclasses 	P of HF(D)
iff M, 	P |� φ for all D-structures M � HF(D) and all 	P ⊆ D
iff HF(D),VALIDLF |� θ [φ̇]. �

PROPOSITION 4.11. If D is infinite, then the class of D-valid formulas of LF is
�1

1-complete on HF(D).
Proof. Immediate from Lemma 4.9 and Proposition 4.10. �
Note that a priori, the definition of D-consequence is �1

1, since quantification over
structures is essentially just second-order quantification over HF(D). So, Proposition 4.11
is as strong as possible. It shows that if the underlying universe is infinite, then there cannot
be a notion of proof whose completeness would, as in the case of first-order logic, secure
any reduction in the complexity of class of valid formulas. The fact which underlies this is
that if the universe is infinite, then LF can itself characterize HF(D) up to isomorphism.

Needless to say, a concept of proof need not serve only to situate validity or consequence
in the complexity-theoretic universe. For example, the existence of a sound and complete
proof procedure might be held to supply its correlative notion of consequence with some
sort of an explanation or analysis. From that point of view, the limitive results of this
section don’t rule out philosophical importance for some sound and complete notion of
proof for LF .

Under the assumption that D is countable, the languages L and LF can be translated
into countably infinite truth-functional logic. And so they do have a complete notion of
proof (Lopez-Escobar, 1965). Unlike the notion of proof for classical logic, this cannot
show the consequence relation to be any simpler than what’s given by its a priori spec-
ification. Nonetheless, it might be claimed to demonstrate that the corresponding conse-
quence relation is uniformly realized through infinitary symbolic patterns, and, therefore,
still appropriately grounded in propositional structure. The philosophical development and
evaluation of this proposal is a difficult problem, which must be left to further work.

Let’s conclude this subsection by evaluating the complexity-theoretic significance of
the restriction to countable Russellian structures independently of the form-series device.
We saw in §2.2 that under D-consequence, every structure is categorically axiomatized
by its diagram. Consequently, a counterpart of Proposition 4.11 holds for the notion of
D-consequence over L-formulas. The counterpart is somewhat weaker, because infinite
diagrams are not in general definable over HF(D). So within HF(D), the concept of
D-consequence yields the concept of truth-in-HF(D) only relative to an enumeration of D.
The proof mimics that of Proposition 4.11. Let (HF(D),D,∈, f ) be the result of adding
to HF(D) a mapping f of ω onto D.

PROPOSITION 4.12. Suppose that D is countably infinite. IMPLIESL is�1
1-complete on

(HF(D),D,∈, f ).

Proof. By Lemma 4.9, TRUE�1
1

is �1
1-complete on HF(D). Since HF(D) contains a

first-order definable copy of (HF(D),D,∈, f ), therefore TRUE�1
1

must also be

�1
1-complete on (HF(D),D,∈, f ). So it suffices to show that TRUE�1

1
is first-order

definable on (HF(D),D,∈, f, IMPLIESL).
Suppose that MHF(D) is a D-structure isomorphic to HF(D) itself. Let
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(MHF(D)) = the diagram of MHF(D).

From Proposition 2.2 it follows that M |� 
(MHF(D)) iff M = MHF(D). So there’s a
first-order formula θ such that

HF(D), IMPLIESL,
(MHF(D)) |� θ [φ̇] iff HF(D) |� φ
for all �1

1 formulas φ. But there is an M, isomorphic to HF(D), whose diagram is first-
order definable on (HF(D),D,∈, f ). So, the class TRUE�1

1
is first-order definable on

(HF(D),D,∈, f, IMPLIESL), as desired. �

4.4. Uncountability and nonabsoluteness. So far, we’ve been investigating the com-
plexity of concepts of the metatheory of L and LF relative to this or that fixed choice
of D. If the universe must be finite, then the notion of tautology is in any case decidable.
If the universe is fixed as some infinite set D, then the notion of LF-tautology is �1

1-
complete on HF(D). However, from an epistemological point of view it is not clear that
the most significant measure of complexity presumes a determination of D. For as we’ll
see in §5, Wittgenstein appears to demand, in some sense, that the size of the universe
not be prejudged. So, I want now to investigate what can be said about the complexity of
D-validity as a relation between LF-formulas and arbitrary choices of D, and analogously
for D-consequence with sets of L-formulas.

