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Abstract

One of the main advantages of Prolog is its potential for the implicit exploitation of parallelism

and, as a high-level language, Prolog is also often used as a means to explicitly control

concurrent tasks. Tabling is a powerful implementation technique that overcomes some

limitations of traditional Prolog systems in dealing with recursion and redundant sub-

computations. Given these advantages, the question that arises is if tabling has also the

potential for the exploitation of concurrency/parallelism. On one hand, tabling still exploits

a search space as traditional Prolog but, on the other hand, the concurrent model of tabling

is necessarily far more complex, since it also introduces concurrency on the access to the

tables. In this paper, we summarize Yap’s main contributions to concurrent tabled evaluation

and we describe the design and implementation challenges of several alternative table space

designs for implicit and explicit concurrent tabled evaluation that represent different trade-

offs between concurrency and memory usage. We also motivate for the advantages of using

fixed-size and lock-free data structures, elaborate on the key role that the engine’s memory

allocator plays on such environments, and discuss how Yap’s mode-directed tabling support

can be extended to concurrent evaluation. Finally, we present our future perspectives toward

an efficient and novel concurrent framework which integrates both implicit and explicit

concurrent tabled evaluation in a single Prolog engine.

KEYWORDS: Tabling, Table Space, Concurrency, Implementation.

1 Introduction

Tabling (Chen and Warren 1996) is a recognized and powerful implementation

technique that overcomes some limitations of traditional Prolog systems in dealing

with recursion and redundant sub-computations. Tabling is a refinement of SLD

(Selected Linear Deduction) resolution that stems from one simple idea: save

intermediate answers from past computations so that they can be reused when
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a similar call appears during the resolution process. Tabling-based models are able

to reduce the search space, avoid looping, and always terminate for programs with

the bounded term-size property (Chen and Warren 1996).

Tabling has become a popular and successful technique thanks to the ground-

breaking work in the XSB (Extended Stony Brook Prolog) Prolog system and in

particular in the SLG-WAM engine (Sagonas and Swift 1998), the most successful

engine of XSB. The success of SLG-WAM led to several alternative implementations

that differ in the execution rule, in the data-structures used to implement tabling,

and in the changes to the underlying Prolog engine. Currently, the tabling technique

is widely available in systems like XSB Prolog (Swift and Warren 2012), Yap

Prolog (Santos Costa et al. 2012), B-Prolog (Zhou 2012), ALS Prolog (Guo and

Gupta 2001), Mercury (Somogyi and Sagonas 2006), Ciao Prolog (Chico et al. 2008)

and more recently in SWI Prolog (Desouter et al. 2015) and Picat (Zhou et al. 2015).

One of the main advantages of Prolog is its potential for the implicit exploitation

of parallelism. Many sophisticated and well-engineered parallel Prolog systems exist

in the literature (Gupta et al. 2001), being the most successful those that exploit

implicit or-parallelism (Lusk et al. 1988; Ali and Karlsson 1990; Gupta and Pontelli

1999), implicit and-parallelism (Hermenegildo and Greene 1991; Shen 1992; Pontelli

and Gupta 1997) or a combination of both (Santos Costa et al. 1991). Or-parallelism

arises when more than one clause unifies with the current call and it corresponds to

the simultaneous execution of the body of those different clauses. And-parallelism

arises when more than one subgoal occurs in the body of the clause and it corre-

sponds to the simultaneous execution of the subgoals contained in a clause’s body.

On the other hand, as a high-level language, Prolog is also often used as a

means to explicitly control and schedule concurrent tasks (Carro and Hermenegildo

1999; Fonseca et al. 2009). The ISO Prolog multithreading standardization pro-

posal (Moura 2008) is currently implemented in several Prolog systems, including

XSB, Yap, Ciao, and SWI, providing a highly portable solution given the number

of operating systems supported by these systems. In a nutshell, multithreading in

Prolog is the ability to concurrently perform multiple computations, in which each

computation runs independently but shares the database (clauses). It is, therefore,

unsurprising that implicit and explicit concurrent/parallel evaluation has been an

important subject in the design and development of Prolog systems.

Nowadays, the increasing availability of computing systems with multiple cores

sharing the main memory is already a standardized, high-performance and viable

alternative to the traditional (and often expensive) shared memory architectures. The

number of cores per processor is expected to continue to increase, further expanding

the potential for taking advantage of such support as an increasingly popular way

to implement dynamic, highly asynchronous, concurrent, and parallel programs.

Besides the two traditional approaches to concurrency/parallelism: (i) fully im-

plicit, i.e., it is left to the runtime system to automatically detect the potential

concurrent tasks in the program, assign them for parallel execution and control and

synchronize their execution; and (ii) fully explicit, i.e., it is left to the user to annotate

the tasks for concurrent execution, assign them to the available workers and control

the execution and the synchronization points, the recent years have seen a lot of
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proposals trying to combine both approaches in such a way that the user relies on

high-level explicit parallel constructs to trigger parallel execution and then it is left to

the runtime system the control of the low-level execution details. In the combined ap-

proach, in general, a program begins as a single worker that executes sequentially un-

til reaching a parallel construct. When reaching a parallel construct, the runtime sys-

tem launches a set of additional workers to exploit concurrently the sub-computation

at hand. Concurrent execution is then handled implicitly by the execution model

taking into account additional directive restrictions given to the parallel construct.

Multiple examples of frameworks exist that follow the combined approach. For

example, for imperative programming languages, the OpenMP (Chapman et al.

2008), Intel Threading Building Blocks (Reinders 2007), and Cilk (Blumofe et al.

1995) frameworks provide runtime systems for multithreaded parallel programming,

providing users with the means to create, synchronize, and schedule threads effi-

ciently. For functional programming languages, the Eden (Loogen et al. 2005) and

HDC (Herrmann and Lengauer 2000) Haskell-based frameworks allow the users

to express their programs using polymorphic higher order functions. For object-

oriented programming languages, MALLBA (Alba et al. 2002) and DPSKEL (Peláez

et al. 2007) frameworks also showed relevant speedups in the parallel evaluation of

combinatorial optimization benchmarks.

In the specific case of Prolog, given the advantages of tabled evaluation, the

question that arises is if a tabling mechanism has the potential for the exploitation

of concurrency/parallelism. On one hand, tabling still exploits a search space as

traditional Prolog, but on the other hand, the concurrent model of tabling is

necessarily far more complex than the traditional concurrent models, since it also

introduces concurrency on the access to the tables. In a concurrent tabling system,

tables may be either private or shared between workers. On one hand, private tables

can be easier to implement but restrict the degree of concurrency. On the other

hand, shared tables have all the associated issues of locking, synchronization, and

potential deadlocks. Here, the problem is even more complex because we need to

ensure the correctness and completeness of the answers found and stored in the

shared tables. Thus, despite the availability of both threads and tabling in Prolog

compilers, such as XSB, Yap, Ciao, and SWI, the implementation of these two

features such that they work together seamlessly implies complex ties to one another

and to the underlying engine.

To the best of our knowledge, only the XSB and Yap systems support the

combination of tabling with some form of concurrency/parallelism. In XSB, the

SLG-WAM execution model was extended with a shared tables design (Marques and

Swift 2008) to support explicit concurrent tabled evaluation using threads. It uses a

semi-naive approach that, when a set of subgoals computed by different threads is

mutually dependent, then a usurpation operation synchronizes threads and a single

thread assumes the computation of all subgoals, turning the remaining threads

into consumer threads. The design ensures the correct execution of concurrent

sub-computations but the experimental results showed some limitations (Marques

et al. 2010). Yap implements both implicit and explicit concurrent tabled evaluation,

but separately. The OPTYap design (Rocha et al. 2005) combines the tabling-based
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SLG-WAM execution model with implicit or-parallelism using shared memory pro-

cesses. More recently, a second design supports explicit concurrent tabled evaluation

using threads (Areias and Rocha 2012b), but using an alternative view to XSB’s

design. In Yap’s design, each thread has its own tables, i.e., from a thread point of

view the tables are private, but at the engine level it uses a common table space, i.e.,

from the implementation point of view the tables are shared among threads.

In this paper, we summarize Yap’s main developments and contributions to con-

current tabled evaluation, and we describe the design and implementation challenges

of several alternative table space designs for implicit and explicit concurrent tabled

evaluation that represent different trade-offs between concurrency and memory

usage (MU). We also motivate for the advantages of using fixed-size and lock-free

data structures for concurrent tabling, and we elaborate on the key role that the

engine’s memory allocator plays on such an environment where a higher number of

simultaneous memory requests for data structures in the table space can be made by

multiple workers. We also discuss how Yap’s mode-directed tabling support (Santos

and Rocha 2013) can be extended to concurrent evaluation. Mode-directed tabling

is an extension to the tabling technique that allows the aggregation of answers by

specifying pre-defined modes, such as min or max. Mode-directed tabling can be

viewed as a natural tool to implement dynamic programming problems, where a

general recursive strategy divides a problem into simple sub-problems whose goal is,

usually, to dynamically calculate optimal or selective answers as new results arrive.

Finally, we present our future perspectives toward an efficient and novel concurrent

framework, which integrates both implicit and explicit concurrent tabled evaluations

in a single tabling engine. This is a very complex task, since we need to combine the

explicit control required to launch, assign, and schedule tasks to workers, with the

built-in mechanisms for handling tabling and/or implicit concurrency, which cannot

be controlled by the user. Such a framework could renew the glamor of Prolog

systems, especially in the concurrent/parallel programming community. Combining

the inherent implicit parallelism of Prolog with explicit high-level parallel constructs

will clearly enhance the expressiveness and the declarative style of tabling, and

simplify concurrent programming.

In summary, the main contributions of this paper are: (i) a systematic presentation

of the different alternative table space designs implemented in Yap for implicit and

explicit concurrent tabled evaluation (which were dispersed by several publications);

(ii) a formalization of the total memory usage (TMU) of each table space design,

which allows for a more rigorous comparison and demonstrates how each design

is dependent on the number of workers and on the number of tabled calls in

evaluation; (iii) a performance analysis of Yap’s tabling engine highlighting how

independent concurrent flows of execution interfere at the low-level engine and how

dynamic programming problems fit well with concurrent tabled evaluation; and (iv)

the authors’ perspectives toward a future concurrent framework, which integrates

both implicit and explicit concurrent tabled evaluations in a single tabling engine.

The remainder of the paper is organized as follows. First, we introduce some

basic concepts and relevant background. Then, we present the alternative table

space designs for implicit and explicit concurrent tabled evaluation. Next, we discuss
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the most important engine components and implementation challenges supporting

concurrent tabled evaluation and we show a performance analysis of Yap’s tabling

engine when using different table space designs. At last, we discuss future perspectives

and challenging research directions.

2 Background

This section introduces relevant background needed for the following sections. It

briefly describes Yap’s original table space organization and presents Yap’s approach

for supporting mode-directed tabling.

