
REFLECTIVE SUBCATEGORIES

JUAN RADA
Departamento de MatemaÂticas, Universidad de los Andes, 5101 MeÂrida, Venezuela

e-mail: juanrada@ciens.ula.ve

MANUEL SAORIÂ N and ALBERTO DEL VALLE
Departamento de MatemaÂticas, Universidad de Murcia, Aptdo. 4021, Espinardo 30.100, Murcia, Spain

e-mail: msaorinc@fcu.um.es, alberto@fcu.um.es

(Received 15 June, 1998)

Dedicated to Kent Fuller on his 60th Anniversary

Abstract. Given a full subcategory F of a category A, the existence of left F -
approximations (or F -preenvelopes) completing diagrams in a unique way is equiva-
lent to the fact thatF is re¯ective inA, in the classical terminology of category theory.

In the ®rst part of the paper we establish, for a rather general A, the relationship
between re¯ectivity and covariant ®niteness of F in A, and generalize Freyd's
adjoint functor theorem (for inclusion functors) to not necessarily complete cate-
gories. Also, we study the good behaviour of re¯ections with respect to direct limits.
Most results in this part are dualizable, thus providing corresponding versions for
core¯ective subcategories.

In the second half of the paper we give several examples of re¯ective subcategories
of abelian and module categories, mainly of subcategories of the form Copres (M)
and Add (M). The second case covers the study of all covariantly ®nite, generalized
Krull-Schmidt subcategories of ModR, and has some connections with the ``pure-
semisimple conjecture''.
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1. Introduction. In recent times, there has been strong interest in the study of
(pre)envelopes and (pre)covers by an arbitrary class F of modules (cf. [11], [25], [2],
[26]). One of the open problems there is to ®nd when every module has an F -envelope
completing diagrams in a unique way. Results for the case when F is the class of
projective or ¯at modules can be found in [2], [10], [12]. For an arbitrary class F of
objects of a categoryA, the existence of an F -envelope completing diagrams uniquely
for every object ofA is equivalent to the fact that F is a re¯ective subcategory ofA in
the classical terminology of category theory (see, e.g., [31]). The goal of this work is
twofold. On one side, we shall show that Freyd's adjoint functor theorem, in the case
of an inclusion functor, is closely related to the notion of a covariantly ®nite sub-
category introduced by Auslander's school, which also allows us in this case to extend
Freyd's theorem to noncomplete categories (see Theorem 3.1 and its corollaries). By
using that, as a second objective, we shall give a good supply of examples of re¯ec-
tive and core¯ective subcategories, mainly in module and abelian categories.

After introducing our notation and terminology, Section 3 contains the already
mentioned generalizations of Freyd's theorem which allow applications to non-
complete categories; also, given a locally ®nitely presented abelian category, we give
criteria for a subcategory consisting of direct limits of its ®nitely presented objects to
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be re¯ective. In Section 4 we give applications of the previous results, with special
attention to subcategories of an abelian category A of the form Copres (M) for an
object M of A. Finally, Section 5 studies the re¯ective subcategories of ModR which
are generalized Krull-Schmidt (see de®nition in Section 5).

2. Notation and terminology. Let A be any category and F any class of objects
of A (all classes of objects in a category are considered to be closed under iso-
morphisms, and we shall usually identify F with the full subcategory of A whose
objects are those of F ). An object of F will be called an F -object, and an F -
morphism will be a morphism between F -objects.

An F -preenvelope of the A-object A is a morphism � : A! F with F 2 F such
that, for any other morphism �0 : A! F 0 with F 0 2 F , there exists a morphism
� : F! F 0 such that � � � � �0. This means that the map A�F;F 0� ! A�A;F 0�
induced by � is surjective for any F -object F 0. An F -preenvelope of A is also called
a left F -approximation of A, and the class F is said to be covariantly ®nite when
every A-object has an F -preenvelope. The F -preenvelope � : A! F is said to be an
F -envelope (or a minimal left F -approximation) when it is left minimal i.e. when the
preimages of � via A�F;F� ! A�A;F� are all automorphisms of F. The dual con-
cepts are F -precover (or right F -approximation), contravariantly ®nite class and F -
cover (or minimal right F -approximation).

An F -(pre)envelope A! F for which the induced maps A�F;F 0� ! A�A;F 0�
(with F 0 2 F ) are all bijective is called an F -re¯ection of A ([18], [24]; it is called an
F -envelope which complete diagrams in a unique way in [2]). A full subcategory F
of A is said to be re¯ective in A ([18], [24]) when the inclusion functor U : F ,!A has
a left adjoint F : A! F (called a re¯ector for F ). In this case the unit of the
adjunction � : 1A ! U � F gives an F -re¯ection �A for each A-object A and, con-
versely, when each A-object has an F -re¯ection, it is clear how to de®ne a re¯ector
for F . The dual concepts are F -core¯ection and core¯ective subcategory.

The class F is said to be locally initially small in A [26] if, for every A-object A,
there exists a set FA � F such that every morphism A! F with F 2 F factors
through a direct product of modules in FA. The dual concept is that of a locally
®nally small class. The class F is said to be closed for retracts (in A) if, whenever
F 2 F and F! F 0 is a retraction in A, we have F 0 2 F . It is easy to see that, if F is
re¯ective in A (or, more generally, if every object of A has an F -envelope), then F is
closed for retracts.

Most of our results are given for well-powered categories, i.e., categories in which
the subobjects of every given object form a set. Following [9], an object X of a pre-
additive category A with direct limits will be called ®nitely presented when the functor
HomA�X;ÿ� preserves direct limits. When the ®nitely presented objects of A form a
skeletally small class fp �A� of generators, we shall say that A is locally ®nitely pre-
sented. In that case, the ®nitely generated objects of A are just the homomorphic
images of morphisms with ®nitely presented domain. When, moreover, every ®nitely
generated subobject of a ®nitely presented one is again ®nitely presented, we shall
say that A is locally coherent. For a class F of objects of fp �A� we shall denote by ~F
the class of all objects of A that are (isomorphic to) direct limits of objects in F .

Following [30], a coperfect object in a locally ®nitely presented category is one
that satis®es DCC on ®nitely generated subobjects. When every object of A is
coperfect, we say that A is a coperfect category.
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All our rings are associative with identity, and all our modules are unital. We
denote by ModR (resp. modR) the category of all (resp. all ®nitely presented) right
R-modules. We write pd �MR� for the projective dimension of the right R-module
MR, and rgD �R� (resp. lgD �R�;wD �R�) for the right global (resp. left global, weak
global) dimension of the ring R.

