ON THE HOMOLOGICAL DIMENSION OF VALUATED VECTOR SPACES

BY
ERRIN ERB WHITE

Following L. Fuchs [1], we define a valuated vector space to be a vector space V with a valuation from V to a totally ordered set Γ in which every nonempty subset has a supremum. It is assumed that Γ has a maximum element $\infty \neq \sup (\Gamma \backslash \infty)$. A standard model for Γ is a closed initial segment of ordinals with the symbol ∞ adjoined. For $x \in V$, the valuation of x is denoted by $|x|$, and the following properties are satisfied:
(0) $|x|=\infty$ if and only if $x=0$.
(1) $|c x|=|x|$ if c is a nonzero scalar.
(2) $|x+y| \geq \min (|x|,|y|)$.

A map from a space V to W is a linear transformation that does not decrease values.

Fuchs observes in [1] that the valuated vector spaces, with a fixed scalar field K and a fixed set of values Γ, form a pre-abelian category \mathbf{V}. Thus \mathbf{V} has a zero object, kernels and cokernels, products and coproducts. However, in general not every monomorphism in \mathbf{V} is a kernel.

The valuation on a quotient space B / A is defined by

$$
|b+A|=\sup \{|b+a|: a \in A\},
$$

and A is nice in B if $|b+A|=|b+a|$ for some $a \in A$. Following P. Hill [3], we say that A is separable in B if, for each $b \in B$, there exists a sequence $\left\{a_{n}\right\}_{n<\omega}$ in A such that

$$
|b+A|=\sup _{n<\omega}\left\{\left|b+a_{n}\right|\right\} .
$$

The projective and injective valuated vector spaces were completely determined in [1]. A projective space is the same as a free space. Following [1], we say that $0 \rightarrow U \xrightarrow{\alpha} V \xrightarrow{\beta} W \rightarrow 0$ is an exact sequence if α is an embedding, $\operatorname{Im} \alpha=\operatorname{Ker} \beta$ and for each $b \in W,|b|=\sup \{|a|: \beta(a)=b\}$. By a projective ($=$ free) resolution for a valuated vector space V, we mean an exact sequence

$$
\cdots F_{2} \xrightarrow{\alpha_{2}} F_{1} \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} V \rightarrow 0
$$

such that each F_{i} is free. It is noted that by the Corollary in [3], if there exists a free resolution $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow V \rightarrow 0$ of V, then there is such a free resolution of V where F_{1} is nice in F_{0}.

Received by the editors April 27, 1979.

Some of the results of [1] were used in [2]. One of the most important aspects of [1] is the investigation of projective and injective dimension [4]. Theorem 7 in [1] claims that no valuated vector space has injective dimension exceeding 1, but as F. Richman and E. A. Walker suggested in [5] there is a flaw in the proof of this theorem. The falsity of Theorem 7 also led Fuchs to the erroneous conclusion of Theorem 3 in [1], which asserts, in essence, that every valuated vector space has projective dimension less than or equal to 1 . By definition, a non-projective space V has projective dimension 1 if there is an exact sequence

$$
0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow V \rightarrow 0
$$

where P_{0} and P_{1} are projective. Since a projective is free, a space V has projective dimension 1 only if V is the quotient of a free space by a free subspace. Richman and Walker [5] were the first to give an example of a valuated vector space that has projective dimension greater than 1. Their example is the product $P=\prod_{\alpha<\omega_{1}}\left\langle x_{\alpha}\right\rangle$ if the continuum hypothesis is assumed. Otherwise, the product needs to be larger.

In [3], Hill raised the question as to which valuated vector spaces can be embedded in free spaces; he called such a space an SF-space. We shall improve on the example of Richman and Walker by showing that there is an SF-space that has projective dimension 2. Thus subspaces of free spaces can be very nonfree.

Theorem 1. There exists a subspace of a free space with projective dimension 2.

Proof. A valuated vector space which is the quotient of a free space by a free subspace is called a QFF-space in [3]. Since Fuchs [1] characterized the projectives in \mathbf{V} as the free spaces in \mathbf{V}, it follows that a valuated vector space is a QFF-space if and only if its projective dimension is either 0 or 1 . Thus we need a space that is not a QFF-space.