2.1 Table space organization

The basic idea behind tabling is straightforward: programs are evaluated by saving

intermediate answers for tabled subgoals so that they can be reused when a

similar call appears during the resolution process. First calls to tabled subgoals

are considered generators and are evaluated as usual, using SLD resolution, but

their answers are stored in a global data space, called the table space. Similar calls

are called consumers and are resolved by consuming the answers already stored

for the corresponding generator, instead of re-evaluating them against the program

clauses. During this process, as further new answers are found, they are stored in

their table entries (TEs) and later returned to all similar calls.

Call similarity thus determines if a subgoal will produce their own answers or if

it will consume answers from a generator call. There are two main approaches to

determine if a subgoal A is similar to a subgoal B:

• Variant-based tabling (Ramakrishnan et al. 1999): A and B are variants if

they can be identical through variable renaming. For example, p(X, 1, Y ) and

p(W, 1, Z) are variants because both can be renamed into p(VAR0, 1, VAR1).

• Subsumption-based tabling (Rao et al. 1996): subgoal A is considered similar

to B if A is subsumed by B (or B subsumes A), i.e., if A is more specific than

B (or an instance of). For example, subgoal p(X, 1, 2) is subsumed by subgoal

p(Y , 1, Z) because there is a substitution {Y = X,Z = 2} that makes p(X, 1, 2)

an instance of p(Y , 1, Z).

Variant-based tabling has been researched first and is arguably better understood.

For some types of programs, subsumption-based tabling yields superior time perfor-

mance (Rao et al. 1996; Johnson et al. 1999), as it allows greater reuse of answers,

and better space usage, since the answer sets for the subsumed subgoals are not

stored. However, the mechanisms to efficiently support subsumption-based tabling

are harder to implement, which makes subsumption-based tabling not as popular

as variant-based tabling. The Yap Prolog system implements both approaches

for sequential tabling (Cruz and Rocha 2010; Santos Costa et al. 2012), but for

concurrent tabled evaluation, Yap follows the variant-based tabling approach.

A critical component in the implementation of an efficient tabling system is thus

the design of the data structures and algorithms to access and manipulate the table
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Fig. 1. Yap’s original table space organization.

space. Yap uses trie data structures to implement efficiently the table space (Ramakr-

ishnan et al. 1999). Tries are trees in which common prefixes are represented only

once. The trie data structure provides complete discrimination for terms and permits

lookup and possible insertion to be performed in a single pass through a term, hence

resulting in a very efficient and compact data structure for term representation.

Figure 1 shows the original table space organization for a tabled predicate Pi in

Yap. At the entry point, we have the TE data structure. This structure stores common

information for the tabled predicate, such as the predicate’s arity or the predicate’s

evaluation strategy, and it is allocated when the predicate is being compiled, so

that a pointer to the TE can be included in its compiled code. This guarantees that

further calls to the predicate will access the table space starting from the same point.

Below the TE, we have the subgoal trie structure. Each different tabled subgoal call

Pi.j to the predicate corresponds to a unique path through the subgoal trie structure,

always starting from the TE, passing by several subgoal trie data units, the subgoal

trie nodes, and reaching a leaf data structure, the subgoal frame. The subgoal frame

stores additional information about the subgoal and acts like an entry point to

the answer trie structure. Each unique path through the answer trie data units, the

answer trie nodes, corresponds to a different tabled answer to the entry subgoal.

2.2 Mode-directed tabling and dynamic programming

The tabling technique can be viewed as a natural tool to implement dynamic

programming problems. Dynamic programming is a general recursive strategy that

consists in dividing a problem in simple sub-problems that, often, are the same.

Tabling is thus suitable to use with this kind of problems since, by storing and

reusing intermediate results while the program is executing, it avoids performing the

same computation several times.
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In a traditional tabling system, all arguments of a tabled subgoal call are

considered when storing answers into the table space. When a new answer is

not a variant of any answer that is already in the table space, then it is always

considered for insertion. Therefore, traditional tabling is very good for problems

that require storing all answers. However, with dynamic programming, usually, the

goal is to dynamically calculate optimal or selective answers as new results arrive.

Solving dynamic programming problems can thus be a difficult task without further

support.

Mode-directed tabling is an extension to the tabling technique that supports the

definition of modes for specifying how answers are inserted into the table space.

Within mode-directed tabling, tabled predicates are declared using statements of the

form “table p(m1, . . . , mn),” where the mi’s are mode operators for the arguments. The

idea is to define the arguments to be considered for variant checking (the index

arguments) and how variant answers should be tabled regarding the remaining

arguments (the output arguments). In Yap, index arguments are represented with

mode index, while arguments with modes first, last, min, max, sum, and all represent

output arguments (Santos and Rocha 2013). After an answer is generated, the system

tables the answer only if it is preferable, accordingly to the meaning of the output

arguments, than some existing variant answer.

In Yap, mode-directed tabled predicates are compiled by extending the TE data

structure to include a mode array, where the information about the modes is stored,

and by extending the subgoal frames to include a substitution array, where the

mode information is stored together with the number of free variables associated

with each argument in the subgoal call (Santos and Rocha 2013). When a new

answer is found, it must be compared against the answer(s) already stored in the

table, accordingly to the modes defined for the corresponding arguments. If the new

answer is preferable, the old answer(s) must be invalidated and the new one inserted

in the table. The invalidation process consists in: (a) deleting all intermediate answer

trie nodes corresponding to the answers being invalidated; and (b) tagging the leaf

nodes of such answers as invalid nodes. Invalid nodes are only deleted when the

table is later completed or abolished.

Regarding the table space designs that we present next, the support for mode-

directed tabling is straightforward when the table data structures are not accessed

concurrently for write operations. The problem arises for the designs which do not

require the completion of tables to share answers, since we need to efficiently support

concurrent delete operations on the trie structures and correctly handle the interface

between consumer calls and the navigation in the answer tries.

3 Concurrent table space designs

This section presents alternative table space designs for implicit and explicit con-

current tabled evaluation, which represent different trade-offs between concurrency

and MU.
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3.1 Implicit versus explicit concurrent tabled evaluation

Remember the two traditional approaches to concurrency/parallelism: fully implicit

and fully explicit. With fully implicit, it is left to the runtime system to auto-

matically detect the potential concurrent tasks in the program, assign them for

concurrent/parallel execution and control and synchronize their execution. In such

approach, the running workers (processes, threads or both) often share the data

structures representing the data of the problem since tasks do not need to be pre-

assigned to workers as any worker can be scheduled to perform an unexplored

concurrent task of the problem. For tabling, that means that the table space data

structures must be fully shared among all workers. This is the case of the OPTYap

design (Rocha et al. 2005), which combines the tabling-based SLG-WAM execution

model with implicit or-parallelism using shared memory processes.

On the other hand, with a fully explicit approach, it is left to the user to annotate

the tasks for concurrent execution, assign them to the available workers and control

the execution and the synchronization points. In such approach, the running workers

often execute independently a well-defined set of tasks. For tabling, that means that

each evaluation only depends on the computations being performed by the worker

itself, i.e., a worker does not need to consume answers from other workers’ tables

as it can always be the generator for all of its subgoal calls. These are the cases

of XSB (Marques and Swift 2008) and Yap (Areias and Rocha 2012b) designs that

support explicit concurrent tabled evaluation using threads. In any case, the table

space data structures can be either private or partially shared between workers.

Yap proposes several alternative designs to implement the table space for explicit

concurrent tabled evaluation. Table 1 overviews several Yap’s table space designs

and how they differ in the way the internal table data structures are implemented

and accessed. In the following subsections, we present the several designs and we

show a detailed analysis of the MU of each.

3.2 Cooperative sharing design

The Cooperative Sharing (CS) design supports the combination of tabling with

implicit or-parallelism using shared memory processes (Rocha et al. 2005). The CS

design was the first concurrent table space design implemented in Yap Prolog. It

follows Yap’s original table space organization, as shown in Figure 1, and extends

it with some sort of synchronization mechanisms to deal with concurrent accesses.

In what follows, we will not consider synchronization mechanisms that require

extending the table space data structures with extra fields, like lock fields, since

several synchronization techniques exist that do not require an actual lock field.

Two examples are: (i) the usage of an external global array of locks; or (ii) the

usage of low level Compare-And-Swap (CAS) operations. We discuss this in more

detail in Section 4.

Remember from Figure 1 that, at the entry point, we have a TE data structure for

each tabled predicate Pi. Underneath each TE, we have a subgoal trie (ST (Pi)) and

several subgoal frame (SF) data structures for each tabled subgoal call Pi.j made
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Table 1. Yap’s table space designs – Cooperative Sharing (CS), No-Sharing (NS), Subgoal-

Sharing (SS), Full-Sharing (FS), Partial Answer Sharing (PAS), and Private Answer Chaining

(PAC) – and the implementation and access of the data structures in each design: as private

data structures (–); as fully shared data structures (F); as partially shared data structures

(P); and as data structures with concurrent read (r) and concurrent write (w) operations

Explicit

Data Implicit

Structure CS NS SS FS PAS PAC

Table entry F(r) F(r) F(r) F(r) F(r) F(r)

Subgoal trie F(rw) – F(rw) F(rw) F(rw) F(rw)

Subgoal frame F(rw) – – P(rw) P(r) P(rw)

Answer trie F(rw) – – F(rw) P(r) P(rw)

to the predicate. Finally, underneath each SF , we have an answer trie (AT (Pi.j))

structure with the answers for the corresponding subgoal call Pi.j . Please note that

the size of the TE and SF data structures is fixed and independent from the

predicate, but the size of the ST (Pi) and AT (Pi.j) data structures varies accordingly

to the number of subgoal calls made and answers found during tabled evaluation.

We can now formalize the TMU of the CS design. For this, we assume that

all tabled predicates are completely evaluated, meaning that the engine will not

allocate any further data structures on the table space. Given NP tabled predicates,

equation (1) presents the TMU of the CS design (TMUCS ).

TMUCS =

NP∑
i=1

MUCS (Pi)

where MUCS (Pi) = TE + ST (Pi) +

NC(Pi)∑
j=1

[SF + AT (Pi.j)]

(1)

The TMUCS is given by the summation of the MU of each predicate Pi, i.e., the

MUCS (Pi) values, which correspond then to the sum of each structure inside the

table space for the corresponding predicate Pi. The TE, ST (Pi), SF, and AT (Pi.j)

values represent the amount of the memory used by predicate Pi in its TE, subgoal

trie, subgoal frames, and answer trie structures, respectively, and the NC(Pi) value

represents the number of different tabled subgoal calls made to the predicate. For

example, in Figure 1, the value of NC(Pi) is n.

As a final remark, please note that the TMU of the CS design (TMUCS ) is the

same as the TMU of Yap’s original table space organization (TMUORIG). Thus, in

what follows, we will use the TE, ST (Pi), SF, and AT (Pi.j) values as the reference

values for comparison against the other concurrent table space designs.

3.3 No-sharing design

Yap implements explicit concurrent tabled evaluation using threads in which each

thread’s computation only depends on the evaluations being performed by the thread
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itself. The No-Sharing (NS) design was the starting design for supporting explicit

concurrent tabled evaluation in Yap (Areias and Rocha 2012b). In the NS design,

each thread allocates fully private tables for each new tabled subgoal being called.