3. Characterizations of re¯ective subcategories.

Definition 3.1. Let A be any category and let F be a full subcategory of A.
We say that (®nite) products of F -objects exist in A when any (®nite) family of

F -objects has a product in A.
We say that equalizers of F -morphisms exist in A when any pair of F -morph-

isms with the same domain and codomain has an equalizer in A. If A has zero
morphisms we get, as a particular case, the de®nition that kernels of F -morphisms
exist in A.

When equalizers of F -morphisms exist in A and, for any F -object F, every
downward directed family Eq � fi; gi�

� 	
i2I (indexed by a set) of equalizers of pairs of

F -morphisms with domain F and common codomain has the property that
\i2I Eq � fi; gi� exists in A and, moreover, \i2I Eq � fi; gi� � Eq � f; g� for some pair of
F -morphism f; g with domain F and common codomain, then we shall say that
strong equalizers of F -morphisms exist in A. Similarly, one gets the de®nition that
strong kernels of F -morphisms exist in A.

Before giving our results, we present several examples of classes with the prop-
erties de®ned above.

Example 3.1. (1) Let A be a complete category and F be any class of objects in
A. Then products of F -objects and equalizers of F -morphisms always exist in A.

(2) Let A be a locally coherent abelian category; then, for every class F of
objects in fp �A�, kernels of F -morphisms exist in fp �A�. Moreover, if F has pro-
ducts in A and is closed for retracts and ®nite products, then strong kernels of F -
morphisms exist in fp �A� provided that the following condition is satis®ed: for every
morphism f : F!Q

i2I Fi with F and each Fi in F , there exists a ®nite subset J of I
such that Ker f � Ker ��J � f �, where �J :

Q
i2I Fi !

Q
i2J Fi is the canonical projec-

tion. In particular, this happens when F consists of coperfect objects.
(3) A particular case of (2) is the following. If R is a right coherent and left

perfect ring, then for every class F � modR closed for direct summands and ®nite
direct sums, strong kernels of F -morphisms exist in modR.

(4) If A is a locally ®nitely presented abelian category and F � fp �A� is a class
of objects of ®nite length all whose composition factors are ®nitely presented, then
strong kernels of F -morphisms exist in fp �A�.

Theorem 3.1. Let A be a well-powered category and let F be a full subcategory of
A such that equalizers of F -morphisms and intersections of them exist in A. The fol-
lowing assertions are equivalent:

(a) F is re¯ective in A;
(b) F is covariantly ®nite in A and closed for intersections of equalizers of F -

morphisms.
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Proof. (a))(b). This follows by [18, (36.13)].
(b))(a). Let � : A! F be an F -preenvelope of an arbitrary A-object A and

consider the class 
 of all pairs of morphisms f; g : F! F 0 with F 0 2 F and
f � � � g � �. Since A is well-powered, we can ®x a family fi;gi : F! Fi j i 2 I

� 	
(indexed by a set I ) of elements of 
 such that the equalizer of every pair of
morphisms in 
 equals Eq � fi; gi� for some i 2 I. Let now e : E! F be the intersec-
tion of the family Eq � fi; gi� j i 2 I

� 	
; by hypothesis we have E 2 F , and by con-

struction there exists a unique morphism � : A! E such that e � � � �. Then it is
clear that � is an F -preenvelope of A, and we shall prove that it is indeed an F -
re¯ection, which will ®nish the proof of the theorem. For this, we start by noting
that, whenever f; g : F! F 0 is a pair of F -morphisms with f � � � g � � and
e0 : E0 ! F is its equalizer, there is a unique monomorphism u : E! E0 such that
e � e0 � u. Now we check that e is a section: the preenveloping condition of � gives a
morphism p : F! E with � � p � �, and hence

e � p � � � e � � � � � 1F � �:

If e0 : E0 ! F is the equalizer of 1F and e � p then there is a monomorphism
u : E! E0 with e � e0 � u, and therefore

e � 1E � e � 1F � e � 1F � e0 � u � e � p � e0 � u � e � p � e;

as e is monic this implies that p � e � 1E, as claimed. Now suppose that h; h0 : E! G
are F -morphisms with h � � � h0 � �. Then h � p � � � h0 � p � �, and if e00 : E00 ! F
is the equalizer of h � p and h0 � p then there is a monomorphism v : E! E00 with
e � e00 � v, and therefore

h � h � p � e � h � p � e00 � v � h0 � p � e00 � v � h0 � p � e � h0: &

The following result generalizes Freyd's adjoint functor theorem for inclusion func-
tors (see [24, p. 117, Theorem 2]). Note that the condition ``F is locally initially
small'' is more general than the ``solution set condition'' of the above cited result;
indeed, if R is any ring and F is the class of all ¯at right R-modules, then F is
locally initially small in ModR [26, Proposition 2.8], but it has the solution set con-
dition if and only if R is left coherent [11, Proposition 5.1].

Corollary 3.2. Let A be a well-powered category and let F be a full subcategory
of A such that products of F -objects and equalizers of F -morphisms exist in A. The
following assertions are equivalent:

(a) F is re¯ective in A;
(b) F is covariantly ®nite in A and closed for equalizers;
(c) F is locally initially small in A and closed for equalizers and products.

Proof. (a))(b) follows as before, (b)()(c) is proven as in [26, Theorem 3.3]
(note that F is closed for retracts since it is closed for equalizers), and (b,c))(a)
follows from [18, (18.23)] and Theorem 3.1. &

Next we give a third partial version of Theorem 3.1 that is useful to deal with
noncomplete categories.
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Corollary 3.3. Let A be a well-powered category and let F be a full subcategory
of A such that ®nite products of F -objects and strong equalizers of F -morphisms exist
in A. Then the following assertions are equivalent:

(a) F is re¯ective in A;
(b) F is covariantly ®nite in A and closed for equalizers.

