
Annals of Actuarial Science (2025), 19, pp. 193–232
doi:10.1017/S1748499524000216

ACTUA R I A L SO F TWAR E

Aggregate: fast, accurate, and flexible approximation of
compound probability distributions
Stephen Mildenhall

Independent Scholar, London, UK
Email: steve@convexrisk.com

(Received 31 July 2023; revised 30 May 2024; accepted 04 June 2024; first published online 15 November 2024)

Abstract
Aggregate implements an efficient fast Fourier transform (FFT)-based algorithm to approximate com-
pound probability distributions. Leveraging FFT-based methods offers advantages over recursion and
simulation-based approaches, providing speed and accuracy to otherwise time-consuming calculations.
Combining user-friendly features and an expressive domain-specific language called DecL, Aggregate
enables practitioners and nonprogrammers to work with complex distributions effortlessly. The software
verifies the accuracy of its FFT-based numerical approximations by comparing their first three moments
to those calculated analytically from the specified frequency and severity. This moment-based validation,
combined with carefully chosen default parameters, allows users without in-depth knowledge of the under-
lying algorithm to be confident in the results. Aggregate supports a wide range of frequency and severity
distributions, policy limits and deductibles, and reinsurance structures and has applications in pricing,
reserving, risk management, teaching, and research. It is written in Python.

Keywords: Aggregate distribution; FFT; Fourier transform; Python; risk aggregation

1. Introduction
1.1. Background andmotivation
Frequency-severity compound distributions form the basis of the collective risk model, a fun-
damental concept in actuarial science. Compound distributions have widespread applications
in actuarial pricing, risk management, economic capital modeling, and solvency assessment
(Albrecher et al., 2017; Bahnemann, 2015; Frees, 2018; Klugman et al., 2019; Parodi, 2015). They
are crucial in computing various statistics such as point estimates, higher moments, reasonable
ranges, quantiles, VaR, and TVaRs. They are integral to classical premium calculation princi-
ples and risk measures (Goovaerts & Haezendonck, 1984; Mildenhall and Major, 2022). Despite
their importance in actuarial practice, compound distributions pose significant computational
challenges due to their lack of a closed-form expression.

There are two problems to solve when computing a compound: how to estimate its distribution
probabilities quickly and accurately and how to specify it flexibly yet succinctly.

Estimating compound distributions is computationally difficult. Here, a fast Fourier transform
(FFT)-based algorithm offers significant advantages over competing methods, and it has been
widely adopted in other fields. However, in actuarial circles, its application has not been com-
mensurate with its potential utility, possibly due to its complexity. Albrecher et al. (2017, p. 201)
says:

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries. This is an Open Access arti-
cle, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216
https://orcid.org/0000-0001-6956-0098
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1748499524000216

194 Stephen Mildenhall

[The FFT] method is nowadays the fastest available tool to determine total claim size dis-
tributions numerically, but the implementation of the algorithm is not straightforward. . .

Implementing an FFT-based method involves intricate calculations with complex numbers,
which can intimidate users. Furthermore, key parameters must be selected carefully. The band-
width is particularly challenging to select robustly. FFT-based methods can fail unexpectedly,
giving apparently nonsensical results, and they are not straightforward to implement in a spread-
sheet, limiting accessibility for users reliant on such tools. Moreover, the FFT solution is hard to
test in a traditional written exam, making it less suitable for inclusion in exam syllabi and hinder-
ing its broader adoption. These challenges led to its omission from the latest edition of Klugman
et al. (2019), a prominent textbook in the field, despite thorough coverage in the first edition.
Aggregate overcomes these obstacles and aims to establish the FFT method as the mainstream
solution for estimating compound distributions by offering a user-friendly yet powerful and flex-
ible Python (Van Rossum & Drake, 2009) implementation. To achieve this aim, it introduces two
innovations.