In this design, only the TE structure is shared among threads. Figure 2 shows the

configuration of the table space for the NS design. For the sake of simplicity, the

figure only shows the configuration for a particular predicate Pi and a particular

subgoal call Pi.j .

The TE still stores the common information for the predicate but it is extended

with a bucket array (BA), where each thread Tk has its own entry, which then

points to the private ST (Pi), SF, and AT (Pi.j) data structures of the thread. Each

BA contains as many entry cells as the maximum number of threads that can

be created in Yap (currently, Yap supports 1024 simultaneous threads). However,

in practice, this solution can be highly inefficient and memory consuming, as this

huge BA must be always allocated even when only one thread will use it. To solve

this problem, we introduce a kind of inode pointer structure, where the BA is split

into direct bucket cells and indirect bucket cells (Areias and Rocha 2012b). The

direct bucket cells are used as before, but the indirect bucket cells are allocated

only as needed, which alleviates the memory problem and easily adjusts to a higher

maximum number of threads. This direct/indirect organization is applied to all

BAs.

Since the ST (Pi), SF, and AT (Pi.j) data structures are private to each thread, they

can be removed when the thread finishes execution. Only the TE is shared among

threads. As this structure is created by the main thread when a program is being

compiled, no concurrent writing operations will exist between threads and thus no

synchronization points are required for the NS design.

Given an arbitrary number of NT running threads and assuming that all

threads have completely evaluated the same number NC(Pi) of tabled subgoal
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calls, equation (2) shows the MU for a predicate Pi in the NS design (MUNS (Pi)).

MUNS (Pi) = TENS + NT ∗ [ST (Pi) +

NC(Pi)∑
j=1

[SF + AT (Pi.j)]]

where TENS = TE + BA

(2)

The MUNS (Pi) value is given by the sum of the memory size of the extended TE

structure (TENS ) plus the sum of the sizes of the private structures of each thread

multiplied by the NT threads. The memory size of TENS is given by the size of the

original TE structure added with the memory size of the BA. The memory size of

the remaining structures is the same as in Yap’s original table space organization.

As for equation (1), the TMU of the NS design (TMUNS ) (not shown in

equation (2)) is given by the summation of the MU of each predicate, i.e., the

MUNS (Pi) values. Comparing TMUNS with TMUORIG given NP tabled predicates,

the extra memory cost of the NS design to support concurrency is given by the

formula:
NP∑
i=1

[BA + [NT − 1] ∗ [ST (Pi) +

NC(Pi)∑
j=1

[SF + AT (Pi.j)]]]

The formula shows that for the base case of 1 thread (NT = 1), the amount of

extra memory spent by the NS design, given by NP ∗ BA, corresponds to the BA

extensions. When increasing the number of threads, the amount of extra memory

spent in the ST (Pi), SF, and AT (Pi.j) data structures increases proportionally to

NT . This dependency on the number of threads motivated us to create alternative

designs that could decrease the amount of extra memory to be spent. The following

subsections present such alternative designs.

3.4 Subgoal-sharing design

In the Subgoal-Sharing (SS) design, the threads share part of the table space.

Figure 3 shows the configuration of the table space for the SS design. Again, for

the sake of simplicity, the figure only shows the configuration for a particular tabled

predicate Pi and a particular subgoal call Pi.j .

In the SS design, the ST (Pi) data structures are now shared among the threads

and the leaf data structure in each subgoal trie path, instead of referring the SF

as before, it now points to a BA. Each thread TK has its own entry inside the BA

which then points to private SF and AT (Pi.j) structures. In this design, concurrency

among threads is restricted to the allocation of trie nodes on the ST (Pi) structures.

Whenever a thread finishes execution, its private structures are removed, but the

shared part remains present as it can be in use or be further used by other

threads.

Given an arbitrary number of NT running threads and assuming that all

threads have completely evaluated the same number NC(Pi) of tabled subgoal

calls, equation (3) shows the MU for a predicate Pi in the SS design (MUSS (Pi)).

The MU for the SS design is given by the sum of the memory size of the TE and

ST (Pi) data structures plus the summation, for each subgoal call, of the memory used
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Fig. 3. Table space organization for the SS design.

by the BA added with the sizes of the private structures of each thread multiplied

by the NT threads. The memory size of each particular data structure is the same

as in Yap’s original table space organization.

MUSS (Pi) = TE + ST (Pi) +

NC(Pi)∑
j=1

[BA + NT ∗ [SF + AT (Pi.j)]] (3)

Theorem 1 shows the conditions where the SS design uses less memory than the

NS design for an arbitrary number of threads NT and an arbitrary number of

subgoal calls NC(Pi).
1

Theorem 1

If NT � 1 and NC(Pi) � 1 then MUSS (Pi) � MUNS (Pi) if and only if the formula

[NC(Pi) − 1] ∗ BA � [NT − 1] ∗ ST (Pi) holds.

Theorem 1 shows that the comparison between the NS and SS designs depends

directly on the number of subgoal calls (NC(Pi)) made to the predicate by the

number of threads (NT ) in evaluation. These numbers will affect the memory

size of the BA and ST (Pi) structures. The NS design grows in the number of

ST (Pi) structures as we increase the number of threads. The SS design grows in

the number of BA structures proportionally to the number of subgoal calls made

to the predicate. The number of subgoal calls and the size of the ST (Pi) structures

depends on the predicate being evaluated, while the size of the BA structures is

fixed by the implementation and the number of threads is user-dependent. For one

thread (NT = 1), the following corollaries can be derived from Theorem 1:

1 The proofs for all the theorems that follow are presented in detail in Appendix A.
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Corollary 1

If NT = 1 and NC(Pi) = 1 then MUSS (Pi) = MUNS (Pi).

Corollary 2

If NT = 1 and NC(Pi) > 1 then MUSS (Pi) > MUNS (Pi).

In summary, for one thread, the SS design is equal to or worse than the NS design

in terms of MU. For a number of threads higher than one, the SS design performs

better than the NS design when the formula in Theorem 1 holds. The best scenarios

for the SS design occur for predicates with few subgoal calls and for subgoal trie

structures using larger amounts of memory. In such scenarios, the difference between

both designs increases proportionally to the number of threads.

3.5 Full-sharing design

The Full-Sharing (FS) design tries to maximize the amount of data structures being

shared among threads. Figure 4 shows the configuration of the table space for the

FS design. Again, for the sake of simplicity, the figure only shows the configuration

for a particular tabled predicate Pi and a particular subgoal call Pi.j .

In this design, the AT (Pi.j) structure and part of the subgoal frame information,

the subgoal entry data structure in Figure 4, are now also shared among all threads.

The previous SF data structure was split into two: the subgoal entry stores common

information for the subgoal call (such as the pointer to the shared AT (Pi.j) structure)

and a BA structure; and the remaining information (the subgoal frame data structure

in Figure 4) is kept private to each thread. Concurrency among threads now includes

also the access to the subgoal entry data structure and the allocation of trie nodes

on the AT (Pi.j) structures.

The subgoal entry includes a BA where each thread Tk has its own entry which

then points to the thread’s private subgoal frame. Each private subgoal frame

includes an extra field which is a back pointer (BP) to the common subgoal entry.
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This is important in order to keep unaltered all the tabling data structures that

access subgoal frames. To access the private information, there is no extra cost (we

still use a direct pointer), and only for the common information on the subgoal

entry we pay the extra cost of following an indirect pointer.

Comparing with the NS and SS designs, the FS design has two major advantages.

First, MU is reduced to a minimum. The only memory overhead, when compared

with a single threaded evaluation, is the BA associated with each subgoal entry, and

apart from the split on the subgoal frame data structure, all the remaining structures

remain unchanged. Second, since threads are sharing the same AT (Pi.j) structures,

answers inserted by a thread for a particular subgoal call are automatically made

available to all other threads when they call the same subgoal.

Given an arbitrary number of NT running threads and assuming that all

threads have completely evaluated the same number NC(Pi) of tabled subgoal

calls, equation (4) shows the MU for a predicate Pi in the FS design (MUFS (Pi)).

MUFS (Pi) = TE + ST (Pi) +

NC(Pi)∑
j=1

[SEFS + BA + NT ∗ [SFFS + BP ] + AT (Pi.j)]

where SEFS + SFFS = SF

(4)

The MU for the FS design is given by the sum of the memory size of the TE and

ST (Pi) data structures plus the summation, for each subgoal call, of the memory

used by the subgoal entry data structure (SEFS ), the BA and the AT (Pi.j) structures

added with the sizes of the private data structures of each thread multiplied by the

NT threads. The private data structures of each thread include the subgoal frame

(SFFS ) and the BP . The memory size of the original SF is now given by the size of

the SEFS and SFFS data structures. The memory size of the remaining structures is

the same as in Yap’s original table space organization.

Since the FS design is a refinement of the SS design, next we use Theorem 2 to

show that the FS design always requires less memory than the SS design for more

than one thread.

Theorem 2

If NT > 1 and NC(Pi) � 1 then MUFS (Pi) < MUSS (Pi).

Remember from the previous subsection that the SS behavior depends on the

amount of memory spent in the BA. The FS maintains this dependency, since this

structure is co-allocated inside the subgoal entry structure. The difference between

both designs occurs in the MU spent in the subgoal frames and in the answer tries.

For the subgoal frames, the difference is that the size of the private subgoal frames

used by the FS design, including the back pointer, is lower that the ones used by the

SS design. For the answer trie structures, the FS design simply does not allocate as

many of these structures has the SS design. For one thread (NT = 1), the following

corollary can be derived from Theorem 2:

Corollary 3

If NT = 1 and NC(Pi) � 1 then MUFS (Pi) > MUSS (Pi).

https://doi.org/10.1017/S147106841800039X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800039X


964 M. Areias and R. Rocha

Answer
Trie

Structure

...

Answer
Trie

Structure

Answer
Trie

Structure

...

Table Entry

Subgoal Trie Structure

Thread T

Subgoal
Frame

Call Pi.j

1 Thread T

Subgoal
Frame

Call Pi.j

kComplete

Subgoal
Frame

Call Pi.j

Fig. 5. Table space organization for the PAS design.

In summary, for one thread, the FS design is always worse than the SS design

and the difference increases proportionally to the number of subgoal calls. For a

number of threads higher than one, the FS design always performs better than the

SS design and the difference increases as the number of threads and the number of

subgoal calls also increases.

3.6 Partial answer sharing design

In the SS design, the subgoal trie structures are shared among threads but the

answers for the subgoal calls are stored in private answer trie structures to each

thread. As a consequence, no sharing of answers between threads is done. The

Partial Answer Sharing (PAS) design (Areias and Rocha 2017) extends the SS

design to allow threads to share answers. Threads still view their answer tries as

private but are able to consume answers from completed answer tries computed by

other threads. The idea is as follows. Whenever a thread calls a new tabled subgoal,

first, it searches the table space to lookup if any other thread has already computed

the answers for that subgoal. If so, then the thread reuses the available answers,

thus avoiding recomputing the subgoal call from scratch. Otherwise, it computes the

subgoal itself. Several threads can work on the same subgoal call simultaneously,

i.e., we do not protect a subgoal from further evaluations while other threads have

picked it up already. The first thread completing a subgoal, shares the results by

making them available (public) to the other threads. Figure 5 illustrates the table

space organization for the PAS design.