Proof. We only need to prove (b))(a), and for this one can adapt the proof of
Theorem 3.1 after showing that, given fi; gi : F! Fi j i 2 I

� 	
as there, \i2I Eq � fi; gi�

exists and belongs to F . Now, by the hypotheses, it is enough to show that
Eq � fi; gi� j i 2 I
� 	

is a downward directed family. For, given i; j 2 I, let F 0 be the
product of Fi and Fj and let f �resp: g� be the morphism F! F 0 induced by
fi; fj �resp: gi; gj�. By hypothesis, there exists k 2 I such that Eq � f; g� � Eq � fk; gk�,
and this is a subobject of both Eq � fi; gi� and Eq � fj; gj�. &

Remark 3.1. (1) Corollary 3.2 applies to Example 3.1.(1), showing that a full
subcategory of a well-powered complete category A is re¯ective in A if and only if it
is locally initially small and closed for products and equalizers.

(2) Corollary 3.3 applies to Example 3.1(2-4), showing for instance that if A is a
locally coherent abelian category and F � fp �A� is a subcategory consisting of
coperfect objects, then F is re¯ective in fp �A� if and only if F is covariantly ®nite in
fp �A� and closed for kernels and ®nite direct sums.

Remark 3.2. The above results admit straightforward dualizations which are
left to the reader.

For suitable classes F , the uniqueness in the completion of diagrams allows us
to construct, from an F -re¯ection for each member of a direct system, an F -re¯ection
for the direct limit of the system. This fact is exploited in the following result.

Proposition 3.4. Let A be a locally ®nitely presented category, and let
F � fp �A� be a class of objects closed for retracts. Then F is re¯ective in fp �A� if and
only if ~F is re¯ective in A.

Proof. (a))(b). First note that, if X 2 fp �A� and � : X! F is an F -(pre)en-
velope, then it is an ~F -(pre)envelope. Moreover, if it is an F -re¯ection then it is also

an ~F -re¯ection. To see this it is enough to show that, if �F 2 ~F (say �F � !lim Fi with

each Fi 2 F and canonical maps �i : Fi ! �F ), then any morphism � : F! �F with
� � � � 0 must be zero. By [9, Lemma 1.1.3], there exists an index i and a morphism
� : F! Fi with � � � � 0 such that � � �i � �. Now, the fact that � is an F -re¯ection
gives � � 0 and hence � � 0. The rest of the proof follows that of [25, Theorem 2.11].

(b))(a). If X 2 fp �A� and � : X! F is an ~F -re¯ection, where F � !lim Fi with

each Fi 2 F and canonical maps �i : Fi ! F, then � � �i � �0 for some �0 : X! Fi,
but in turn this �0 factors as �0 � h � � and, by the uniqueness in the completion of
diagrams, we get �i � h � 1F. So, by hypothesis, F 2 F and therefore � is an F -
re¯ection. &

Remark 3.3. (1) We cannot omit the hypothesis that F is closed for retracts.
For example, if R is a von Neumann regular ring and F is the class of all ®nitely

REFLECTIVE SUBCATEGORIES 101

https://doi.org/10.1017/S0017089500010120 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500010120


generated free modules, then F �ModR but F is not re¯ective in modR unless R is a
division ring.

(2) Putting together [9, Theorem 4.2], [22, Theorem 12.3] and results of [15, x7 &
�.], one easily deduces that, in the situation of our Proposition 3.4, if A is (co)com-
plete and kernels of F -morphisms are ®nitely presented, then (a-b) hold if and only
if ~F is closed for products and kernels, if and only if ~F is closed for products and F
is closed for kernels.

(3) Proposition 3.4 together with the above remark can be used to characterize
core¯ectivity of subcategories of modR, when R is a ring with self-duality [1, x30].

4. Applications. We start by applying the results in Section 3 to some ``classi-
cal'' classes of modules. We write InjR, ProjR, FlatR, and FPInjR for the classes of all
injective, projective, ¯at and FP-injective right R-modules, respectively. Also, P<1,
I<1 and F<1 denote the classes of right R-modules of ®nite projective, injective
and ¯at dimension, respectively.

Proposition 4.1. For any ring R, the following conditions hold.
(i) InjR is re¯ective in ModR i� ProjR is core¯ective in ModR i� R is semisimple.
(ii) FPInjR is re¯ective in ModR i� FlatR is core¯ective in ModR i� R is von

Neumann regular.
(iii) P<1 is re¯ective in ModR i� P<1 is core¯ective in ModR i� I<1 is re¯ec-

tive in ModR i� I<1 is core¯ective in ModR i� rgD �R� <1
(iv) F<1 is re¯ective in ModR i� F<1 is core¯ective in ModR i� wD �R� <1.
(v) FlatR is re¯ective in ModR i� R is left coherent and wD�R� � 2. [2, Prop.

2.1]
(vi) ProjR is re¯ective in ModR i� R is right perfect, left coherent, and

rgD �R� � 2.
(vii) InjR is core¯ective in ModR i� R is right noetherian and rgD �R� � 2.

Proof. (i-iv) follow from Corollary 3.2 and its dual, since each of the relevant
classes equals ModR when it is closed for kernels or cokernels (depending on whe-
ther we are considering re¯ectivity or core¯ectivity). By [26, Propositions 2.8 and
2.9], FlatR and ProjR are always locally initially small classes, so that (v) and (vi)
follow again by Corollary 3.2. Finally, if R is right noetherian then InjR is a locally
®nally small class and therefore (vii) follows from the dual of Corollary 3.2. &

In the next application we consider a skeletally small preadditive category C,
and write (Cop, Ab) for the category of contravariant functors from C to the category
Ab of abelian groups. A functor F 2 �Cop;Ab) is representable if it is naturally iso-
morphic to �ÿ;C� � HomC�ÿ;C� for some C 2 C, and a direct limit of representable
functors is said to be ¯at (see, e.g., [9]).

Proposition 4.2. Let C be as above, and let R (resp. F ) be the class of all
representable (resp. ¯at) functors in �Cop;Ab�. Then the following assertions are
equivalent:

(a) C has cokernels;
(b) R is a re¯ective subcategory of fp �Cop;Ab�;
(c) F is a re¯ective subcategory of �Cop;Ab�.
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Proof. Assume that C has cokernels and let F 2 fp �Cop;Ab�; then there exists a

morphism f : C! C0 in C and an exact sequence �ÿ;C� !�ÿ;f ��ÿ;C0�!� F! 0 in
�Cop;Ab�. If g : C0 ! C00 is the cokernel of f then �ÿ; g� factors through � and, using
Yoneda's Lemma, it is easy to see that the morphism � : F! �ÿ;C00� such that
�ÿ; g� � � � � is an R-re¯ection of F. This proves (a))(b). The converse is proven
along the same lines, and (b)()(c) follows from Proposition 3.4, since F � ~R. &

Remark 4.1. (1) When C � modR or C � FModR (the class of all ®nitely
generated modules) then C has cokernels and therefore F is re¯ective in �Cop;Ab�.