As we’ve seen, the concept of D-validity for LF can be expressed by a formula using
second-order quantification over HF(D). The definition can also be phrased as a for-
mula which uses a single first-order universal quantification ranging over the power set
of HF(D). Can that universal quantifier be replaced with an existential one? By Proposi-
tion 4.11, the existential quantifier couldn’t just range over HF(D), but we might hope to
find some infinitary notion of “proof”, or more broadly of “pattern”, to witness the concept
of D-validity for LF . Could such a complete, if perhaps quite profligate, notion of proof
be established on the basis of the axioms of set theory?

As before, it’s natural to avoid assuming that D has been coded as some pure set. Here,
let’s adapt ZFC to handle D as a collection of urelements. Add to the language of set theory
a primitive predicate D which corresponds to the property of belonging to the class D of
urelements. Add an axiom to the effect that nothing in D has an element, and replace the
usual axiom of extensionality with an axiom that things outside of D are the same if they
have the same elements. It simplifies matters to assume that the elements of D form a set,
although the result established here can be extended to the case in which the assumption is
dropped.

In the resulting set theory ZFCU, the theory of logics L and LF easily results by formal-
izing the construction which earlier took place in HF(D). In particular, the assumption that
D forms a set means that the definition of validity and consequence become expressible by
universal, first-order generalization over subsets of D.

It is clear that the Russellian constraint on the class of all structures implies that the
consequence relation discriminates between domains of different cardinality. For example,
it certainly discriminates between domains of different finite cardinality. As we’ll now
see, the Russellian constraint also implies that the consequence relation effects transfinite
discriminations as well.

PROPOSITION 4.13. (i) There is an LF-formula Uncountable such that Uncountable is
D-valid iff D is uncountable. (ii) For any subset s of D, there is a set ONTOs of L-formulas
such that ONTOs is D-satisfiable iff s has the same cardinality as D.
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Proof. (i) Call a binary relation successorlike if it stands to D as the successor relation
stands to the finite ordinals. Let Uncountable be an LF-formula which says that R is not
successorlike. Clearly Uncountable works as desired. (ii) Suppose that D is infinite, and let
s be a subset of D. For some monadic predicate F , let Fs be the collection of all formulas
Fa for a ∈ s, together with all formulas ¬Fa for a 
∈ s. And, for some dyadic predicate
R, let B be an L-formula to the effect that R maps the Fs onto D. Let ONTOs = Fs ∪{B}.
Then ONTOs is D-satisfiable iff there is a surjection from s onto D. �

However, the following lemma shows that the condition of uncountability of the class of
urelements cannot be expressed by a �1 formula.

LEMMA 4.14. There is no �1 formula θ such that ZFCU � D  ℵ0 ↔ θ .

Proof. Assume to the contrary that θ is a �1 formula such that ZFCU � D  ℵ0 ↔ θ .
Let V(x) formalize “the class of all sets with urelements drawn from x”. For any formula
φ, write φV(x) for the relativization of φ to V(x). And let Tc(x) formalize “the transitive
closure of x”.

Clearly, ZFCU proves that any surjection from ω to a set m belongs to the class of all
sets with urelements drawn from Tc(m). So,

ZFCU � m � ℵ0 → (D � ℵ0)
V(Tc(m)). (13)

Since D ≤ ℵ0 and θ are �1, therefore D � ℵ0 → ¬θ is �1. Moreover, V(Tc(m))
is transitive. But, �1 formulas are downward absolute for transitive classes (Jech, 2003,
185). So from ZFCU � D  ℵ0 ↔ θ , it follows that

ZFCU � (D � ℵ0)
V(Tc(m)) → ¬θV(Tc(m)). (14)

And (13) and (14) together imply

ZFCU � m � ℵ0 → ¬θV(Tc(m)). (15)

On the other hand, we assumed that ZFCU � D  ℵ0 → θ . Write φm for the relativiza-
tion of φ to m. Using the axiom of choice, a version of the reflection theorem implies that
if ZFCU + φ � θ then ZFCU + φ � ∃m(m � ℵ0 ∧ m is transitive ∧ θm)) (Jech, 2003,
165ff). So by the deduction theorem,

ZFCU � D  ℵ0 → ∃m(m � ℵ0 ∧ m is transitive ∧ θm). (16)

We also assumed that θ is �1, so that θ is upward absolute for transitive classes. Conse-
quently, (16) implies

ZFCU � D  ℵ0 → ∃m(m � ℵ0 ∧ θV(Tc(m)). (17)