As for the SS design, threads can concurrently access the subgoal trie structures

for both read and write operations, but for the answer trie structures, they are

only concurrently accessed for reading after completion. All subgoal frames and

answer tries are initially private to a thread. Later, when the first subgoal frame is
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completed, i.e., when we have found the full set of answers for it, it is marked as

completed (black answer trie in Figure 5) and put in the beginning of the list of

private subgoal frames (configuration shown in Figure 5). With the PAS design, we

also aim to improve the MU of the SS design by removing the BA data structure.

This is a direct consequence of the analysis made in equation (3), where we have

shown that the performance of the SS design is directly affected by the size of the

memory used by the BA structures. Thus, instead of pointing to a BA as in the

SS design, now the leaf data structure in each subgoal trie path points to a list of

private subgoal frames corresponding to the threads evaluating the subgoal call. In

order to find the subgoal frame corresponding to a thread, we may have to pay

an extra cost for navigating in the list but, once a subgoal frame is completed,

we can access it immediately since it is always stored in the beginning of the

list.

Given an arbitrary number of NT running threads and assuming that all

threads have completely evaluated the same number NC(Pi) of tabled subgoal

calls, equation (5) shows the MU for a predicate Pi in the PAS design (MUPAS (Pi)).

MUPAS (Pi) = TE + ST (Pi) +

NC(Pi)∑
j=1

[NT (Pi.j) ∗ [SF + AT (Pi.j)]]

where NT (Pi.j) � NT

(5)

The MU for the PAS design is given by the sum of the memory size of the TE

and ST (Pi) data structures plus the summation, for each subgoal call, of the memory

used by the private structures of each thread multiplied by NT (Pi.j) threads, where

NT (Pi.j) is the number of threads evaluating the subgoal call Pi.j privately. Note

that NT (Pi.j) � NT , since the threads consuming answers from completed subgoal

frames do not allocate any extra memory. The memory size of each particular data

structure is the same as in Yap’s original table space organization.

In summary, if we compare equation (3) with equation (5), we can observe that the

TMU of the PAS design is always less than the TMU of the SS design. Additionally,

we can optimize even further this design and allow threads to delete their private

SF and AT (Pi.j) structures when completing, if another thread has made public its

completed subgoal frame first. With this optimization, we can end in practice with

a single SF and AT (Pi.j) structure for each subgoal call Pi.j .

If we compare with the FS design, because we only share completed answer tries,

we also avoid some problems present in the FS design. First, we avoid the problem

of dealing with concurrent updates to the answer tries. Second, we avoid the problem

of dealing with concurrent deletes, as in the case of using mode-directed tabling.

Since the PAS design keeps the answer tries private to each thread, the deletion of

nodes can be done without any complex machinery to deal with concurrent delete

operations. Third, we avoid the problem of managing the different set of answers

that each thread has found. As we will see in the next subsection, this can be a

problem for batched scheduling evaluation.
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3.7 Private answer chaining design

During tabled execution, there are several points where we may have to choose

between continuing forward execution, backtracking, consuming answers from the

tables or completing subgoals. The decision about the evaluation flow is determined

by the scheduling strategy. Different strategies may have a significant impact on

performance, and may lead to a different ordering of solutions to the query goal.

Arguably, the two most successful tabling scheduling strategies are local scheduling

and batched scheduling (Freire et al. 1996).

Local scheduling tries to complete subgoals as soon as possible. When new

answers are found, they are added to the table space and the evaluation fails. Local

scheduling has the advantage of minimizing the size of clusters of dependent subgoals.

However, it delays propagation of answers and requires the complete evaluation of

the search space.

Batched scheduling tries to delay the need to move around the search tree by

batching the return of answers to consumer subgoals. When new answers are found

for a particular tabled subgoal, they are added to the table space and the evaluation

continues. Batched scheduling can be a useful strategy in problems that require an

eager propagation of answers and/or do not require the complete set of answers to

be found.

With the FS design, all tables are shared. Thus, since several threads can be

inserting answers in the same answer trie, when an answer already exists, it is

not possible to determine if the answer is new or repeated for a particular thread

without further support. For local scheduling, this is not a problem since, for

repeated and new answers, local scheduling always fails. The problem occurs with

batched scheduling that requires that only the repeated answers should fail. Threads

have then to detect, during batched evaluation, whether an answer is new and must

be propagated or whether an answer is repeated and the evaluation must fail. The

Private Answer Chaining (PAC) design (Areias and Rocha 2015) extends the FS

design to keep track of the answers that were already found and propagated per

thread and subgoal call. Figure 6 illustrates PAC’s key idea.

In a nutshell, PAC separates answer propagation from answer representation, and

allows the former to be privately stored in the subgoal frame data structure of

each thread, and the latter to be kept publicly shared among threads in the answer

trie data structure. This is similar to the idea proposed by (Costa et al. 2009) for

the global trie data structure, where answers are represented only once on a global

trie and then each subgoal call has private pointers to its set of answers. With

PAC, we follow the same key idea of representing only once each answer (as given

by the FS design), but now since we are in a concurrent environment, we use

a private chain of answers per thread to represent the answers for each subgoal

call. Later, if a thread completes a subgoal call, its PAC is made public so that

from that point on all threads can use that chain in complete (only reading) mode.

Figure 7 illustrates the new data structures involved in the implementation of PAC’s

design for a situation where different threads are evaluating the same tabled subgoal

call Pi.j .
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Figure 7(a) shows then a situation where two threads, T1 and Tt−2, are sharing the

same subgoal entry for a call Pi.j still under evaluation, i.e., still not yet completed.

The current state of the evaluation shows an answer trie with three answers

found for Pi.j . For the sake of simplicity, we are omitting the internal answer

trie nodes and we are only showing the leaf nodes LN1, LN2, and LN3 of each

answer.

With the PAC design, the leaf nodes are not chained in the answer trie data

structure, as usual. Now, the chaining process is done privately, and for that, we

use the subgoal frame structure of each thread. On the subgoal frame structure, we

added a new field, called Answers, to store the answers found within the execution

of the thread. In order to minimize PAC’s impact, each answer node in the private

chaining has only two fields: (i) an entry pointer, which points to the corresponding

leaf node in the answer trie data structure; and (ii) a next pointer to chain the nodes

in the private chaining. To maintain good performance, when the number of answer

nodes exceeds a certain threshold, we use a hash trie mechanism design similar to

the one presented in Areias and Rocha (2016), but without concurrency support,

since this mechanism is private to each thread.

PAC’s data structures in Figure 7(a) represent then two different situations. Thread

T1 has only found one answer and it is using a direct answer chaining to access the

leaf node LN1. Thread Tt−2 has already found three answers for Pi.j and it is using

the hash trie mechanism within its private chaining. In the hash trie mechanism, the

answer nodes are still chained between themselves, thus that repeated calls belonging

to thread Tt−2 can consume the answers as in the original mechanism.

Figure 7(b) shows the state of the subgoal call after completion. When a thread

T completes a subgoal call, it frees its private consumer structures, but before doing

that, it checks whether another thread as already marked the subgoal as completed.

If no other thread has done that, then thread T not only follows its private chaining

mechanism, as it would for freeing its private nodes, but also follows the pointers
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to the answer trie leaf nodes in order to create a chain inside the answer trie.

Since this procedure is done inside a critical region, no more than one thread can

be doing this chaining process. Thus, in Figure 7(b), we are showing the situation

where the subgoal call Pi.j is completed and both threads T1 and Tt−2 have already

chained the leaf nodes inside the answer trie and removed their private chaining

structures.
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4 Engine components

This section discusses the most important engine components required to support

concurrent tabled evaluation.

4.1 Fixed-size memory allocator

A critical component in the implementation of an efficient concurrent tabling system

is the memory allocator. Conceptually, there are two categories of memory allocators:

kernel-level and user-level memory allocators. Kernel-level memory allocators are

responsible for managing memory inside the protected sub-systems/resources of the

operating system, while user-level memory allocators are responsible for managing

the heap area, which is the area inside the addressing space of each process where

the dynamic allocation of memory is directly done.

Evidence of the importance of a User-level Memory Allocator (UMA) comes from

the wide array of UMA replacement packages that are currently available. Some

examples are the PtMalloc (Gloger), Hoard (Berger et al. 2000), TcMalloc (Ghe-

mawat and Menage), and JeMalloc (Evans 2006) memory allocators. Many UMA

subsystems were written in a time when multiprocessor systems were rare. They used

memory efficiently but were highly serial, constituting an obstacle to the throughput

of concurrent applications, which require some form of synchronization to protect

the heap. Additionally, when a concurrent application is run in a multiprocessor

system, other problems can occur, such heap blowup, false sharing, or memory

contention (Masmano et al. 2006; Gidenstam et al. 2010).

Since tabling also demands the multiple allocation and deallocation of different

sized chunks of memory, memory management plays an important role in the

efficiency of a concurrent tabling system. To satisfy this demand, we have designed

a fixed-size UMA especially aimed for an environment with the characteristics of

concurrent tabling (Areias and Rocha 2012a). In a nutshell, fixed-size UMA separates

local and shared memory allocation, and uses local and global heaps with pages

that are formatted in blocks with the sizes of the existing data structures. The page

formatting in blocks contributes to avoid inducing false-sharing, because different

threads in different processors do not share the same cache lines, and to avoid the

heap blowup problem, because pages migrate between local and global heaps.

At the implementation level, our proposal has local and global heaps with pages

formatted for each object type. In addition, global and local heaps can hold free

(unformatted) pages for use when a local heap runs empty. Since modern computer

architectures use pages to handle memory, we adopted an allocation scheme based

also on pages, where each memory page only contains data structures of the same

type. In order to split memory among different threads, in our proposal, a page

can be considered a local page, if owned by a particular thread, or a global page,

otherwise. Figure 8 gives an overview of this organization.

A thread can own any number of pages of the same type, of different types and/or

free pages. Any type of page (including free pages) can be local to a thread or global,

and each particular page only contains data structures of the same type. When a
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page P is made local to a thread T , it means that T gains exclusive permission

to allocate and deallocate data structures on P . On the other hand, global pages

have no owners and, thus, they are free from allocate/deallocate operations. To

allocate/deallocate data structures on global pages, first the corresponding pages

should be moved to a particular thread. All running threads can access (for read or

write operations) the data structures allocated on a page, independently of being a

local or global page.