(2) When C � projR (the class of all ®nitely generated projective modules) then
�Cop;Ab� and ModR are equivalent, and thus in Proposition 4.1.(v) we can add the
condition that projR has cokernels ([4, Proposition 3]).

(3) Straightforward variations on the above arguments prove that R is covar-
iantly ®nite in fp �Cop;Ab� if and only if C has pseudo-cokernels (see [9]), and that
the subcategory of representable covariant functors is re¯ective (resp. covariantly
®nite) in fp �C;Ab� if and only if C has kernels (resp. pseudo-kernels).

In the rest of this section, we let A be a complete abelian category; for a ®xed
object M 2 A, we say that an object A 2 A is M-cogenerated if there exists a mono-
morphism A!MI for some set I, and we say that A is M-copresented if there exists
an exact sequence 0! A!MI !MJ for some sets I, J. We denote by Cogen (M)
and Copres (M) the classes of M-cogenerated and M-copresented objects in A,
respectively, and by Prod�M� the class of all modules isomorphic to a product of
copies of M.

Copres (M) can be thought of as the closure of M with respect to products and
kernels of morphisms between these products. In view of Corollary 3.2, Copres (M)
is always contained in (and should be very close to) the smallest re¯ective sub-
category of A containing M. It seems thus interesting to give necessary and su�cient
conditions for Copres (M) to be a re¯ective subcategory of A. One such condition
can be derived from [31, (16.4.7)] (note that Copres (M) is always closed for pro-
ducts), but we give it as a consequence of a more general result which may have
independent interest.

Proposition 4.3. Let A be a complete abelian category, and let M be any object
of A. Then Copres (M) is covariantly ®nite in A. In particular, when A is well-
powered, Copres (M) is a re¯ective subcategory of A if and only if it is closed for
kernels.

Proof. We prove that every object A of A has a Copres (M)-preenvelope, and
the second part of the statement will then be a consequence of Corollary 3.2.

Let H � Hom �A;M� and let � : A!MH be the morphism induced by the
family hf gh2H, that is h � �h � � for every h 2 H, where �h : MH !M are the cano-
nical projections. Then it is easy to see that � is a Prod �M�-preenvelope of A.

We claim that, if � : A!MI is a morphism in A and �k�;K�� is the intersection
of the kernels of all morphisms f : MI !M such that f � � � 0, then � factors
through k� and K� 2 Copres �M�. The ®rst assertion is clear and, if
J � f : MI !M j f � � � 0

� 	
and ' : MI !MJ is such that �f � ' � f for every

f 2 J, where �f : MJ !M is the canonical projection, then �k�;K�� is the kernel of '
and therefore K� 2 Copres �M�.
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In particular, � factors as A!�� K�!k� MH with K� 2 Copres �M�, and we shall
show that �� is a Copres (M)-preenvelope. To see this, let � : A! F be any
morphism in A with F 2 Copres �M� and take an exact sequence

0! F!v MI!g MX

in A. Now set � � v � � : A!MI and consider the factorization A!�� K�!k� MI of �
given by the above claim. If qx : MX !M are the canonical projections, then we get

�v;F� � \ Ker �qx � g� j x 2 X
� 	

:

Now, since qx � g � � � qx � g � v � � � 0 for each x 2 X, we see that k� factors
through v and therefore � factors through ��. So, in order to see that � factors
through �� it is enough to see that �� does. To prove this, let J and ' : MI !MJ be
as in the proof of the above claim and consider the diagram

A ÿ!�� K� ÿ!k� MH

= #g0 #g
A ÿ!�� K� ÿ!k� MI ÿ!' MJ:

Since � is a Prod �M�-envelope, there exists g : MH !MI such that � � g � �. But
now the morphism ' � g : MH !M veri®es ' � g � � � ' � � � 0, and therefore
' � g � k� � 0 by the de®nition of k�; this implies that g � k� factors through k�, i.e.
there exists g0 : K� ! K� with g � k� � k� � g0, and then it is clear that �� � g0 � ��,
which is the factorization we were seeking. &

Next we list several su�cient conditions for Copres (M) to be re¯ective in A.

Proposition 4.4. Let A be a well-powered complete abelian category with enough
injectives, and consider the following conditions on an object M of A.

(a) M has injective dimension at most 1 and Ext1�MI;M� � 0 for every set I.
(b) Ext1 �C;M� � 0 for each C 2 Cogen �M�.
(c) Hom �ÿ;M� takes exact sequences of the form 0! A!MI ! C! 0 with

C 2 Cogen �M� to exact sequences in Ab.
(d) Cogen �M� is closed for extensions.
(e) Copres �M� is a re¯ective subcategory of A.
Then (a))(b))(c))(e) and (b))(d))(e).

Proof. (a))(b). Let C 2 Cogen �M� and take an exact sequence
0! C!MI ! B! 0; now we have Ext1 �MI;M� � 0 � Ext2 �B;M�, and so
Ext1 �C;M� � 0.

(b))(c). This is clear.
(c))(e). It is clearly enough to show that, if B 2 Copres �M�, then the kernel A

of any morphism f : B!MI is also in Copres (M). Since

A � \ Ker h j h 2 Hom �B;M� with A � Ker h
� 	

;

by taking a copresentation 0! B!v MJ !MK, the hypothesis implies that
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A � \ Ker �g � v� j g 2 Hom �MJ;M� with A � Ker �g � v�� 	
:

Taking now the composition A,!B!v MJ and L � g 2 Hom �MJ;M� j�
A � Ker �g � v�g, we get an exact sequence 0! A!MJ!ML which proves the
claim.