• Aggregate validates the FFT-based algorithm output by comparing the first three moments
of its approximations against their theoretical values (when they exist) for each requested
compound. If there is a close agreement, Aggregate reports that the approximation is “not
unreasonable”. Otherwise, it flags how it may fail to be reasonable. Aggregate computes the
theoretical moments very accurately, either analytically or using numerical integration, and
entirely independently of the FFT workflow. Validation testing gives the user confidence in
the results. See Section 4.7 for the details.

• By offering reasonable default values for all parameters, Aggregate clears a significant hurdle
to the widespread adoption of FFT-based methods, what Parodi (2015, p. 245) calls the need
for “artful” parameterization. Among the parameters, the bandwidth used for discretization
is particularly sensitive and challenging to select robustly. Aggregate puts substantial effort
into its optimal selection, balancing the different forces that drive it to be small and large. See
Section 4.2 for details. Users can accept the defaults or override them based on their specific
needs.

Specifying real-world compound distributions is inherently complex: they can incorporate
multiple mixed severity curves, varying policy limits and attachments, shared frequency mix-
ing distributions, and multilayer reinsurance structures. Aggregate addresses this challenge
through its third innovation: the domain-specific language DecL. DecL acts as a mid-point
between an application programmer’s interface (API) and a GUI-based user interface. It provides
a user-friendly way to specify intricate, real-world distributions, employing a straightforward
and human-readable syntax. DecL’s specification centers on a vocabulary and quantities famil-
iar to actuaries, like the mean loss (“loss pick”) or severity CV (“volatility”). DecL is described in
Section 3.

In addition to these three principal innovations, the Aggregate implementation offers several
other features.

• Access to over 100 continuous severity distributions, and a flexible discrete severity distribu-
tion, see Section 3.8.

• Access to a broad selection of frequency distributions, including mixed Poisson, zero modi-
fied, and zero truncated distributions, see Section 3.9.

• The ability to apply policy limits and attachments and specify a full limits profile, perform
excess of loss exposure rating, overlay complex per-occurrence and aggregate reinsurance
towers with coparticipations, and value aggregate features such as Table L and M charges,
sliding scale and profit commissions, aggregate deductibles and limits, and price swing rated
programs. See Sections 3.7 and 3.11.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 195

• Built-in cumulative distribution cdf, survival sf, and probability density and mass pdf, pmf
functions, as well as quantiles (value at risk) q, and TVaR tvar. The underlying computa-
tions explicitly allow for the discrete approximation used (Rockafellar &Uryasev, 2002). These
statistics are important in risk management and catastrophe risk evaluation.

• A library of over 150 illustrative examples. Each can be created by name, or they can be built
in a batch.

• Built-in calculation of the probability of eventual ruin as a function of the premium rate
and starting surplus for a compound Poisson process using the Pollaczeck–Khinchine (PK)
formula (Embrechts et al., 2013, Section 1.3).

• The ability to compute technical (risk-loaded) premiums using spectral risk measures at
different capital standards (Mildenhall & Major, 2022).

• Integration with standard Python packages provides access to their powerful scientific com-
puting, data manipulation, and visualization methods. For example, severity distributions use
scipy.stats (Virtanen et al., 2020) continuous random variable pdfs and cdfs adjusting for
limits and attachments, and output is delivered using pandas DataFrames (McKinney, 2010;
Pandas Development Team, 2020). As a result, almost all the code in Aggregate is domain
specific.

Of course, some things Aggregate does not or cannot do. It does no statistical fitting: the user
must supply parameters for the relevant frequency and severity distributions based on a separate
analysis of available data or other industry curves. Its FFT-based algorithm can track only one
variable, which makes it impossible to model a compound net of reinsurance with an aggregate
limit. However, it can model the ceded position. Similarly, it cannot model a reinsurance tower
where losses from one layer spill over into another but it canmodel disjoint layers, as typically seen
in an excess of loss program. Finally, although FFT methods can model bivariate distributions,
such as ceded and net, this cannot be accomplished with the current implementation.

The rest of the introduction puts Aggregate in context with other computational strategies in
the literature and other available software packages. The remainder of the paper is structured as
follows: Section 2 specifies the problem Aggregate solves and describes the algorithms it uses,
Section 3 describes the grammar of distributions and DecL, Section 4 covers implementation, and
Section 5 explains how to run DecL code and presents several illustrative examples.