Allocating and freeing data structures are constant-time operations, because they

require only moving a structure to or from a list of free structures. Whenever a

thread T requests to allocate memory for a data structure of type S , it can instantly

satisfy the request by returning the first unused slot on the first available local

page with type S . Deallocation of a data structure of type S does not free up the

memory, but only opens an unused slot on the chain of available local pages for type

S . Further requests to allocate memory of type S will later return the now unused

memory slot. When all data structures in a page are unused, the page is moved to the

chain of free local pages. A free local page can be reassigned later to a different data

type. When a thread T runs out of available free local pages, it must synchronize

with the other threads in order to access the global pages or the operating system’s

memory allocator, if no free global page exists. This process eliminates the need to

search for suitable memory space and greatly alleviates memory fragmentation. The

only wasted space is the unused portion at the end of a page when it cannot fit

exactly with the size of the corresponding data structures.

When a thread finishes execution, it deallocates all its private data structures

and then moves its local pages to the corresponding global page entries. Shared

structures are only deallocated when the last running thread (usually the main

thread) abolishes the tables. Thus, if a thread T allocates a data structure D, then

it will be also responsible for deallocating D, if D is private to T , or D will remain

live in the tables, if D is shared, even when T finish execution. In the latter case, D

can be only deallocated by the last running thread L. In such case, D is made to be

local to L and the deallocation process follows as usual.

4.2 Lock-free data structures

Another critical component in the implementation of an efficient concurrent tabling

system is the design of the data structures and algorithms that manipulate shared

tabled data. As discussed before, Yap’s table space follows a two-level trie data

structure, where one level stores the tabled subgoal calls and the other stores the

computed answers. Depending on the number of subgoal calls or answers, the paths
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inside a trie, corresponding to the subgoal calls or answers, might have several trie

nodes per internal level of the trie structure. Whenever an internal trie level becomes

saturated, a hash mechanism is used to provide direct node access and therefore

optimize the search for the data within the trie level. Figure 9 shows a hashing

mechanism for an internal trie level within the subgoal and answer data structures.

Several approaches for hashing mechanisms exist. The most important aspect of

a hashing mechanism is its behavior in terms of hash collisions, i.e., when two keys

collide and occupy the same hash table location. Multiple solutions exist that address

the collision problem. Among these are the open addressing and closed addressing

approaches (Tenenbaum et al. 1990; Knuth 1998). In open addressing, the hash

table stores the objects directly within the hash table internal array, while in closed

addressing, every object is stored directly at an index in the hash table’s internal

array. In closed addressing, collisions are solved by using other arrays or linked lists.

Yap’s tabling engine uses separate chaining (Knuth 1998) to solve hash collisions.

In the separate chaining mechanism, the hash table is implemented as an array of

linked lists. The basic idea of separate chaining techniques is to apply linked lists

for collision management, thus in case of a conflict a new object is appended to the

linked list.

Our initial approach to deal with concurrency within the trie structures was to use

lock-based strategies (Areias and Rocha 2012b). However, lock-based data structures

have their performance restrained by multiple problems, such as, convoying, low fault

tolerance and delays occurred inside a critical region. We thus shifted our attention

in to taking advantage of the low-level Compare-And-Swap (CAS) operation, that

nowadays can be widely found on many common architectures. The CAS operation

is an atomic instruction that compares the contents of a memory location to a given

value and, if they are the same, updates the contents of that memory location

to a given new value. The CAS operation is at the heart of many lock-free (also

known as non-blocking) data structures (Herlihy and Wing 1987). Non-blocking

data structures offer several advantages over their blocking counterparts, such

as being immune to deadlocks, lock convoying and priority inversion, and being

preemption tolerant, which ensures similar performance regardless of the thread

scheduling policy. Using lock-free techniques, we have created two proposals for

concurrent hashing data structures especially aimed to be as effective as possible
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in a concurrent tabling engine and without introducing significant overheads in the

sequential execution. Figure 10 shows the architecture of the two proposals.

Both proposals include a root node R and have a hashing mechanism composed

by a BA and a hash function that maps the nodes into the entries in the BA. The

first proposal, shown in Figure 10(a), implements a dynamic resizing of the hash

tables by doubling the size of the BA whenever it becomes saturated (Areias and

Rocha 2014). It starts with an initial BA with S entries and, whenever the hash

BA becomes saturated, i.e., when the number of nodes in a bucket entry exceeds a

pre-defined threshold value and the total number of nodes exceeds S , then the BA

is expanded to a new one with 2 ∗ S entries. This expansion mechanism is executed

by a single thread, meaning that no more than one expansion can be done at a time.

If the thread executing the expansion suspends for some reason (for example, be

suspended by the operating system scheduler), then all the remaining threads can

still be searching and inserting nodes in the trie level that is being expanded in a

lock-free fashion, but no other thread will be able to expand the same trie level.

When the process of bucket expansion is completed for all S bucket entries, node

R is updated to refer to the new BA with 2 ∗ S entries. Since the size of the hashes

doubles on each expansion, this proposal is highly inappropriate to be integrated

with the fixed-size UMA.

The second proposal, shown in Figure 10(b), was designed to be compatible with

the fixed-size UMA. It is based on hash tries data structures and is aimed to be

a simpler and more efficient lock-free proposal that disperses the synchronization
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regions as much as possible in order to minimize problems such as false sharing

or cache memory ping pong effects (Areias and Rocha 2016). Hash tries (or

hash array mapped tries) are another trie-based data structure with nearly ideal

characteristics for the implementation of hash tables (Bagwell 2001). As shown

in Figure 9, in this proposal, we still have the original subgoal/answer trie data

structures that include a hashing mechanism whenever an internal trie level becomes

saturated, but now the hashing mechanism is implemented using hash tries data

structures.

An essential property of the trie data structure is that common prefixes are stored

only once (Fredkin 1962), which in the context of hash tables allows us to efficiently

solve the problems of setting the size of the initial hash table and of dynamically

resizing it in order to deal with hash collisions. In a nutshell, a hash trie is composed

by internal hash arrays and leaf nodes (nodes N1 and N2 in Figure 10(b)) and the

internal hash arrays implement a hierarchy of hash levels of fixed size S = 2w .

To map a node into this hierarchy, first we compute the hash value h and then

we use chunks of w bits from h to index the entry in the appropriate hash level.

Hash collisions are solved by simply walking down the tree as we consume successive

chunks of w bits from the hash value h. Whenever a hash BA becomes saturated, i.e.,

when the number of nodes in a bucket entry exceeds a pre-defined threshold value,

then the BA is expanded to a new one with S entries. As for the previous proposal,

this expansion mechanism is executed by a single thread. If the thread executing

the expansion suspends for some reason, then all the remaining threads can still be

searching and inserting nodes in the bucket entry in a lock-free fashion. Compared

with the previous proposal, this proposal has a fined grain synchronization region,

because it blocks only one bucket entry per expansion.

5 Performance analysis

Our work on combining tabling with parallelism started some years ago when

the first approach for implicit parallel tabling was presented (Rocha et al. 1999).

Such approach lead to the design and implementation of an or-parallel tabling

system, named OPTYap (Rocha et al. 2001). In OPTYap, each worker behaves

like a sequential tabling engine that fully implements all the tabling operations.

During the evaluation, the or-parallel component of the system is triggered to allow

synchronized access to the table space and to the common parts of the search tree,

or to schedule workers running out of alternatives to exploit.

OPTYap has shown promising results in several tabled benchmarks (Rocha

et al. 2001). The worst results were obtained in the transitive closure of the

right recursive definition of the path problem using a grid configuration, where

no speedups were obtained with multiple workers. The bad results achieved in this

benchmark were explained by the higher rate of contention in Yap’s internal data

structures, namely in the subgoal frames. A closer analysis showed that the number

of suspension/resumptions operations is approximately constant with the increase

in the number of workers, thus suggesting that there are answers that can only

be found when other answers are also found, and that the process of finding such
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answers cannot be anticipated. In consequence, suspended branches have always to

be resumed to consume the answers that could not be found sooner.

More recently, we shifted our research toward explicit parallelism specially aimed

for multithreaded environments. Initial results were promising as we were able to

significantly reduce the contention for concurrent table accesses (Areias and Rocha

2012b; Areias and Rocha 2012a). Later, we presented first speedup results for the

right recursive definition of the path problem, using a naive multithreaded scheduler

that considers a set of different starting points (queries) in the graph to be run

by a set of different threads. In this work, Yap obtained a maximum speedup of

10.24 for 16 threads (Areias and Rocha 2016). Although, these results were better

than the ones presented earlier for implicit parallelism, they were mostly due to

the different scheduler strategy adopted to evaluate the benchmark. On the other

hand, such work also showed that with 32 threads, no improvements were obtained

compared with 16 threads. A closer analysis showed again that such behavior was

related with the large number of subgoal call dependencies in the program. We thus

believe that the ordering to which the answers are found in some problems, like

in the evaluation of the transitive closure of strongly connected graphs, is a major

problem that restricts concurrency/parallelism in tabled programs.

In what follows, we start with the worst case scenarios to study how independent

flows of execution running simultaneously interfere at the low-level engine. Next, we

focus on two well-known dynamic programming problems, the Knapsack and LCS

problems, and we discuss how we were able to scale their execution by using Yap’s

multithreaded tabling engine. The environment of our experiments was a machine

with 32-Core AMD Opteron (TM) Processor 6274 (2 sockets with 16 cores each)

with 32GB of main memory, running the Linux kernel 3.16.7-200.fc20.x86 64 with

Yap Prolog 6.3.2

5.1 Experiments on worst case scenarios

We begin with experimental results for concurrent tabled evaluation using local and

batched scheduling with the NS, SS, and PAC designs for worst case scenarios that

stress the trie data structures. For the sake of simplicity, we will present only the best

results, which were always achieved when using the fixed-size UMA and the second

lock-free proposal. We do not show results for the CS and PAS designs because

they are not meaningful in this context, as we will see next. The results for the FS

design are identical to PAC’s results, except for batched scheduling which FS does

not support.

For benchmarking, we used the set of tabling benchmarks from (Areias and Rocha

2012a), which includes 19 different programs in total. We choose these benchmarks

because they have characteristics that cover a wide number of scenarios in terms of

trie usage. They create different trie configurations with lower and higher number

of nodes and depths, and also have different demands in terms of trie traversal.3

2 Available at https://github.com/miar/yap-6.3 and distributed under the LGPL license terms.
3 We show a more detailed characterization of the benchmark set in Appendix B.
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To create worst case scenarios that stress the table data structures, we ran all

threads starting with the same query goal. By doing this, it is expected that threads

will access the table space, to check/insert for subgoals and answers at similar

times, thus causing a huge stress on the same critical regions. In particular, for

this set of benchmarks, this will be especially the case for the answer tries, since

the number of answers clearly exceeds the number of subgoals. Please note that,

although all threads are executing the same program they have independent flows

of execution, i.e., we are not trying to parallelize the execution, but study how

independent flows of execution (in this case, identical flows of execution) interfere

at the low-level engine. By focusing first on the worst case scenarios, we can infer

the highest overhead ratios when compared with one thread (or the lowest bounds

of performance) that each design might have when used with multiple threads in

other real world applications. For each table design, there are two main sources of

overheads: (i) the synchronization required to interact with the memory allocator,

which is proportional to the memory consumption bounds discussed in Section 3;

and (ii) the synchronization required to interact with the table space, which is

proportional to the number of data structures that can be accessed concurrently in

each design. The overheads originated from these two sources are not easy to isolate

in order to evaluate the weight of each in the execution time. The design of the

memory allocator clearly plays an important role in the former source of overhead

and the use of lock-free data structures is important to soften the weight of the latter.