(b))(d). Let 0! A! B! C! 0 be exact in A with A, C 2 Cogen �M�;
taking the pushout of A! B and a monomorphism A!MI, we get a commutative
diagram with exact rows and vertical monomorphisms:

0! A ÿ! B! C! 0

# # =

0!MI ! �B! C! 0

Now the lower row splits, so that �B, and hence B, are in Cogen (M).
(d))(e). It is enough to show that, if 0! A! B! C! 0 is exact in A with

B 2 Copres �M� and C 2 Cogen �M�, then A 2 Copres �M�. For, we have an exact
sequence 0! B!MI ! D! 0 withD 2 Cogen �M�, and applying the cross lemma
to these sequences we get new exact sequence 0! C! E! D! 0 (and so, by (d),
E 2 Cogen �M�) and 0! A!MI ! E! 0, which shows that A 2 Copres(M). &

Example 4.1. (1) None of the non-stated implications in the above result is true.
For instance, if M is a cogenerator of A then (d) and (e) trivially hold, while (b) and
(c) hold only if M is injective. On the other hand, if S is a simple module which is
®nite dimensional over its endomorphism ring, then Cogen (S) consists of the semi-
simple S-homogenous modules (cf. [23, Proposition 4.5]), and thus (c) and (e) hold,
while (b) and (d) hold only if Ext1�S;S� � 0, which is not always the case (e.g. take
S � Z2 as a Z-module). Finally, if S is as above and Ext1 �S;S� � 0 then (b) holds,
but S need not have injective dimension � 1.

(2) IfM is an injective object ofA then condition (a) in Proposition 4.4 holds, and
hence Copres (M) is re¯ective in A. In that case, T � T 2 A j Hom �T;M� � 0

� 	
is a

localizing subcategory of A and Copres (M) is just the subcategory of T -closed
objects in the terminology of Gabriel [14]. Moreover, the left adjoint
a : A! Copres �M� of the inclusion is exact and identi®es Copres (M) with the
quotient category A=T .

(3) A typical class of objects satisfying condition (a) in Proposition 4.4 is that of
partial cotilting objects, i.e. objects M such that Cogen (M) � Ker Ext1 �ÿ;M� and
Ker Ext1 �ÿ;M� is a hereditary torsion class (cf. the obvious generalization of [7,
Lemma 2.6(b)]).

(4) If MR is a quasi-injective module which is ®nitely generated over its endo-
morphism ring S then, by [6, Lemma 1.5], MI is M-generated for every set I. But
then condition (c) in Proposition 4.4 holds since the exact sequences under con-
sideration are in the category ��M� of M-subgenerated modules (see [35, (16.1)]).
Therefore Copres (M) is a re¯ective subcategory of ModR. If SM is not ®nitely
generated and we denote by �M�N� the trace of M in N, the M-copresented objects in
� �M� are those X ®tting in an exact sequence of the form 0! X! �M�MI� !
�M�MJ� for some sets I, J. They form a re¯ective subcategory of ��M�.

(5) In general, not even for A �ModR it is true that Copres (M) is a re¯ective
subcategory ofA, for a given objectM. To show this we give the following proposition.
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Proposition 4.5. The following assertions are equivalent for an artinian commu-
tative ring R:

(a) R is quasi-Frobenius (i.e. self-injective);
(b) Copres (R) is a re¯ective subcategory of ModR;
(c) Copres (R) is closed for direct summands.

Proof. The implications (a))(b))(c) are clear. To see that (c))(a), it is not
restrictive to assume that R is also local. Suppose R is not quasi-Frobenius. Then the
simple module S is not re¯exive [1, (30.8)] and thus, by [21, Exercise (12), p. 331], we
have Soc �S� � Sn for some integer n � 2 and S� � HomR �S;R� � Sn. Now, by
using the fact that RI is projective for each set I, one easily proves that any non-zero
®nitely generated module of Copres (R) must be isomorphic to X� for some non-
zero ®nitely generated R-module X. On the other hand, such an X� contains a copy
of S�, and thus it cannot be isomorphic to S. Hence Sn � S� 2 Copres �R� and
S 62 Copres �R�. &

Remark 4.2. All results about Copres (M) admit straightforward dualizations
to a co-complete abelian category A. Hence, the subcategory Pres �M� of M-pre-
sented objects is core¯ective in A if and only if it is closed for cokernels. When
A �ModR that includes, as particular situations, the cases when MR is tilting [17],
MR is �-quasiprojective [16] or, more generally, MR is w-�-quasiprojective in the
sense of [6].

5. Re¯ectivity of Add (M). An additive category C will be called a generalized
Krull-Schmidt category when every object in C is a direct sum of indecomposable
objects with local endomorphism ring and, moreover, the isomorphism classes of
indecomposable objects form a set. In this section, we study re¯ective generalized
Krull-Schmidt subcategories of ModR. It is clear (see [23]) that it is equivalent to
study re¯ective subcategories of the form Add �MR� (i.e., the subcategory of direct
summands of coproducts of copies of a module MR).

By [23], Add �M� is closed for products if and only if it is covariantly ®nite in
ModR, in which case M is called product-complete. Such a module is always �-pure-
injective, so that Add �M� consists in that case of the direct summands of products
of copies of MR. In particular, Add �M� � Copres �M�, and the converse inclusion
holds exactly when Add �M� is re¯ective in ModR.

Proposition 5.1. Let MR be any module. Then the following assertions are
equivalent:

(a) Add �M� is re¯ective in ModR;
(b) Add �M� is closed for products and kernels;
(c) Add �M� � Copres �M�.

Proof. (a)()(b). Follows from Theorem 3.1 and [23, Theorem 3.1].
(b))(c). Condition (b) implies Copres �M� � Add �M�, and hence equality.
(c))(a). We have to show that Add �M� � Copres �M� is closed for kernels, and

it is enough to see that, if 0! A! B! C! 0 is exact with B 2 Copres �M� and
C 2 Cogen �M�, then A 2 Copres �M�. But we have a split sequence 0! B!MI !
D! 0 with D 2 Cogen �M�, and by applying the cross lemma we get a split sequence
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0! C! X! D! 0, whence X 2 Cogen �M�, and an exact sequence 0! A!
MI ! X! 0, which shows that A 2 Copres �M�. &

For the rest of this section, we ®x a nonzero module MR and set S � End �MR�
and �R � BiEnd �MR� � End �SM�. We write � : R! �R for the canonical ring homo-
morphism, and denote by �� : Mod �R !ModR the restriction of scalars functor.

In the examples that will come, we will frequently consider the case when
M � R� X for certain module XR. Then there is a canonical ring isomorphism

S � R HomR �X;R�
X End �XR�

� �
and, setting e � 1 0

0 0

� �
2 S, we have SM � Se and thus

�R � eSe � R.
The proof of the following lemma is left to the reader.

