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Some Semigroup Laws in Groups
Dedicated to H. S. M. Coxeter in old friendship

B. H. Neumann

Abstract. A challenge by R. Padmanabhan to prove by group theory the commutativity of cancella-
tive semigroups satisfying a particular law has led to the proof of more general semigroup laws being
equivalent to quite simple ones.

1 Introduction

In 1998, on a visit to the University of Manitoba, I was challenged by Professor
Padmanabhan to prove by group-theoretical methods a result on cancellative semi-
groups, namely that the law

x2 · y2 · x = y · x3 · y(1)

implies commutativity. This is indeed possible, and not too difficult. I here inves-
tigate some generalisations of Padmanabhan’s law, and find the varieties of groups
defined by them. The simplest example is the law

x3 · y2 · x = y · x4 · y,(2)

which implies x2 ·y = y ·x2. The variety defined by this law contains that generated by
the quaternion group, or, equivalently, by the dihedral group of order 8, and indeed
it contains all hamiltonian groups. It turns out that these two examples are typical of
the general law I consider, namely

xs+t · y2 · xt = y · xs+2t · y(3)

Padmanabhan’s law is (3) with s = t = 1, and my slight generalisation is (3) with
s = 2, t = 1.

I use standard notation: e is the unit element, and

[x, y] := x−1 · y−1 · x · y, xy := y−1 · x · y;

and standard identities like

[x · y, z] = [x, z]y · [y, z], [x−1, y] = [y, x]x−1

are used without explicit reference. The final results require lengthy calculations.
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2 The Calculations

I put
u := xs, v := xt ,

so that (3) now becomes

u · v · y2 · v = y · v · u · v · y(4)

or

[u · v · y, y · v] = e.(5)

Putting y = e in this shows that

u · v = v · u,(6)

that is to say, u and v commute; as indeed they should from their definition as powers
of the same element; however, in (4) they appear just as apparently independent
variables. The commutativity (6) will be used frequently. Expanding (5),

e = [u · v · y, v] · [u · v · y, y]v = [u · v, v]y · [y, v] · [u · v · y, y]v

and, using (6) and further expanding:

e = [y, v] · [u · v, y]y·v · [y, y]v,

giving

[u · v, y]y·v = [v, y].(7)

Next I introduce z := v · y, so that (5) becomes

e = [u · z, zv] = z−1 · u−1 · v−1 · z−1 · v · u · z · v−1 · z · v,

e = [v · u, z]z · [z, v],

giving, again using (6)
[u · v, z]z = [v, z].

Replacing z by y leads to

[u · v, y]y = [v, y].(8)

Comparison of (7) and (8) yields, first,

[v, y]v = [v, y]

or
[v, y, v] = e,

that is to say:

Lemma 9 The variable v commutes with its commutators and its conjugates.
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Next, expanding (8):
[u, y]v·y · [v, y]y = [v, y],

[u, y]v·y = [v, y] · [y · v]y ,

[u, y]v = [v, y]y−1

· [y, v] = [y−1, v] · [y, v].

Now [u, y]v is seen to be a product of v-commutators, thus commutes with v, so

[u, y] = [y−1, v] · [y, v].(10)

Replacing y by y−1, then

[u, y−1] = [y, v] · [y−1, v],

and, using the fact that v-commutators commute with each other [being products of
conjugates of v and its inverse],

[y, u]y−1

= [y−1, v] · [y, v] = [u, y].

Thus

[u, y]y = [y, u] = [u, y]−1,

[u, y2] = [u, y]y · [u, y] = e :

Lemma 11 The commutator [u, y] is inverted by transformation by y, and u commutes
with all squares.

I apply this fact to (10):

[u, y]y = [u, y]−1 = [v, y] · [v, y−1] = [v, y] · [y, v]y−1

.

Transforming by y again, this gives

[u, y] = [v, y]y · [y, v],

and comparison with (10) yields

[v, y]y = [y−1, v] = [v, y]y−1

,

and
[v, y]y2

= [v, y].

Lemma 12 The commutator [v, y] commutes with y2.
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3 Consequences

As v commutes with its commutators and with the u commutators [as noted above,
[u, y] is a product of conjugates of v], and as u commutes with all squares, and thus
with all commutators, a routine argument shows that the element uk · vl, for integers
k and l, commutes with all commutators. Now k and l can be so chosen that

uk · vl = xr,

where r := (s, t). This gives the result:

Theorem 13 The law

(3) xs+t · y2 · xt = y · xs+2t · y

implies the law

[xr, y, xr] = e,(14)

where r is the greatest common divisor of s and t. Thus r-th powers commute with all
their conjugates.

The most interesting case is that of coprime s and t , that is, r = 1. Then (14)
becomes

[x, y, x] = e,(15)

which is the Engel law and implies that all elements commute with their conjugates,
In particular, as xt · y is conjugate to y · xt ,

xt · y2 · xt = y · x2t · y.(16)

Applying this to

(3) xs+t · y2 · xt = y · xs+2t · y

gives
xs · y · x2t · y = y · xs+2t · y,

and cancelling x2t · y on the right gives the main result:

Theorem 17 If in the law

(3) xs+t · y2 · xt = y · xs+2t · y

the exponent s is coprime to t, then s-th powers are central.

Padmanabhan’s challenge is the case s = 1, and the slight generalisation of Pad-
manabhan’s problem mentioned in the introduction is the special case s = 2 of this.
Finally it should be remarked that the centrality of s-th powers can be viewed as a
semigroup law.
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