From (15) and (17), it follows that

ZFCU � D  ℵ0 → ⊥. (18)

But ZFCU + D  ℵ0 is consistent relative to ZF. So (18) contradicts the consistency
of ZF. �

We can now put the pieces together, establishing the last technical result of this paper.
Let ValidLF formalize in ZFCU the property of being a D-tautology; and let ImpliesL
formalize the relation of D-consequence which holds between a set of formulas and a
formula. Say that a formula is �1-definable in ZFCU if it is provably equivalent to a �1
formula. Then

PROPOSITION 4.15. Neither ValidLF nor ImpliesL is �1-definable in ZFCU.
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Proof. First suppose that φ is a �1 formula such that

ZFCU � φ ↔ ValidLF . (19)

Let ξ be a �1 term for the (coded) LF-formula Uncountable of Proposition 4.13. Clearly,
it is provable in ZFCU that Uncountable is a tautology iff D is uncountable:

ZFCU � ValidLF [ξ ] ↔ D  ℵ0. (20)

So by (19) and (20) there would be a �1 equivalent of D  ℵ0, and this contradicts
Lemma 4.14.

Similarly, suppose that ψ is a �1 formula such that

ZFCU � ψ ↔ ImpliesL. (21)

The proof of Proposition 4.13(ii) gives a method of constructing, from any subset s of D,
a set ONTOs of formulas which is D-satisfiable iff s has the same cardinality as D. When
formalized in ZFCU, this construction yields a �1 term ζ in the free variable x such that

ZFCU � ∀x(ImpliesL[ζ, ⊥̄] ↔ x ≺ D) (22)

where ⊥̄ is a �1 term for the code of an L-contradiction. By (21) and (22) it follows that

ZFCU � ∃x(ℵ0 � x ∧ ψ[ζ, ⊥̄])↔ ℵ0 ≺ D. (23)

But the left side of (23) is �1, again contradicting Lemma 4.14. �
By itself, Russellian constraint broadens but does not significantly complicate the class

of validities. However, on classical semantics, it’s compactness which ensures that if
validity is witnessed by finite proofs, then so is consequence. And D-consequence is not
compact, because for example a universal generalization is a D-consequence of the class
of its instances. So D-consequence might turn out to be more complicated than validity.
And indeed, the effects are as strong as possible: D-consequence permits no simplification
of the analysis of consequence through universal generalization over structures. On the
other hand, in the case of D countably infinite, the form-series device makes the concept
of validity already that bad regardless of the Russellian constraint. But, the form-series
device also has the effect of concentrating, into the notion of validity, the complications
of the consequence relation which follow from the Russellian constraint. This implies, in
the general case, that the concept of tautology, or of logically valid formula, is not even�1
definable in set theory. So in the general case, it is not just that we cannot replace the search
through the collection of structures on some infinite domain with an enumeration of finite
proofs. Rather, validity cannot in general be witnessed by any system of mathematical
constructions which are identifiable by properties intrinsic to the constructions themselves.
It depends essentially on the extrinsic matter of which bijections happen to exist in the
mathematical universe.

§5. Conclusion. Let me now summarize the results of the previous sections, and then
sketch an implication which I take to be of philosophical significance. We’ve seen that logic
as Wittgenstein conceives it in the Tractatus differs from classical logic in two ways. The
presence of the form-series device contributes to LF the capacity to express induction, and
therefore allows categorical finite axiomatization of rich countable structures. Wittgenstein
also relativizes the notion of structure to some fixed domain D of what has a unique name.
This doesn’t, by itself, significantly complicate the notion of validity. But it breaks the
compactness theorem: indeed, the D-consequence relation embeds the concept of truth.
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When the two departures from classical logic are combined, then we obtain the notion of
D-validity for LF-formulas. And this notion turns out to depend on the distinction between
D countable and uncountable.

I want now to consider the significance, for the Tractatus, of distinctions in the cardinal-
ity of domain. In the Tractatus, the question of the number of existing objects has a prob-
lematic status. Specifically, Wittgenstein distinguishes in the 5.55s between logic and its
“application”. The application of logic supposedly “decides what elementary propositions
there are” (5.557a). At the same time, “logic and its application must not overlap” (5.557e),
because logic “cannot anticipate” what lies in its application (5.557b). Now, the totality of
objects, and the totality of elementary propositions, are alike in that each constitutes, or
makes manifest, some limit to “empirical reality” (5.5561). So, the size of the universe
would appear to belong to the “application” of logic, rather than to logic itself; and so it
could not be anticipated by logic alone (see also 5.55b, together with 5.551a).