Lemma 5.2. The functor �� induces an equivalence of categories Add �M �R� �
Add �MR�.

Lemma 5.3. MR is product complete if and only if M �R is product complete.

Proof. The ``if'' part is trivial. For the converse, ®x a set I; by the preceding
lemma there is a module in Add �M �R� whose restriction of scalars is isomorphic to
MI

R. So we have a right �R-module structure on the abelian group MI such that
MI 2 Add �M �R�. Now, by Lemma 5.2, the canonical projections pi : MI !M are �R-
homomorphisms and hence, for any m � �mi�i2I 2MI and � 2 �R, we have
pj�m�� � �pjm�� � mj� and therefore �mi�i2I� � �mi��i2I. This means that the
described structure of MI is the canonical one (induced by the natural structure on
M �R), and thus M �R is product-complete. &

Theorem 5.4. Add �MR� is re¯ective in ModR if and only if Add �M �R� is re¯ective
in Mod �R. When these conditions hold, we have:

(i) SM is projective and ®nitely generated;
(ii) �R is right �-pure-injective;
(iii) the canonical map � : RR ! �RR is the Add �MR�-re¯ection of RR.

Proof. If Add �M �R� is re¯ective in Mod �R then MR is product-complete by
Lemma 5.3, and we only have to check that every R-homomorphism f : X! Y with
X;Y 2 Add �MR� has its kernel in Add �M�. But Lemma 5.2 tells us that f is also a �R-
homomorphism. Hence Ker f 2 Add �M �R� and, by restricting scalars, Ker f 2
Add �MR�. For the converse, reverse the argument.

Suppose now that Add �MR� is re¯ective in ModR.
(i) Let � : R! X be an Add �M�-re¯ection; since RR is ®nitely generated, it is

easy to see that X is a direct summand of Mn for some positive integer n. Now, the
image of � by the functor HomR �ÿ;M� is an isomorphism HomR �X;M� �M and it
is clear that HomR �X;M� is projective and ®nitely generated as a left S-module.

(ii) Since M �R is product-complete, Add �M �R� consists of �-pure-injective mod-
ules, and since M �R is a generator [34, (IV.6.7)] we have �RR 2 Add �M �R�.

(iii) Lemma 5.2 implies that �RR 2 Add �MR�, and it is easy to see that the com-
position of the natural maps

M �R ÿ!
�

Hom �R � �R;M� � HomR � �R;M� ÿ!HomR ��;M�
HomR �R;M� ÿ!� MR
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is the identity. Therefore HomR ��;M� is an isomorphism and it follows that � is an
Add �MR�-re¯ection. &

Remark 5.1. If Add �MR� is re¯ective in ModR then R! �R is the ring of
de®nable scalars corresponding to the de®nable subcategory Add �MR� (see [22,
Corollary 11.10]).

Corollary 5.5. The following assertions are equivalent:
(a) MR is indecomposable and Add �MR� is re¯ective in ModR;
(b) S is a division ring and SM is ®nite dimensional.

Proof. (a))(b). From [23, Theorem 4.1], [8, Proposition 4.4] and our Theorem
5.4, one gets that SM is free of ®nite rank and S is left artinian and local. Hence SM �R

de®nes aMorita equivalence andAdd �M �R� � Proj �R. Therefore rgD �S� � rgD � �R� � 2,
which implies that S is a division ring.

(b))(a). Since �R is semisimple, the implication is clear. &

A module MR is called self-small when, for every set I, the canonical homo-
morphism HomR �M;M��I� ! HomR �M;M�I�� is an isomorphism. It is clear that
MR is self-small if and only if so is M �R. We shall say that a ring A is right pro-
re¯ective when ProjA is re¯ective in ModA, i.e., when A is right perfect, left coherent
and rgD �A� � 2.

Proposition 5.6. Let MR be self-small. Then the following assertions are
equivalent:

(a) Add �MR� is re¯ective in ModR;
(b) S is right pro-re¯ective and SM is ®nitely generated projective.
In the case when these conditions hold, we have the following results.
(i) �R is right perfect.
(ii) rgD �R� � 2� pd �M �R�.
(iii) Assume that M �R is ®nitely generated. Then �R is left coherent if and only if

HomR �M; �R� is a ®nitely generated left R-module.

Proof. The equivalence of (a) and (b) is proven as Proposition 3.8 in [23], using
Theorem 5.4 (i). For the rest, by replacing M by some power Mn if necessary, we can
assume that M � �R� X for certain X 2ModR.

(i) Since S is right perfect and S � End � �R� X� � �R Hom �X; �R�
X End �X�

� �
, we get

that �R is right perfect [1, (28.6)].
(ii) For each N �R, we get an exact sequence 0! K! P1! P0! N! 0 in

Mod �R with P0 and P1 projective. Since M �R is a generator, we have
Proj �R � Add �M �R�, and therefore K 2 Add �M �R�, which clearly implies that
pd �K �R� � pd �M �R�, whence the result follows.

(iii) Assume that M �R is ®nitely generated and (a), (b) hold, so that �R is right
perfect. If �R is left coherent then it is indeed strongly left coherent (or left �-coher-
ent) in the sense of [13], and therefore Hom �M; �R� is a ®nitely generated left �R-
module by [5, Theorem 1].

Conversely, suppose that Hom �M; �R� is a ®nitely generated left �R-module.
Considering S as matrices in the above sense, we consider the element
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e � 1 0
0 0

� �
2 S and the bimodule �R�eS�S. In �RMod we have eS �

�R�HomR �X; �R�, and since this is ®nitely generated by the hypothesis, [6, Lemma
1.5] says that �eS�I is eS-generated in ModS. Now, since the functor
HomS �eS;ÿ� : ModS !Mod �R takes projective eS-generated right S-modules to
projective right �R-modules, we infer that �RI � HomS �eS; �eS�I� is projective in
Mod �R, so that �R is left coherent. &

Example 5.1. (1) In the situation of Proposition 5.6 we can have rgD � �R� � 1
and �R not left coherent. Indeed, let us consider a non-Artinian commutative local

ring R with J2 � 0, where J is the radical (e.g. R � K�x1; . . . xn; . . .�
�x1; . . . xn; . . .�2 with K a ®eld).