Table 2 shows the overhead ratios, when compared with the NS design with 1

thread (running with local scheduling and without the fixed-size UMA) for the

NS, SS and PAC designs running 1, 8, 16, 24, and 32 threads with local and

batched scheduling on the set of benchmarks. In order to give a fair weight to each

benchmark, the overhead ratio is calculated as follows. We begin by running ten times

each benchmark B for each design D with T threads. For each run, we measure the

execution time since the threads start executing until the last thread finishes its exe-

cution. Then, we calculate the average of those 10 execution times and use that value

(DBT ) to put it in perspective against the base time, which is the average of the 10

runs of the NS design with one thread (NSB1).
4 For that, we use the following formula

for the overhead ODBT = DBT/NSB1. After calculating all the overheads ODBT for a

certain design D and number of threads T corresponding to the several benchmarks

B, we calculate the respective minimum, average, maximum, and standard deviation

overhead ratios. The higher the overhead, the worse the design behaves. An overhead

of 1.00 means that the design behaves similarly to the base case and is thus immune to

the fact of having other execution flows running simultaneously. The best minimum,

average, and maximum overhead ratios on both scheduling strategies (local and

batched), by number of threads and by design, are highlighted in bold.

By observing Table 2, we can notice that for one thread, on average, local

scheduling is slightly better than batched on the three designs. As we increase the

number of threads, one can observe that, for the NS and SS designs, both scheduling

4 The base times for the NS design are presented in Table B1 in Appendix B.
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Table 2. Overhead ratios, when compared with the NS design with 1 thread (running with local

scheduling and without the fixed-size UMA), for the NS, SS, and PAC designs running 1, 8, 16,

24, and 32 threads with local and batched scheduling (best ratios by row and by design for the

Minimum, Average, and Maximum are in bold)

NS SS PAC

Threads Local Batched Local Batched Local Batched

1

Min 0.53 0.55 0.54 0.55 1.01 0.95

Avg 0.78 0.82 0.84 0.90 1.30 1.46

Max 1.06 1.05 1.04 1.04 1.76 2.33

StD 0.15 0.14 0.17 0.16 0.22 0.44

8

Min 0.66 0.63 0.66 0.63 1.16 0.99

Avg 0.85 0.88 0.92 0.93 1.88 1.95

Max 1.12 1.14 1.20 1.15 2.82 3.49

StD 0.13 0.14 0.15 0.14 0.60 0.79

16

Min 0.85 0.75 0.82 0.77 1.17 1.06

Avg 0.98 1.00 1.04 1.05 1.97 2.08

Max 1.16 1.31 1.31 1.28 3.14 3.69

StD 0.09 0.17 0.12 0.13 0.65 0.83

24

Min 0.91 0.93 1.02 0.98 1.16 1.09

Avg 1.15 1.16 1.22 1.19 2.06 2.19

Max 1.72 1.60 1.81 1.61 3.49 4.08

StD 0.20 0.21 0.18 0.16 0.70 0.91

32

Min 1.05 1.04 1.07 1.12 1.33 1.26

Avg 1.51 1.49 1.54 1.51 2.24 2.41

Max 2.52 2.63 2.52 2.62 3.71 4.51

StD 0.45 0.45 0.42 0.43 0.74 1.02

strategies show very close minimum, average, and maximum overhead ratios. For the

PAC design, the best minimum overhead ratio is always for batched scheduling but,

for the average and maximum overhead ratio, local scheduling is always better than

batched scheduling. For the average and maximum overhead ratios, the difference

between local and batched scheduling in the PAC design is slightly higher than in

the NS and SS designs, which can be read as an indication of the overhead that PAC

introduces into the FS design. Recall that whenever an answer is found during the

evaluation, PAC requires that threads traverse their private consumer data structures

to check if the answer was already found (and propagated).

Finally, we would like to draw the reader’s attention to the worst results obtained

(the ones represented by the maximum rows). For 32 threads, the NS, SS, and PAC

designs have overhead results of 2.52/2.63, 2.52/2.62, and 3.71/4.51, respectively, for

local/batched scheduling. These are outstanding results if we compare them with

the results obtained in our first approach (Areias and Rocha 2012b), without the

fixed-size UMA and without lock-free data structures, where for local scheduling
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with 24 threads, the NS, SS, and FS designs had average overhead results of 18.64,

17.72, and 5.42, and worst overhead results of 47.89, 47.60, and 11.49, respectively.

Results for the XSB Prolog system, also presented in (Areias and Rocha 2012b),

for the same set of benchmarks showed average overhead results of 6.1 and worst

overhead results of 10.31. We thus argue that the combination of a fixed-size UMA

with lock-free data structures is the best proposal to support concurrency in general

purpose multithreaded tabling applications.

5.2 Experiments on dynamic programming problems

As mentioned in subsection 3.1, with a fully explicit approach, it is left to the user to

break the problem into tasks for concurrent execution, assign them to the available

workers and control the execution and the synchronization points, i.e., it is not the

tabled execution system that is responsible for doing that, the execution system only

provides the mechanisms/interface for allowing simultaneous flows of execution.

Thus, the user-level scheduler implemented by the user, to support the division

of the problem in concurrent tasks and control the execution and synchronization

points, plays a key role in the process of trying to obtain speedups through parallel

execution. This means that we cannot evaluate the infrastructure of a concurrent

tabling engine just by running some benchmarks if we do not put a big effort in a

good scheduler design, which is independent of such infrastructure.

In this subsection, we show how dynamic programming problems fit well with

concurrent tabled evaluation (Areias and Rocha 2017). To do so, we used two well-

known dynamic programming problems, the Knapsack and the Longest Common

Subsequence (LCS) problems. The Knapsack problem (Martello and Toth 1990) is

a well-known problem in combinatorial optimization that can be found in many

domains such as logistics, manufacturing, finance, or telecommunications. Given a

set of items, each with a weight and a profit, the goal is to determine the number

of items of each kind to include in a collection so that the total weight is equal

or less than a given capacity and the total profit is as much as possible. The

problem of computing the length of the LCS is representative of a class of dynamic

programming algorithms for string comparison that are based on getting a similarity

degree. A good example is the sequence alignment, which is a fundamental technique

for biologists to investigate the similarity between species.

For the Knapsack problem, we fixed the number of items and capacity, respec-

tively, 1,600 and 3,200. For the LCS problem, we used sequences with a fixed size of

3,200 symbols. Then, for each problem, we created three different datasets, D10, D30,

and D50, meaning that the values for the weights/profits for the Knapsack problem

and the symbols for LCS problem where randomly generated in an interval between

1 and 10%, 30%, and 50% of the total number of items/symbols, respectively.

For both problems, we implemented either multithreaded tabled top-down and

multithreaded tabled bottom-up user-level scheduler approaches.5 For the top–down

5 Full details regarding the Prolog code fragments implementing both approaches can be found in (Areias
and Rocha 2017).
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Fig. 11. Knapsack multithreaded tabled top–down approach.

approaches, we followed Stivala et al. (2010) work, where a set of threads solve the

entire program independently but with a randomized choice of the sub-problems.

Figure 11 illustrates how this was applied in the case of the Knapsack problem

considering N items and C capacity. A set of threads begin the execution with the

same top query tabled call, ks(N,C) in Figure 11, but then, on each level of the

evaluation tree, each thread randomly decides which branch will be evaluated first,

the excluded item branch (Exc) or the included item branch (Inc). This random

decision is aimed to disperse the threads through the evaluation tree.6

Figure 11(a) shows a situation where, starting from a certain item i and capacity,

thread T1 is evaluating the left branch of the tree (Exci), while thread T2 is evaluating

the right branch (Inci).
7 Notice that although the threads are evaluating the branches

of the tree in a random order, they still have to evaluate all branches so that they

can find the optimal solution for the Knapsack problem. So, the random decision is

6 A similar strategy was followed for the LCS problem.
7 For simplicity of presentation, the capacity values are not shown in Figure 11. Note, however, that

the tabled call corresponding to a Exci or Inci branch in different parts of the evaluation tree can be
called with different capacity values, meaning that, in fact, they are different tabled calls. Only when
the item and the capacity values are the same, the tabled call is also the same.
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only about the evaluation order of the branches and not about skipping branches.

Figure 11(b) shows then a situation where thread T1 has completely evaluated the

Exci branch of the tree and has moved to the Inci branch where it is now evaluating

a Incj branch already evaluated by thread T2. Since the result for that branch is

already stored in the corresponding table, thread T1 simply consumes the result,

thus avoiding its computation.

For each sub-problem, two alternative execution choices are available: (i) exclude

first and include next, or (ii) include first and exclude next. The randomized choice

of sub-problems results in the threads diverging to compute different sub-problems

simultaneously, while reusing the sub-problem’s results computed in the meantime

by the other threads. Since the number of sub-problem is usually high in this kind of

problems, it is expected that the available set of sub-problems will be evenly divided

by the number of available threads resulting in less computation time required to

reach the final result.

We have implemented two alternative versions. The first version (YAPTD1
) simply

follows Stivala et al.’s original random approach. The second version (YAPTD2
)

extends the first one with an extra step where the computation is first moved forward

(i.e., to a deeper item/symbol in the evaluation tree) using a random displacement

of the number of items/symbols (we used a maxRandom value corresponding to

10% of the total number of items/symbols in the problem) and only then the

computation is performed for the next item/symbol, as usual.

For the bottom-up user-level scheduler approaches (YAPBU), the Knapsack

version is based on (Kumar et al. 1994) and the LCS version is based on (Kumar

2002). Figure 12 illustrates the case of the Knapsack problem for N items and C

capacity. The evaluation is done bottom-up with increasing capacities c ∈ {1, . . . , C}
until computing the maximum profit for the given capacity C , which corresponds

to the query goal ks(N,C). The bottom-up characteristic comes from the fact that,

given a Knapsack with capacity c and using i items, i < N, the decision to include

the next item j, j = i+1, leads to two situations: (i) if j is not included, the Knapsack

profit is unchanged; (ii) if j is included, the profit is the result of the maximum

profit of the Knapsack with the same i items but with capacity c − wj (the capacity

needed to include the weight wj of item j) increased by pj (the profit of the item

j being included). The algorithm then decides whether to include an item based on

which choice leads to maximum profit. Thus, computing a row i depends only on

the sub-problems at row i − 1. A possible parallelization is, for each row, to divide

the computation of the C columns between the available threads and then wait

for all threads to complete in order to synchronize before computing the next row.