It would seem obvious that Wittgenstein wants to maintain that relations of consequence,
contradictoriness, and so on do belong to logic (6.1ff). For example, it might be supposed
to belong to logic that the disjunction of some proposition with its negation is a tautology.
Among what belongs to logic, then, Wittgenstein would include the consequence relation,
but exclude the size of the universe. From what became the classical understanding of
the consequence relation, this pair of constraints seems quite natural. Indeed, the classical
understanding would exclude the size of the universe from logic: no proposition “there
are at least n Fs” classically entails the proposition “everything is F”, yet nor is any
proposition “there are at least n things” a logical truth. But as we’ve seen, Wittgenstein
restricts the class of all structures to those with some common underlying domain. So from
the Tractatus point of view, if the number of objects is finite, then the consequence relation
would evince this; likewise it could be seen that the number of objects isn’t any particular
finite n. Wittgenstein maintains that if infinitely many objects exist, then this fact would
show up in the extent of the consequence relation. Thus, if consequence belongs to logic,
then something that would make itself felt in logic is the size of the universe.

We’ve now reached something of an antinomy. It’s natural to understand 5.557 as deny-
ing that logic might by itself anticipate the number of objects. But as we’ve just seen, logic
would anticipate the number of objects if the consequence relation belonged to logic.

I’m inclined to conclude that for the early Wittgenstein, the consequence relation does
not belong to logic without qualification. Instead, the consequence relation emerges in
the application of logic. It is in the application of logic, for example, that “formal-logical
properties of language and the world” would get shown through the fact that a given
proposition of logic is a tautology: “the fact that a tautology is yielded by this particular
way of connecting its constituents characterizes the logic of its constituents” (6.12b). The
consequence relation belongs to logic only once logic is taken together with its application.

One thing that is fairly clear, though, is that applying logic was not a job Wittgenstein
undertook in the Tractatus itself: he gives only an illustrative example at 6.3751. So,
he cannot coherently have intended the consequence relation itself to be revealed in the
Tractatus. The question then arises: in what respect could that book have been intended to
illuminate logic?

As I suggested toward the end of §1.2.3, Wittgenstein’s promised solution to philosophi-
cal problems appears to depend on the evolution of the general propositional form: it begins
with the gnomic “this is how things are” at 4.5, but becomes the “general form of the truth-
function” at 6. Specifically, philosophical progress would, in any particular case, involve
rewriting propositions in such a way that their logical interrelations would be made man-
ifest in the resulting propositional signs. For example, rewriting “the mug reflects white
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light” as a conjunction one of whose conjuncts is “the mug reflects red light” would make
manifest that the former entails the latter. Wittgenstein’s rather attenuated conception of
philosophical progress would seem to turn on the conviction that analysis is possible: that
the totality of propositions can be rewritten in such a way that all modal interdependence
between propositions would be made manifest merely in the signs for them. Thus it would
become clear that “the only necessity that exists is logical necessity” (6.37).

This conception of philosophical progress plainly requires some independent standard
for a logical relationship’s being made manifest. Suppose people recognize some proposi-
tions p and q to be such that p entails q, and suppose some purported analysis to rewrite
them in the signs A and B. The adequacy of such an analysis would be determined at least
partly by whether the entailment of q by p is shown in the new signs A, B. Without such
a standard, the adequacy of the purported analysis would be indeterminate.

But what is it, exactly, for something to be made manifest, or shown? It is unlikely that
Wittgenstein could have meant by this anything like “made evident” in an epistemic sense.
He wrote that “it is remarkable that so exact a thinker as Frege should have appealed
to the degree of self-evidence as the criterion of a logical proposition” (6.1271). The
assimilation of epistemology to psychology tells against evidentness as a criterion for
logical consequence. Moreover, the number of objects that exist is supposed to be shown
(Wittgenstein, 1979, 19.8.19): but the epistemic status of the question of the number of
objects is, to say the least, obscure.

Let’s say that a feature of symbols is symbolically realized if it supervenes purely on
what makes anything into those symbols. I propose that Wittgenstein took something’s
being shown to require that it be symbolically realized. The philosophical purpose of the
evolution of a general form of the proposition at 4.5 into a general form of the truth-
function at 6 can then be understood at least in part as responding to the demand for a
univocal account of the symbolic realization of logical consequence.