We propose the reader to prove that, if e1; . . . ; etf g is a ®nite family of elements in RI

(for some set I) which is R=J-linearly independent modulo JI, then it is R-linearly
independent and thus

Pt
i�1 eiR � �t

i�1eiR is a projective submodule of RI. Once this
is done, if e� j � 2 Af g is a maximal family of R=J-linearly independent elements of
RI modulo JI and f� j � 2 B

� 	
is a maximal family of R=J-linearly independent ele-

ments of JI modulo RIJ, then one easily sees that RI � ��e�R� � ��f�R�, so that RI

is a direct sum of a free and a semisimple submodule. If now M � R� R=J, then
Add �M� is clearly re¯ective in ModR, but �R � R has in®nite global dimension and is
not coherent.

(2) We do not know if a module MR satisfying either (a) or (b) in Proposition
5.6 is necessarily self-small, but it need not be ®nitely generated over �R. Indeed, if R
is the Kronecker algebra over a ®eld K, then the generic module GR (cf. [20]) satis®es
End �GR� � K �X� and dimK�X�G � 2. So GBiEnd �G�, and consequently GR, is self
small. Now set M � R� G, so that �R � R and MR is not ®nitely generated; since
Hom �G;R� � 0, it follows easily that (a-b) in Proposition 5.6 hold for M.

(3) In Proposition 5.6, it is easy to give examples where both S and �R are right
pro-re¯ective but MR is not an endogenerator. For instance, take any right pro-
re¯ective ring R and a module XR such that D � End �XR� is a division ring and DX
is ®nite-dimensional (if R is a C-algebra such that R=J�R� is an Artin C-algebra, then
every simple right R-module has that property). If XR is not a direct summand of
any kernel of a morphism between projectives, then M � R� X satis®es all the
above conditions.

In what follows, we shall deal with the special case in Theorem 5.4 when SM is a
(pro)generator. For this purpose we make the following de®nition.

Definition 5.1. A module MR will be called a re¯ective endogenerator when
Add �MR� is re¯ective in ModR and SM is a generator. Two re¯ective endogenera-
tors MR and NR will be called equivalent when Add �MR� � Add �NR�.

In this situation M �R is also a progenerator, so that Add �M �R� � Proj �R and S and
�R are Morita equivalent rings. By Proposition 5.6, both rings are right pro-re¯ective.
On the other hand, since direct summands of MR and M �R are the same, we have
M �Mni

1 � . . .�Mnt
t , where the ni are positive integers and M1; . . . ;Mt are pairwise

non-isomorphic indecomposable modules.

Definition 5.2. A ring homomorphism ' : R! A will be called a right pseudo-
epimorphism when the canonical ring homomorphism A � End �AA� ! End �AR�
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induced by '� is onto (and hence, an isomorphism). Two right pseudoepimorphisms
' : R! A and '0 : R! A0 will be said to be equivalent when there is a ring iso-
morphism � : A! A0 such that � � ' � '0.

If ' : R! A is a right pseudoepimorphism then A � BiEnd �AR� and ' is
(equivalent to) the canonical map R! BiEnd �AR�; by Proposition 5.6, AR is a
re¯ective endogenerator if and only if A is right pro-re¯ective. In fact, we
have:

Proposition 5.7. Let R be any ring. There is a bijective correspondence between:
(a) the set of equivalence classes of re¯ective endogenerators in ModR; and
(b) the set of equivalence classes of right pseudoepimorphisms ' : R! A with A

right pro-re¯ective.

Proof. If Add �MR� is re¯ective then �R �R 2 Add �M �R� by Theorem 5.4, and
End � �R �R� � End � �RR� by Lemma 5.2, so that the ring homomorphism � : R! �R
is a right pseudoepimorphism. Note that, if Add �MR� � Add �NR�, then
BiEnd �MR� � BiEnd �NR� [1, (14.1)], and thus � does not depend on MR but on its
equivalence class. If, moreover, MR is a re¯ective endogenerator, then �R is right pro-
re¯ective and thus the assignation MR 7!ÿ � establishes a map from (a) to (b).

Conversely, if ' : R! A is as in (b), then Add �AR� is re¯ective in ModR by the
remark above, so that AR is a re¯ective endogenerator in ModR. Clearly, the assig-
nation ' 7!ÿ AR depends only on the equivalence class of ', and so it establishes a
map from (b) to (a) which is an inverse for MR 7!ÿ �. &

Remark 5.2. (1) If ' is a right pseudoepimorphism then the restriction of '� to
Add �AA� is a full functor. In particular, when the ring A is semisimple, every pseu-
doepimorphism R! A is an epimorphism (cf. [34, (XI.1.2)]). Thus, in view of Cor-
ollary 5.5, the above proposition extends Proposition 2.1 in [27].

(2) The bijection of Proposition 5.7 induces another one between the set of: (a)
equivalence classes of ¯at re¯ective endogenerators; and (b) isomorphism classes of
¯at ring epimorphisms ' : R! A with A right pro-re¯ective. Indeed, if MR is a ¯at
re¯ective endogenerator then every module in Add �MR� (and in particular �RR) is
¯at, and thus all we need prove is that a ¯at right pseudoepimorphism ' : R! A
with A right pro-re¯ective is an epimorphism. But, in that case, A�R A is projective
(and hence torsionless) in ModA and the multiplication map � : A�R A! A is
carried to an isomorphism by the functor HomA �ÿ;A�, so that it is an isomorphism
and therefore ' is a ring epimorphism by [34, (XI.1.2)].

(3) When the ring R is commutative, there is a bijective correspondence between
the sets of: (a) equivalence classes of re¯ective endogenerators in ModR; (b) equiva-
lence classes of ring epimorphisms ' : R! A where A is a ®nite direct product of
®elds; and (c) ®nite parts of Spec �R�. Indeed, one proves along the lines of [32,
Corollary 1.2] that if R! A is a right pseudoepimorphism then the commutativity
of R implies that of A, so that pro-re¯ectivity of A means that it is a ®nite
direct product of ®elds. The rest follows the pattern of [27, Example 1.2.a]. The
bijection (b)$(c) takes ' : R! Ki � . . .� Kn to Ker ��i � '� j i � 1; . . . ; n

� 	
(where

�i :
Q

Ki ! Ki is the canonical projection) in one direction and P1; . . . ;Pnf g to
R! Q�R=P1� � . . .�Q�R=Pn� (where Q�D� is the quotient ®eld of the domain D) in
the other.
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Example 5.2. (1) Let D be a commutative integral domain with quotient ®eld

Q; then the inclusion R � D D
0 D

� �
,! Q Q

0 Q

� �
� T is a ring epimorphism and,

since T is left and right hereditary and artinian, TR and RT are both re¯ective
endogenerators.