Figure 12(a) shows an example with two threads, T1 and T2, where the computation

of the C columns within the evaluation matrix is divided in smaller chunks and each

chunk is evaluated by the same thread.

Figure 12(b) shows then a situation where the cell corresponding to call ks(j, c)

is being evaluated by thread T1. As explained above, this involves computing the

values for ks(i, c − wj) and ks(i, c) (cells denoted with a black circle in Figure 12(b)).

Since we want to take advantage of the built-in tabling mechanism, we can avoid

the synchronization between rows mentioned above. Hence, when a sub-problem in
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Fig. 12. Knapsack multithreaded tabled bottom-up approach.

the previous row was not computed yet (i.e., marked as completed in one of the

subgoal frames for the given call), instead of waiting for the corresponding result to

be computed by another thread, the current thread starts also its computation and

for that it can recursively call many other sub-problems not computed yet. Despite

this can lead to redundant sub-computations, it avoids synchronization. In fact, as

we will see, this approach showed to be very effective. The situation in Figure 12(b)

shows the case where thread T1 consumes the value for call ks(i, c − wj) from the

tables (already computed by T2) but computes the value for ks(i, c).

To evaluate the performance of the multithreaded tabled top–down and bottom–

up approaches, we used local scheduling with the PAS design, together with the

fixed-size UMA and the support for lock-free data structures within the subgoal

trie data structure. For the bottom–up approaches, standard tabling is enough but

for the top–down approaches, mode-directed tabling is mandatory since we want to

maximize the profit, in the case of the Knapsack problem, and the length of the

LCS, in the case of the LCS problem. To put our results in perspective, we also

experimented with XSB Prolog version 3.4.0 using the shared tables model (Marques

and Swift 2008) for the bottom-up approaches (since XSB does not support mode-

directed tabling, it could not be used for the top-down approaches).

Tables 3 and 4 show the average of 10 runs results obtained, respectively, for

the Knapsack and LCS problems for both top–down and bottom–up approaches

using the Yap and XSB Prolog systems. The columns of both tables show the

following information. The first column describes the system and the dataset used.

The second column (Tseq) shows the sequential execution time in milliseconds. For

Tseq , the Prolog systems where compiled without multithreaded support and ran

without multithreaded code. The next five columns show the execution time for one

thread (T1) and the corresponding speedup for the execution with 8, 16, 24, and

32 threads (columns T1/Tp). For each system/dataset configuration, the results in

bold highlight the column where the best execution time was obtained and the last

column (Tbest) presents such result in milliseconds.

Analyzing the general picture of both tables, one can observe that the sequential

time (Tseq) is always lower than the multithreaded time (T1). This is expected since

the multithreaded version is compiled and equipped with all the complex machinery

required to support concurrency in Yap, which includes not only all the new tabled

stuff but also all the base support for multithreaded in Yap.
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Table 3. Execution time, in milliseconds, for one thread (sequential and multithreaded version)

and corresponding speedup (against one thread running the multithreaded version) for the

execution with 8, 16, 24, and 32 threads, for the top–down and bottom–up approaches of the

Knapsack problem using the Yap and XSB Prolog systems

# Threads (p)

Speedup (T1/Tp)

Seq. Best

Time Time (T1) time

System/Dataset (Tseq) 1 8 16 24 32 (Tbest)

Top–down approaches

YAPTD1

D10 14,330 19,316 1.96 2.12 2.04 1.95 9,115

D30 14,725 19,332 3.57 4.17 4.06 3.93 4,639

D50 14,729 18,857 4.74 6.28 6.44 6.41 2,930

YAPTD2

D10 19,667 24,444 6.78 12.35 15.44 18.19 1,344

D30 19,847 25,609 7.15 13.83 17.37 20.47 1,251

D50 19,985 25,429 7.27 13.70 17.35 20.62 1,233

Bottom–up approaches

YAPBU

D10 12,614 17,940 7.17 13.97 18.31 22.15 810

D30 12,364 17,856 7.23 13.78 18.26 21.94 814

D50 12,653 17,499 7.25 14.01 18.34 21.76 804

XSBBU

D10 32,297 38,965 0.87 0.66 0.62 0.55 32,297

D30 32,063 38,007 0.86 0.61 0.56 0.53 32,063

D50 31,893 38,534 0.84 0.58 0.57 0.57 31,893

When scaling the problem with multiple threads, the YAPTD2
top–down and

YAPBU bottom–up approaches have the best results with excellent speedups for 8,

16, 24, and 32 threads. In particular, for 32 threads, they obtain speedups around 21

and 20, respectively, for the Knapsack and LCS problems (T1/Tbest). If comparing

against the sequential version for 32 threads (not shown in the tables), the speedups

are around 15 and 16, respectively, for the Knapsack and LCS problems (Tseq/Tbest).

The results for the top–down YAPTD1
approach are not so interesting, regardless of

the fact that it can slightly scale for the Knapsack problem up to 16 threads.

Despite the similar average speedups for YAPTD2
and YAPBU , their execution

times are quite different. Consider, for example, the D50 dataset of the Knapsack

problem with 32 threads. While the speedup 20.62 of YAPTD2
corresponds to an

execution time of 1, 233 ms, the speedup 21.76 of YAPBU only corresponds to 804

ms. Similarly, for the LCS problem, if considering the D50 dataset with 32 threads,

while the speedup 19.58 of YAPTD2
corresponds to 2, 255 ms, the speedup 20.52 of

the YAPBU only corresponds to 1, 406 ms.

The results also suggest that the execution times are not affected by the values

for the weights/profits generated. In general, the speedups obtained for the different

https://doi.org/10.1017/S147106841800039X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800039X


982 M. Areias and R. Rocha

Table 4. Execution time, in milliseconds, for one thread (sequential and multithreaded version)

and corresponding speedup (against one thread running the multithreaded version) for the

execution with 8, 16, 24, and 32 threads, for the top–down and bottom–up approaches of the

LCS problem using the Yap and XSB Prolog systems

# Threads (p)

Speedup (T1/Tp)

Seq. Best

Time Time (T1) time

System/Dataset (Tseq) 1 8 16 24 32 (Tbest)

Top–down approaches

YAPTD1

D10 26,030 33,969 1.58 1.53 1.50 1.42 21,509

D30 26,523 34,213 1.60 1.54 1.50 1.42 21,424

D50 26,545 34,234 1.60 1.54 1.51 1.40 21,408

YAPTD2

D10 34,565 44,371 7.23 13.23 16.45 19.74 2,248

D30 34,284 44,191 7.12 13.09 16.52 19.77 2,235

D50 33,989 44,158 7.06 13.30 16.49 19.58 2,255

Bottom–up approaches

YAPBU

D10 20,799 28,909 6.47 12.21 16.48 20.32 1,423

D30 21,174 28,904 6.94 12.61 16.63 20.40 1,417

D50 21,166 28,857 6.44 12.31 16.44 20.52 1,406

XSBBU

D10 60,983 74,108 n.a. n.a. n.a. n.a. 60,983

D30 59,496 74,410 n.a. n.a. n.a. n.a. 59,496

D50 59,700 74,628 n.a. n.a. n.a. n.a. 59,700

datasets (D10, D30, and D50) are always very close for the same number of threads.

Note that for the bottom–up approaches this was expected since the complete matrix

of results has to be computed. For the top–down approaches, it can be affected by

the values for the weights/profits due to the depth in the evaluation tree where

solutions can be found. However, since we are using randomized values in the

datasets, we are aiming for the average case.

Regarding the comparison with XSB’s shared tables model, Yap’s results clearly

outperform those of XSB. For the execution time with one thread, XSB shows higher

times than all Yap’s approaches. For the concurrent execution of the Knapsack

problem, XSB shows no speedups and for the concurrent execution of the LCS

problem we have no results available (n.a.) since we got segmentation fault execution

errors. From our point of view, XSB’s results are a consequence of the usurpation

operation (Marques and Swift 2008) that restricts the potential of concurrency

to non-mutually dependent sub-computations. As the concurrent versions of the

Knapsack and LCS problems create mutual dependent sub-computations, which can

be executed in different threads, XSB is actually unable to execute them concurrently.
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Table 5. Concurrent tabling supported features in Yap’s current implementation

Execution Memory Synchronization Mode-directed

Strategy Model Allocator Mechanisms Tabling

Implicit Processes/threads Fixed-size Lock-based –

Explicit Threads Fixed-size Lock-free NS/SS/PAS designs

In other works, even if we launch an arbitrary large number of threads on those

programs, the system would tend to use only one thread at the end to evaluate most

of the computations.

6 Future perspectives and challenging research directions

Currently, Yap provides the ground technology for both implicit and explicit

concurrent tabled evaluation, but separately. From the user’s point of view, tabling

can be enabled through the use of single directives of the form “:- table p/n”,

meaning that common sub-computations for p/n will be synchronized and shared

between workers at the engine level, i.e., at the level of the tables where the results

for such sub-computations are stored. Implicit concurrent tabled evaluation can be

triggered if using the OPTYap design (Rocha et al. 2005), which exploits implicit

or-parallelism using shared memory processes. Explicit concurrent tabled evaluation

can be triggered if using the thread-based implementation (Areias and Rocha

2012b), but the user still needs to explicitly implement the thread management and

scheduler policy for task distribution, which is orthogonal to the focus of this work.

In Yap’s current implementation, some features are still not completely available on

both implicit and explicit concurrent tabling strategies. Table 5 highlights the key

differences between the two strategies.

The present work could thus be viewed as the basis to further directions and

further research in this area. So far, we have achieved our initial goal. Even so,

the system still has some restrictions that may reduce its use elsewhere and its

contribution to general Prolog applications. We next discuss future perspectives and

challenging research directions:

Extend CS design to support lock-free data structures. Due to the good performance

results obtained with the lock-free proposals, an obvious research direction for

further work is to extend the original CS design to use lock-free data structures

instead of the lock-based data structures.

Extend CS/FS/PAC designs to support mode-directed tabling. In the previous sec-

tion, we observed the advantages of combining mode-directed tabling with the

PAS design. However, in the PAS design, the answers to common tabled subgoal

calls are only shared when the corresponding tables are completed. Since the

CS/FS/PAC designs do not require the completion of tables to share answers,

threads would be able to share and propagate answers sooner. The problem of

combining mode-directed tabling with the CS/FS/PAC designs is on how to
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efficiently support concurrent delete operations on the trie structures and on how

to efficiently handle the interface between consumer calls and the navigation in

the trie of answers for the several running workers.

Support concurrent delete operations on the trie structures. As mention above, this

is a key feature to allow for an efficient implementation of concurrent mode-

directed tabling with the CS/FS/PAC designs. Moreover, this extension could also

be applied to concurrent incremental tabling (Saha 2006), where specific subgoal

calls and answers can be dynamically deleted during tabled

evaluation.

Concurrent linear tabling. Since the evaluation of programs with a linear tabling

engine is less complex than the evaluation with a suspension-based engine, it

would be interesting to study how different linear tabled strategies (Areias and

Rocha 2011; Areias and Rocha 2013) could run concurrently and take advantage

of the different table space designs presented in this work.