Wittgenstein deigns to no concerted application of logic himself. So, if he had achieved
his goal in the general form of the truth-function, then the symbolic realization of conse-
quence would have to have been identified independently of the application of logic. It is
tempting to conclude that this could be achieved. For example, the contradictoriness of any
proposition with its negation would be so fixed, no matter what the proposition’s ultimate
analysis reveals it to be. Another example of something fixed by Wittgenstein’s purported
logical achievement would be this: that ∀x A would follow from A[a], A[b], . . . under the
condition that A[a], A[b], . . . are all the instances of ∀x A. More generally, as I understand
it, the Tractatus presents an attempt to show how the entirety of the consequence relation
might be fixed, conditional on any determination of the totality of objects. Having proposed
an account of the symbolic realization of logical consequence, Wittgenstein then could
declaim a priori that logic, in its application, makes manifest “formal-logical properties of
language and the world” (6.12).

The propositions show the logical form of reality.
They exhibit it. (4.121e–g)

Thus a proposition fa shows that in its sense the object a occurs, two
propositions fa and ga that they are both about the same object.
If two propositions contradict one another, this is shown by their struc-
ture; similarly if one follows from another, etc. (4.1211)

Within this sketch of Wittgenstein’s logical aims in the Tractatus, the complexity-
theoretic analyses of §4 assume a new significance. Compatibly with those analyses, is
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there some way in which mere propositional structure could be taken to make manifest the
D-validity of all D-valid formulas, no matter the size of D? Wittgenstein suggested that
axiomatic proofs represent progress toward this goal:

Whether a proposition belongs to logic can be calculated by calculating
the logical properties of the symbol.

And this we do when we prove a logical proposition. For without
troubling ourselves about a sense and a meaning, we form the logical
propositions out of others by mere symbolic rules (6.126a,b).

We’ve seen that if the number of objects is infinite, then it is completely out of the ques-
tion that some notion of finite proof could suffice to demonstrate the validity of all valid
formulas. But Wittgenstein himself couldn’t have rested content with axiomatic proof,
because he held that validity, or tautologousness, is only a limiting case of the broader
phenomenon of logical consequence.

If the truth of one proposition follows from the truth of others, this
expresses itself in relations in which the forms of these propositions
stand to one another, and we do not need to put them in these relations
first by connecting them with one another in a proposition; for these
relations are internal, and exist as soon as, and by the very fact that, the
propositions exist. (5.131)

Toward an account of the consequence relation Wittgenstein gives only this seemingly
proto-Tarskian sketch:

If the truth-grounds which are common to a number of propositions are
all also truth-grounds of some one proposition, we say that the truth of
this proposition follows from the truth of those propositions. (5.12)

Unfortunately, this apparent analysis falls under a remark that “truth-functions can be
arranged in series” (5.1a). So it looks to be lodged in a notational proposal which is at
best incomplete. The proposal is that some propositions can be written as tables of agree-
ment and disagreement with the distributions of truth-value over elementary propositions
(4.442). Surely, Wittgenstein couldn’t say that all propositions can be so written, for a
priori the number of elementary propositions might be infinite. The details of the construc-
tion of a general form of the truth-function through iterations of joint denial are evidently
driven by a demand that propositions can be written down even if they have infinite logical
ancestry. So, the truth-tabular symbolism does make some logical consequence manifest.
But like a proof system for first-order logic, it is only partial.

The question then remains: is there some very loose, even wildly profligate, notion of
symbolic pattern, which could serve to make manifest all instances of the D-consequence
relation, or even the D-validity of all D-valid formulas, no matter the size of D? The
results of §4.4 suggest that the answer to this question is no. We may suppose the relevant
“pattern” to be exemplifiable by sets at any level of the cumulative hierarchy, and require
only that exemplification of the pattern by a set be discernible by a first-order formula
whose quantifiers are restricted to the set’s transitive closure. No first-order formula could,
in this way, univocally discern a pattern which would be adequate to Wittgenstein’s notion
of consequence, not without prejudging the number of objects. At least, that’s the drift of
Proposition 4.15. The underlying problem is that Wittgenstein’s concept of consequence
detects the difference between countable and uncountable domains: by Proposition 4.13,
there is even a single LF-formula which is valid iff the domain is uncountable. Whether
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some set is countable doesn’t depend only on its internal structure, but on the extrinsic
matter of which functions happen to exist in the mathematical universe. The sensitivity of
consequence to distinctions in the transfinite suggests that there is no reasonable notion of
symbolic pattern whose exemplifications could serve to realize all instances of the conse-
quence relation—at least not without some a priori constraint on the number of objects.