1.2. Context and literature
The literature contains five principal approaches to estimating compound distributions.

1. Daykin et al. (1994), Klugman et al. (2019).
2. Panjer (1981), Bühlmann (1984), Daykin et al. (1994), Embrechts & Frei (2009), Klugman

et al. (2019). Panjer recursion applies to frequency distributions whose probabilities can
be computed recursively as pk = (a+ b/k)pk−1, a set that includes many commonly used
frequencies.

3. FFT-based methods, Bertram (1981), Bühlmann (1984), Hürlimann (1986), Embrechts et al.
(1993), Wang (1998), Grübel and Hermesmeier (1999), Mildenhall (2005), Embrechts & Frei
(2009), Shevchenko (2010).

4. Fourier transform numerical integrationmethods, Bohman (1969, 1974), Heckman&Meyers
(1983), and Shevchenko (2010).

5. Approximations that use moment-matched distributions to the compound distribution or a
transformation thereof, Daykin et al. (1994).

Simulation is the actuary’s go-tomethod: it is easy, intuitive, and flexible but could be faster and
more accurate. In many situations, its flexibility trumps other considerations. However, having

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

196 Stephen Mildenhall

more accurate and faster methods for certain applications is preferable, including individual large
account pricing, reinsurance pricing, and catastrophe risk management.

Panjer recursion has the advantages of simplicity and accuracy: it is straightforward to program
into a spreadsheet, is essentially exact, and easy to test in an exam. It is also possible to quantify its
numerical properties. However, to compute n probabilities takes O(n2) operations, which limits
its application to relatively small expected claim counts.

Insurance applications of FFT-based methods originated with Bertram (1981). The algo-
rithm takes O(n log (n)) operations, giving it a substantial speed advantage for larger n. Like
Panjer recursion, FFT-based methods are essentially exact, once the severity distribution has been
discretized. FFT-based methods can be applied to any frequency distribution, whereas Panjer
recursion is limited to those with recursive probabilities. Grübel & Hermesmeier (1999) provided
ameticulous analysis of how the FFT-based algorithmworks, summarized in Section 2. Bühlmann
(1984) and Embrechts and Frei (2009) compared Panjer recursion and FFT-based methods, with
the latter concluding it has a “tremendous timing advantage for a large number of lattice points.”

Fourier transform numerical methods invert the characteristic function of the compound dis-
tribution at specific points using numerical integration, a delicate operation because the integrand
oscillates rapidly. The FFT method is a generalization of this method since the inverse FFT is an
approximation to the required integral. FFT-based methods evaluate the distribution at multiple
points rather than one point at a time.

Approximation methods were popular before actuaries had easy access to computers.
Aggregate provides normal, gamma, shifted gamma, lognormal, shifted lognormal, and maxi-
mum entropy distribution approximations. However, since very accurate approximations are now
easy to compute, these methods are included only for historical and academic interest and are not
considered further.

We contend that FFT-based methods perform at least as well as competing methods in all sit-
uations. Today’s computers can discretize with tens of millions of buckets, although 216 = 65536
buckets generally produce accurate results. We have used FFTs to create many examples and have
reproduced numerous others from published papers and have yet to find a case where it performs
inadequately. Based on this experience, we recommend that FFT-based methods are adopted as
standard in actuarial work.

1.3. Installation and reproducibility
Aggregate is class in the aggregate Python package. aggregate includes a Severity
class, a Portfolio class that supports modeling with multiple compound distributions
in a portfolio, including extensive pricing and capital allocation capabilities, and an
Underwriter class that interprets DecL programs. The build object (see Section 5.1) is
an Underwriter instance. The aggregate package was used to create all of the tables
and figures in the book (Mildenhall & Major, 2022). The source code is available at
https://github.com/mynl/aggregate. There is extensive documentation (Mildenhall, 2023) with
the latest version hosted at https://aggregate.readthedocs.io/. The package is available from the
PyPI package repository at https://pypi.org/project/aggregate/ and can be installed using pip
install aggregate==0.22.0. Omit the version to install the latest build.