(2) Let R be a right artinian ring and let MR be such that HomR �ÿ;M� is an
object of ®nite length in the category �modop

R ;Ab�. Let IM be a family of repre-
sentatives of the isomorphism classes of indecomposable modules X 2 modR with
HomR �X;M� 6� 0; by [3, Theorem 2.12] we know that IM is ®nite, and we set
~M � �X2IMX.

We claim that Add � ~M� is re¯ective in ModR, but ~M is an endogenerator if and
only if ~MR is projective. To prove that we ®rst replace MR by ~MR if necessary and
assume from the beginning that, for an indecomposable X 2 modR,
HomR �X;M� 6� 0 implies X 2 Add �MR�. In particular, if � : P!M is the projec-
tive cover of MR then P 2 Add �MR� and so the class of indecomposable projective
direct summands of MR is not empty. We pick a set P1 � e1R; . . . ;Pt � etRf g of
representatives of the isomorphism classes of these direct summands, where
e1; . . . ; etf g are pairwise orthogonal idempotents of R. One immediately gets that, if
S � End �MR�, then SM � Se1 � . . .� Set (viewing the ei as elements of MR, since
eiR is a direct summand of MR for each i � 1; . . . ; t). Also, clearly, Sei � S�i, where
�i is the idempotent endomorphism MR ! eiR!MR. Hence SM is ®nitely gener-
ated projective. On the other hand, again by [3, Theorem 2.12], S is left artinian and
so MR has ®nite endolength, which implies that Add �MR� is closed for products and
direct limits (cf. [23, Theorem 4.1]).

If now f : M�I� !M�J� is a R-homomorphism, then it is the direct limit of a
system of morphisms f� : Mn� !M�J�, whose kernels are in Add �MR� by our choice
of MR. Hence Ker f � !lim Ker f� is in Add �MR� and therefore Add �MR� is re¯ective
in ModR. Moreover, SM is a generator if and only if all indecomposable direct
summands of SS appear as direct summands of SM. This is equivalent to saying that
all indecomposable direct summands of MR belong, up to isomorphism, to the
family P1; . . . ;Ptf g, i.e., that MR is projective.

In view of the previous example, a natural question arises. Suppose that
Add �MR� is re¯ective in ModR; are there only ®nitely many non-isomorphic inde-
composable direct summands of MR? Note that if R is right pure-semisimple and
MR is the direct sum of all indecomposable right R-modules, an a�rmative answer
would solve the ``pure-semisimple conjecture'' (see [19] and [33] for the most recent
advances). Hence, the question seems di�cult and we can only give the following
partial a�rmative answers.

Proposition 5.8. Let R be a principal ideal domain, Q its quotient ®eld and M an
arbitrary R-module. Then Add �MR� is re¯ective in ModR if and only if there are
®nitely many (and perhaps none) pairwise nonassociated prime elements p1; . . . ; pt in
R, integers n1; . . . ; nt � 1 and sets I11; . . . ; I1n1 ; . . . ; It1; . . . ; Itnt ; J (non-empty except
perhaps J) such that

M � R

�p1�
� ��I11�

� . . .� R

�pn11

� ��I1n1 �
� . . .� R

�pt�
� ��It1�

� . . .� R

�pntt �
� ��Itnt �

�Q�J�:
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Proof. Assume ®rst that M has the given form; then by [23, Theorem 4.1] each
summand is product-complete and hence so is M; since Add �M� is clearly closed for
kernels, it is re¯ective in ModR.

For the converse we can assume that M is of the form M � �M� for some set
M� j � 2 Af g of pairwise non-isomorphic indecomposable �-pure-injective R-mod-
ules. Now, by [20, (8.56)], the indecomposable �-pure-injective R-modules are: (a)
the quotient ®eld Q; and, for every prime element p 2 R, �b1� the modules R=�pn�
with n � 1; and �b2� the PruÈ fer module R=�p1� (the p-adic module R̂p is not �-pure-
injective since it is not an artinian ring). Note that, for a ®xed prime p, Add �M�
cannot contain a copy of R=�pn� for each n � 1, since Add �M� is closed for inverse
limits and it does not contain R̂p. On the other hand, the fact that Add �M� is closed
for kernels implies that, if R=�pn� is among the Ma, then so is R=�pi� for each
i � 1; 2; . . . ; n. And it also implies that no R=�p1� is a direct summand of M,
because otherwise Add �M� would contain every R=�pn�. So, we only have to prove
that the number of distinct R=�p� that can appear among the Ma is ®nite. But if
R=�pi� 2 Add �M� for in®nitely many primes p1; p2; . . .

� 	
then we would have

�1i�1R=�pi� 2 Add �M�, so that the pure monomorphism �1i�1R=�pi� ! �1i�1R=�pi�
would split. &

Proposition 5.9. Let R be a ®nite dimensional tame hereditary algebra over a
®eld K which is not representation-®nite, and let G be the generic module. If Add �MR�
is re¯ective in ModR, then there are ®nitely generated indecomposable R-modules
X1; . . . ;Xt and (possibly empty) sets I1; . . . ; It and J such that

MR � X
�I1�
1 � . . .� X

�It�
t � G�J�:

Proof. Following the terminology of [29], this is proved like Proposition 5.8 by
taking S, S�n� S�1�, Ŝ and G instead of R=�p�, R=�pn�, R=�p1�, R̂p and Q, where S is
a simple regular module and G is the generic module. &

Remark 5.3. Notice the di�erence between re¯ectivity of Add �M� in ModR and
re¯ectivity of add �M� in modR. If R is a right artinian ring and MR is the direct sum
of one copy of each indecomposable R-module XR such that Hom �ÿ;X� is an object
of ®nite length in �Modop

R ;Ab� (cf. Example 5.2), then add �MR� is re¯ective in modR

(and hence add �MR�! is re¯ective in ModR by Proposition 3.4). However, it is well
known (cf. [28]) that, when R is a hereditary ®nite dimensional algebra over a ®eld
that is not representation-®nite, MR has in®nitely many non-isomorphic direct
summands. Then Proposition 5.9 says that Add �MR� is not re¯ective in ModR when
R is tame and not representation-®nite.
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