Implicit and explicit concurrent evaluation in a single framework. This is our most

challenging goal toward an efficient concurrent framework, which integrates both

implicit and explicit concurrent tabled evaluation in a single tabling engine. This

is a very complex task, since we need to combine the explicit control required

to launch, assign, and schedule tasks to workers, with the built-in mechanisms

for handling tabling and/or implicit concurrency, which cannot be controlled

by the user. In such a framework, a program begins as a single worker that

executes sequentially until reaching a parallel construct. A parallel construct can

then be used to trigger implicit or explicit concurrent tabled evaluation. When

reaching an explicit concurrent evaluation construct, the execution model launches

a set of additional workers to exploit concurrently a set of independent sub-

computations (which may include tabled and non-tabled predicates). From the

workers point of view, each concurrent sub-computation computes its tables but, at

the implementation level, the tables can be shared following the table space designs

presented before for explicit concurrent tabled evaluation. Otherwise, if reaching

an implicit concurrent evaluation construct, the execution model launches a set

of additional workers to exploit in parallel a common sub-computation. Parallel

execution is then handled implicitly by the execution model taking into account

possible directive restrictions. For example, we may have directives to define the

number of workers, the scheduling strategy to be used, load balancing policies,

etc. By taking advantage of these parallel constructs, a user can write parallel logic

programs from scratch or parallelize existing sequential programs by incrementally

pinpointing the sub-computations that can benefit from parallelism, using the

available directives to test and fine tune the program in order to achieve the

best performance. Such a framework could renew the glamour of Prolog systems,

especially in the concurrent/parallel programming community. Combining the in-

herent implicit parallelism of Prolog with high-level parallel constructs will clearly

enhance the expressiveness and declarative style of tabling and simplify concurrent

programming.
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Appendix A. Proofs

Theorem 1

If NT � 1 and NC(Pi) � 1 then MUSS (Pi) � MUNS (Pi) if and only if the formula

[NC(Pi) − 1] ∗ BA � [NT − 1] ∗ ST (Pi) holds.

Proof

Assuming that all tabled subgoal calls are completely evaluated, for the NS design

we have:

MUNS (Pi) = TE + BA + NT ∗ ST (Pi) + NT ∗
NC(Pi)∑
j=1

[SF + AT (Pi.j)]

And, for the SS design we have

MUSS (Pi) = TE + ST (Pi) +

NC(Pi)∑
j=1

[BA + NT ∗ [SF + AT (Pi.j)]]

= TE + ST (Pi) + NC(Pi) ∗ BA + NT ∗
NC(Pi)∑
j=1

[SF + AT (Pi.j)]

The value of MUSS (Pi) − MUNS (Pi) is then given by

MUSS (Pi) − MUNS (Pi) = ST (Pi) + NC(Pi) ∗ BA − BA − NT ∗ ST (Pi)

= [NC(Pi) − 1] ∗ BA − [NT − 1] ∗ ST (Pi)

https://doi.org/10.1017/S147106841800039X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800039X


Table space designs for implicit and explicit concurrent tabled evaluation 989

Now, for the final part of the proof

MUSS (Pi) � MUNS (Pi) ⇔ MUSS (Pi) − MUNS (Pi) � 0

⇔ [NC(Pi) − 1] ∗ BA − [NT − 1] ∗ ST (Pi) � 0

⇔ [NC(Pi) − 1] ∗ BA � [NT − 1] ∗ ST (Pi) �

Theorem 2

If NT > 1 and NC(Pi) � 1 then MUFS (Pi) < MUSS (Pi).

Proof

Assuming that all tabled subgoal calls are completely evaluated, for the FS design

we have

MUFS (Pi)

= TE + ST (Pi) +

NC(Pi)∑
j=1

[SEFS + BA + NT ∗ [SFFS + BP ] + AT (Pi.j)]

= TE + ST (Pi) +

NC(Pi)∑
j=1

[SF − SFFS + BA + NT ∗ [SFFS + BP ] + AT (Pi.j)]

= TE + ST (Pi) +

NC(Pi)∑
j=1

[SF + [NT − 1] ∗ SFFS + BA + NT ∗ BP + AT (Pi.j)]

= TE + ST (Pi) + NC(Pi) ∗ BA +

NC(Pi)∑
j=1

[SF + [NT − 1] ∗ SFFS

+ NT ∗ BP + AT (Pi.j)]

And, for the SS design we have

MUSS (Pi) = TE + ST (Pi) + NC(Pi) ∗ BA + NT ∗
NC(Pi)∑
j=1

[SF + AT (Pi.j)]

The value of MUFS (Pi) − MUSS (Pi) is then given by

MUFS (Pi) − MUSS (Pi)

=

NC(Pi)∑
j=1

[SF + [NT − 1] ∗ SFFS + NT ∗ BP + AT (Pi.j)]

− NT ∗
NC(Pi)∑
j=1

[SF + AT (Pi.j)]

=

NC(Pi)∑
j=1

[NT ∗ BP ] +

NC(Pi)∑
j=1

[SF + [NT − 1] ∗ SFFS + AT (Pi.j)

− NT ∗ SF − NT ∗ AT (Pi.j)]

https://doi.org/10.1017/S147106841800039X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800039X


990 M. Areias and R. Rocha

=

NC(Pi)∑
j=1

[NT ∗ BP ] +

NC(Pi)∑
j=1

[[NT − 1] ∗ [SFFS − SF − AT (Pi.j)]

=

NC(Pi)∑
j=1

[NT ∗ BP ] +

NC(Pi)∑
j=1

[[NT − 1] ∗ [SFFS − SF]] −
NC(Pi)∑
j=1

[[NT − 1] ∗ AT (Pi.j)]

Now, for the final part of the proof

MUFS (Pi) < MUSS (Pi) ⇔ MUFS (Pi) − MUSS (Pi) < 0

⇔
NC(Pi)∑
j=1

[NT ∗ BP ] +

NC(Pi)∑
j=1

[[NT − 1] ∗ [SFFS − SF]]

−
NC(Pi)∑
j=1

[[NT − 1] ∗ AT (Pi.j)] < 0

⇔
NC(Pi)∑
j=1

[NT ∗ BP ] +

NC(Pi)∑
j=1

[[NT − 1] ∗ [SFFS − SF]]

<

NC(Pi)∑
j=1

[[NT − 1] ∗ AT (Pi.j)]

⇔ NT ∗ BP + [NT − 1] ∗ [SFFS − SF] < [NT − 1] ∗ AT (Pi.j)

⇔ [NT − 1] ∗ [SFFS + BP − SF]︸ ︷︷ ︸
<0

+BP

︸ ︷︷ ︸
<0

< [NT − 1] ∗ AT (Pi.j)︸ ︷︷ ︸
>0

�

Appendix B. Benchmark details

Table B1 shows the characteristics of the five sets of benchmark programs. The Large

Joins and WordNet sets were obtained from the OpenRuleBench project (Liang et al.

2009); the Model Checking set includes three different specifications and transition

relation graphs usually used in model checking applications; the Path Left and Path

Right sets implement two recursive definitions of the well-known path/2 predicate,

that computes the transitive closure in a graph, using several configurations of

edge/2 facts. Figure B1 shows an example for each configuration. We experimented

the BTree configuration with depth 17, the Pyramid and Cycle configurations with

depth 2000 and the Grid configuration with depth 35. All benchmarks find all the

solutions for the problem.

The columns in Table B1 have the following meaning:

• Calls: is the number of different calls to tabled subgoals. It corresponds to the

number of paths in the subgoal tries.

• Trie nodes: is the total number of trie nodes allocated in the corresponding

subgoal/answer trie structures.
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Fig. B1. Edge configurations for the path benchmarks.

Table B1. Characteristics of the benchmark programs

Tabled subgoals Tabled answers
Time (sec)

Bench Calls Trie nodes Trie depth Unique Repeated Trie nodes Trie depth NS

Large joins

Join2 1 6 5/5/5 2,476,099 0 2,613,660 5/5/5 2.85

Mondial 35 42 3/4/4 2,664 2,452,890 14,334 6/7/7 0.84

WordNet

Clusters 117,659 235,319 2/2/2 166,877 161,853 284,536 1/1/1 0.83

Holo 117,657 235,315 2/2/2 74,838 54 192,495 1/1/1 0.75

Hyper 117,657 235,315 2/2/2 698,472 8,658 816,129 1/1/1 1.42

Hypo 117,657 117,659 2/2/2 698,472 20,341 816,129 1/1/1 1.53

Mero 117,657 117,659 2/2/2 74,838 13 192,495 1/1/1 0.74

Tropo 117,657 235,315 2/2/2 472 0 118,129 1/1/1 0.66

Model checking

IProto 1 6 5/5/5 134,361 385,423 1,554,896 4/51/67 2.70

Leader 1 5 4/4/4 1,728 574,786 41,788 15/80/97 3.51

Sieve 1 7 6/6/6 380 1,386,181 8,624 21/53/58 18.50

Path left

BTree 1 3 2/2/2 1,966,082 0 2,031,618 2/2/2 1.53

Cycle 1 3 2/2/2 4,000,000 2,000 4,002,001 2/2/2 3.52

Grid 1 3 2/2/2 1,500,625 4,335,135 1,501,851 2/2/2 1.93

Pyramid 1 3 2/2/2 3,374,250 1,124,250 3,377,250 2/2/2 3.08

Path right

BTree 131,071 262,143 2/2/2 3,801,094 0 3,997,700 1/2/2 2.33

Cycle 2,001 4,003 2/2/2 8,000,000 4,000 8,004,001 1/2/2 3.55

Grid 1,226 2,453 2/2/2 3,001,250 8,670,270 3,003,701 1/2/2 2.32

Pyramid 3,000 6,001 2/2/2 6,745,501 2,247,001 6,751,500 1/2/2 3.17

• Trie depth: is the minimum/average/maximum number of trie node levels re-

quired to represent a path in the corresponding subgoal/answer trie structures.

Trie structures with smaller average values are more amenable to contention,

i.e., to have a higher number of synchronization points.

• Unique: is the number of different tabled answers found. It corresponds to the

number of paths in the answer tries.

• Repeated: is the number of redundant tabled answers found.

https://doi.org/10.1017/S147106841800039X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800039X


992 M. Areias and R. Rocha

• NS: is the average execution time, in seconds, of ten runs for 1 thread with

the NS design.

The Mondial benchmark, from the Large Joins set, and the three Model Checking

benchmarks seem to be the benchmarks least amenable to contention since they

are the ones that find less unique answers and that have the deepest trie structures.

In this regard, the Path Left and Path Right sets correspond to the opposite case.

They find a huge number of answers and have very shallow trie structures. On the

other hand, the WordNet and Path Right sets have the benchmarks with the largest

number of different subgoal calls, which can reduce the probability of contention

because answers can be found for different subgoal calls and therefore be inserted

with minimum overlap. On the opposite side are the Join2 benchmark, from the

Large Joins set, and the Path Left benchmarks, which have only a single tabled

subgoal call.
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