To avoid conflicts with existing installations, it is best to install into a new Python >= 3.10
virtual environment set up as follows:

python -m venv path/to/your/venv

Next, activate your environment by:

path/to/your/venv/Scripts/activate

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://github.com/mynl/aggregate
https://aggregate.readthedocs.io/
https://pypi.org/project/aggregate/
https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 197

on Windows or:
source /path/to/your/venv/bin/activate

on Linux/Unix or MacOS. Finally, install the package:

pip install aggregate==0.22.0

All the code examples in the paper have been tested and run in such a virtual environment.
Alternatively, the package can be installed and run in the cloud on Colab, https://colab.google/.
Colab may report dependency resolver issues but the package does install successfully. The Colab
runtime must be restarted after installation.

1.4. Similar software
Kaas et al. (2008) and Parodi (2015) presented the FFT-based algorithm in R. The actuar R pack-
age (Dutang et al., 2008) supports calculating compound distributions using Panjer recursion,
approximations, and simulation. The GEMAct Python package (Pittarello et al., 2024) provides
the same functionality in Python and includes FFT-based methods.

2. Problem and algorithms
Aggregate calculates the probability distribution of total subject losses from a portfolio of
insurance risks using the collective risk model (Klugman et al. 2019, Chapter 9). Section 2.1
defines the insurance-related terminology necessary to specify the distribution mathematically.
Section 2.2 explains how it can be approximated quickly and accurately using Fourier meth-
ods. Section 2.3 aims to demystify FFTs showing how they compute convolutions and introduce
aliasing. Understanding aliasing is critical to diagnose issues that can arise with the FFT-
based algorithm, and we give examples that reveal how aliasing can be exploited in certain
circumstances. Section 2.4 describes different ways of discretizing distributions.

2.1. The aggregate calculation
Let Xi be a sequence of independent, identically distributed (iid) random variables modeling
ground-up losses from individual occurrences. Ground-up losses are subject to insurance cov-
erage but are before the application of any financial structures, such as contract limits and
deductibles.

Insurance provides for coverage up to a per-occurrence limit y excess of a deductible a, paying

Zi =min (y, max (Xi − a, 0))

against a ground-up loss Xi. Coverage is called ground-up if a= 0, excess if a> 0, and unlimited
if y=∞. The deductible is also known as the retention, priority, or attachment, hence a. The
limit in an excess cover is often called the layer, hence y.

The distribution of Zi usually has a mass at zero equal to Pr (Xi ≤ a), complicating analysis.
To remove it, let Yi = (Zi | Xi > a) equal the insured loss payment, conditional on a payment
being made. Severity is conditional in this way if an attachment is specified. If no attachment
is specified, Yi = Xi is used directly with no conditioning. Yi is called gross loss. Gross loss feeds
validation and, depending on reinsurance options, the compound frequency-severity convolution.
The effect of these transformations on the ground-up cdf and sf are simple exercises in conditional
probability that are spelled out in Klugman et al. (2019, Chapter 8).

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://colab.google/
https://doi.org/10.1017/S1748499524000216

198 Stephen Mildenhall

Let N be a counting distribution, independent of Xi, modeling the number of gross loss pay-
ments, i.e., the number of losses with Yi ≥ 0. Aggregate computes the compound distribution of
gross losses

A= Y1 + · · · + YN . (2.1)

Further, Aggregate can apply occurrence and aggregate reinsurance to A. Occurrence rein-
surance provides coverage transforming gross loss Y into either ceded C or retained (net) R
losses

Ci = rs min (ry, max (Yi − ra, 0))

Ri = Yi − Ci.