For each $\alpha<\omega_{2}$, let $\left\langle x_{\alpha}\right\rangle$ denote the one-dimensional valuated vector space having value α. For notational convenience, the scalar field is the two-element field. Hence scalars do not appear, and + 's and -'s are the same. Let $S=\sum_{\alpha<\omega_{2}}\left\langle x_{\alpha}\right\rangle$. Then S is a free valuated vector space of dimension \aleph_{2}. Our example will be a subspace E of S. Let $E=\left\langle x_{0}+x_{\alpha}\right\rangle_{\alpha<\omega_{2}}$. It is known [3], that a free space is separable in every containing space. It is easy to show that E is not separable in S because S / E has an element with value ω_{2}. Therefore, E is not free (and thus not projective).

We have shown that the $S F$-space E does not have projective dimension 0 . We shall now show that its projective dimension is greater than 1. Assume that the projective dimension of E is 1 and let $E=A / B$ where A and B are free.

According to [3, Theorem 5], E is the union of a smooth chain of subspaces E_{α} satisfying the following conditions for each α :
(1) $\operatorname{dim}\left(E_{\alpha}\right)<\boldsymbol{K}_{2}$.
(2) E_{α} is separable in E.

Our intent is to construct a smooth chain of nonseparable subspaces D_{α} of E, or at least to construct a smooth chain of subspaces D_{α} with many of them being nonseparable, if not all. For each $\alpha<\omega_{2}$, let $D_{\alpha}=\left\langle x_{0}+x_{\lambda}\right\rangle_{\lambda<\alpha}$. Then E is the union of the smooth chain of subspaces D_{α}, and for all $\alpha<\omega_{2}, \operatorname{dim}\left(D_{\alpha}\right)<$ \aleph_{2}. Notice that D_{α} is separable in E only if α is cofinal with ω. There exist strictly increasing functions f and g from ω_{2} into ω_{2} such that:
(i) $f(1)=1$,
(ii) $E_{f(\alpha)} \subseteq D_{\mathrm{g}(\alpha)} \subseteq E_{f(\alpha+1)}$, for all $\alpha<\omega_{2}$,
(iii) $E_{f(\beta)}=D_{\mathrm{g}(\beta)}$, for each limit ordinal β.

So in particular, $E_{f\left(\omega_{1}\right)}=D_{g\left(\omega_{1}\right)}$. Since all the E_{α} 's are separable, this implies that $D_{g\left(\omega_{1}\right)}$ is separable in E. However, this is impossible because $g\left(\omega_{1}\right)$ is not cofinal with ω. Therefore E is not the quotient of a free space by a free subspace, and thus its projective dimension is greater than or equal to 2 .

Richman and Walker [5, Theorem 16] showed that if $A \in \mathbf{V}_{p}$, the category of p-local valuated groups, is torsion and if the cardinality of A does not exceed \aleph_{n}, then the projective dimension of A does not exceed $n+1$. Adjusting the count on projective dimension from valuated groups to the category of valuated vector spaces \mathbf{V}, we can conclude that the projective dimension of our space E is less than or equal to 2 . Therefore E has projective dimension exactly 2 , and the theorem is proved.

Any space having projective dimension 2 or greater can be converted to a counterexample to Theorem 7 in [1]. For the particular space E constructed in our Theorem 1, this conversion leads to another subspace of a free space. We omit the proof of the next theorem since all one has to do is to go through Fuchs' argument in [1, p. 31]. However, we remark that it would be of considerable interest to have a direct counterexample to Theorem 7 in [1].

Theorem 2. There exist subspaces of free spaces having injective dimension greater than 1.

References

1. L. Fuchs, "Vector spaces with valuations", J. Algebra 35 (1975), 23-38. M.R. \#8212.
2. - and J. M. Irwin, On $p^{\omega+1}$-projective p-groups, Proc. London Math. Soc. (3) 30 (1975), 459-470.
3. P. Hill, "Criteria for freeness in groups and valuated vector spaces", Abelian group theory,

Lecture Notes in Mathematics, Vol. 616, Springer-Verlag, Berlin, Heidelberg, New York, 1977, pp. 140-157.
4. D. G. Northcott, An introduction to homological algebra, Cambridge University Press, New York, 1960. M. R. \#9523.
5. F. Richman and E. A. Walker, Valuated groups, Journal of Algebra, 56 (1), (1979), 145-167.

Department of Mathematics
Auburn University
Auburn, Alabama 36830