Thus, the reason Wittgenstein’s concept of consequence cannot in general be realized
in some univocally specified kind of symbolic pattern is that so conceived, consequence
depends on distinctions of transfinite cardinality. It might be wondered whether this sen-
sitivity to the transfinite could be trimmed away without great loss. But its origins were
already recorded way back in Proposition 2.3: that Wittgenstein’s concept of consequence
embeds the concept of truth. In turn, the embedding of truth in consequence is imme-
diate from the book’s core thesis, that a proposition is a truth-function of elementary
propositions. So the results are deeply rooted.

To conclude, Wittgenstein’s early conception of philosophical progress requires some
independent standard for a logical relationship’s being made manifest in signs. The evolu-
tion of the general form of a proposition into the general form of a truth-function looks like
a gesture toward such a standard. Yet that attempt proceeds without any concerted applica-
tion of logic, and hence avowedly without prejudice to the size of the universe. The results
of this paper suggest, however, that without prejudging the number of objects, no single
concept of manifestation could be adequate to Wittgenstein’s concept of consequence.

§6. Further work.
1. Formal procedures. The implementation in LF of the form-series device does not
accommodate everything Wittgenstein might have accepted as a formal procedure. For
example, LF does not allow operator-signs to contain form-series expressions; nor does
it accommodate many-place or multigrade operations. Could a richer operation-scheme
maintain a tractable semantics but yield a more expressive logic?

I have also not attempted in this paper to clarify the interaction between the form-
series device and the interpretation of objectual variables which is developed by Wehmeier
(2004). The example of §2.3 gives an expression of the ancestral under the exclusive
interpretation. But Wehmeier’s translation schemes do not extend straightforwardly to LF ,
and I do not know how to avoid the use of equality in proving the adequacy of LF to finitary
induction (see Lemma 3.4 and Propositions 3.5 and 3.10).
2. The bar notation. Wittgenstein introduces a bar notation, which is said to convert a
propositional variable ξ into an expression ξ of the plurality of its values (see especially
5.501). In §2.3, we saw that form-series contexts complicate the interpretation of free
variables; I handled the problem somewhat brutally by dividing semantic evaluation into
two stages. A more interesting approach is to introduce Wittgenstein’s bar notation into
the object-language. In a propositional sign, each enclosed propositional variable would
have a bar written somewhere above it, with the priority of the expansions indicated by the
vertical order of the bars. It is tempting to speculate that Wittgenstein’s use of a bar, rather
than an “inline” device, represents an attempt to escape the parse tree in some such way as
we’ve seen 5.501 to require.
3. Philosophy of arithmetic. In this paper, I’ve argued that the form-series device permits
definitions by induction on ordinary dyadic relations, like adjacency or temporal priority.
Any such ordinary relation thereby generates material analogues of the system of finite
ordinals, together with addition, multiplication, and indeed all arithmetically definable
relations. Within this account, ordinal concepts are generated by an operation of taking
the relative product of a relation with itself. So understood, “a number is an exponent of
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an operation” (6.021). Frascolla (1997) offers another perspective on 6.021, developing
an operational interpretation of the equational fragment of Peano arithmetic; he concludes
that the interpretation cannot be extended to quantified arithmetical formulas. Can the two
appearances of arithmetic be somehow understood as complementary?
4. A presumption of countability? Some commentators do already appear to find
Wittgenstein to be committed in the Tractatus to the domain’s countability (Ricketts, 2012).
As I’ve already noted, there exist complete notions of “proof” for countably infinite truth-
functional logic. The N -operator lends itself to elegant proof-theoretic analysis, particu-
larly through a transfinite generalization of “bilateral” proof systems (Smiley, 1996 and
Rumfitt, 2006). Could some such notion be relevantly found to underwrite a realization
of logical consequence by symbolic patterns? And can a presumption of countability be
squared with Wittgenstein’s insistence that the number of names not be prejudged?

§7. Acknowledgements. Thanks to Nate Ackerman, Roberta Ballarin, Juliet Floyd,
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