Here ry is the reinsurance occurrence limit, ra the attachment, and rs the share of the cover
purchased, 0≤ rs ≤ 1. If ra > 0 the reinsurance is excess, otherwise it is ground-up. If ra = 0 and
ry =∞ the cover is called a quota share. If rs < 1, the reinsurance is said to be partially placed or
coinsured. Aggregate can model compound ceded AC or retained AR losses

AC = C1 + · · · + CN

AR = R1 + · · · + RN . (2.2)

These distributions are not conditional on attaching the reinsurance, so AC often has a mass
at zero. If there is no occurrence reinsurance then AC = 0 and AR =A. We call the subject loss
for the compound whichever of ground-up (no limit and attachment), gross (no reinsurance),
ceded, or net the user selects. Finally, aggregate reinsurance can be applied to AC or AR, trans-
forming them in the same way as occurrence covers. Both kinds of reinsurance can be stacked
into multilayer programs. See Section 3.11 for more details.

2.2. Estimating compound distributions with Fourier transforms
We want a way to compute the distribution function FA of a compound random variable given by
Eq. (2.1) or (2.2). We do this by approximating FA at equally spaced outcomes kb, k= 1, 2,
Using the tower rule for conditional expectations and the independence assumptions, we can
derive the well-known formula

FA(kb) := Pr (A≤ kb)=
∑
n

Pr (A≤ kb |N = n) Pr (N = n)=
∑
n

F∗nY (a) Pr (N = n),

where F∗nY (a) denotes the distribution of Y1 + · · · + Yn. Usually, this problem has no analytic
solution because the distribution of sums of Yi is rarely known. For example, there is no closed-
form expression for the sum of two lognormals (Milevsky & Posner, 1998). However, things are
more promising in the Fourier domain because the characteristic function of F∗nY is always known
– it is simply the nth power of the characteristic function of FY .

The characteristic function ofA can be written in terms of the characteristic function of severity
and the frequency probability generating function (pgf) PN(z) := E[zN] using the same logic as
for distributions:

φA(t) := E[eitA]= E[E[eitA |N]]= E[E[eitY]N]=PN(φY (t)).

The pgfs of most common frequency distributions are known. For example, if N is Poisson
with mean λ then PN(z)= exp (λ(z− 1)).

Two things combine to make this identity useful. The first is Poisson’s summation formula,
which says (roughly) that the characteristic function of an equally spaced sample of a distribution
equals an equally spaced sample of its characteristic function. The second is the existence of the
FFT algorithm, which makes it very efficient to compute and invert characteristic functions of

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 199

equally spaced samples. Using Poisson’s formula, and using FFTs in steps 2 and 4, supports the
following FFT-based algorithm to estimate compound probabilities:

1. Discretize the severity cdf to approximate FY and difference to approximate the density or
mass function of Y .

2. Apply the FFT to approximate φY .
3. Apply the frequency pgf to obtain an approximation to φA.
4. Apply the inverse FFT to create a discretized approximation to the compound mass function.

The pgf is applied element-by-element in Step 3. For some Y , such as the stable distributions,
the characteristic function is known, but there is no closed-form distribution or density function.
Then, it is easier to sample φY directly, replacing steps 1 and 2, see Mildenhall (2023, Section
5.4.4.3) for examples.

2.3. Discrete Fourier transforms and fast Fourier transforms
This subsection defines discrete Fourier transforms (DFTs), explains how they compute convolu-
tions, and describes the FFT-based algorithm. To make the presentation self-contained and easy
to follow, most of the formulas, straightforward in their derivation, are presented in their entirety.

2.3.1. Discrete Fourier transforms
We start by defining the DFT and examining how it computes convolutions. Define an nth
root of unity ω= exp (− 2π i/n), for integer n≥ 1. Euler’s identity shows this is a root of unity:
ωn = exp (− 2π i)= cos (− 2π)+ i sin (− 2π)= 1. Continuing, define an n× n matrix of roots
of unity

F=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

1 w . . . wn−1

1 w2 . . . w2(n−1)

...
...

1 wn−1 . . . w(n−1)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The DFT of a vector x= (x0, . . . , xn−1), typically denoted x̂, is defined simply as the matrix-
vector product

x̂= Fx.
Expanding the matrix multiplication shows the jth component of x̂ is

x̂j =
n−1∑
k=0

xkωjk.

The following simple observation is very important. The formula for the sum of a geometric
series shows

1+ω+ · · · +ωn−1 = 1−ωn

1−ω
= 0.

Applying the same formula to ωj reveals the important identity

1+ωj + · · · +ωj(n−1) =
{
0 j �≡ 0 (mod n)

n j≡ 0 (mod n)
.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

200 Stephen Mildenhall

The second case follows because each term in the sum equals 1. Using this identity, we can see
that

F−1 = 1
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

1 w−1 . . . w−(n−1)

1 w−2 . . . w−2(n−1)

...
...

1 w−(n−1) . . . w−(n−1)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
because the (j, k)th element of the product FF−1 equals

1
n
∑
l

ωjlω−lk = 1
n
∑
l

ω(j−k)l =
{
0 j �= k

1 j= k
.

Moving on, we investigate how the DFT computes convolutions. Fourier transforms are like
logs. Just as logarithms simplify multiplication into addition, Fourier transforms simplify con-
volution into multiplication. This implies that the product of DFTs should correspond to the
DFT of the convolution. Let’s look at the element-by-element product of the DFTs of vectors
x= (x0, . . . , xn−1) and y= (y0, . . . , yn−1). The product of the lth elements equals

⎛⎝∑
j

xjwjl

⎞⎠(∑
k

ykwkl
)
=

n−1∑
m=0

⎛⎜⎜⎜⎜⎝
∑
j,k

j+k≡m (mod n)

xjyk

⎞⎟⎟⎟⎟⎠wlm

where the right-hand inner sum is over all j, kwith j+ k=m+ rn for some integer r. This expres-
sion shows that the product is the lth element of the DFT of the so-called wrapped or circular
convolution of x and y, whosemth term is defined by the inner sum.

For example, if n= 4 andm= 0, the inner sum equals

x0y0 + x1y3 + x2y2 + x3y1.

Using arithmetic modulo n on the subscripts makes this look more like a convolution

x0y0 + x1y−1 + x2y−2 + x3y−3

because now the subscripts of each term sum to 0. This circular convolution differs from the
expected x0y0 by adding tail probabilities, which “wrap-around” and reappear in the probabilities
of small outcomes, a phenomenon called aliasing. The same effect makes wagon wheels appear to
rotate backward in old Western movies.

The DFT convolution is an exact calculation of circular convolution, not an approximation,
but we want a different calculation. The usual convolution can be obtained by padding x to the
right with zeros (x0, x1, x2, x3, 0, 0, 0, 0), and similarly for y. Consider them= 2 component of the
circular convolution, which equals

x2y0 + x1y1 + x0y2 + x7y3 + x6y4 + x5y5 + x4y6 + x3y7.

Padding reduces this to the usual convolution x2y0 + x1y1 + x0y2 for the original shorter vec-
tors because all the other terms are zero. Aggregate exploits padding to obviate the impact of
aliasing.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 201

Figure 1. An apparent failure of the FFT-based method caused by aliasing (left). The middle plot shows
the parts of the underlying distribution that are added by aliasing. The right plot shows these translated
back to the range 0–32. This figure can be recreated by running import aggregate.extensions and
aggregate.extensions.fft_wrapping_illustration(ez= 1, en= 128, small2= 5, cmap=’Greys_r’).

2.3.2. Aliasing examples
Here are two examples of aliasing. The first shows how the FFT-based algorithm can produce
apparently nonsensical results. Fig. 1 shows an attempt to compute the pmf of a Poisson (a
compound with fixed severity) with mean 128 using only n= 32 buckets. The severity vector
x= (0, 1, 0, . . . , 0) has length 32 and P(z)= exp (128(z− 1)). The output is the inverse DFT of
the vectorP(x̂). The result is the valley-shaped curve on the left: the aliasing effect largely averages
out the underlying distribution. Themiddle plot shows the true distribution, centered around 128,
and the vertical slices of width 32 combined to get the total. These are also shown shifted into the
first slice on the left of the plot. The right plot zooms into the range 0–31 and shows the wrapped
components that sum to the output in the first plot. The left-hand plot is a classic failure mode
and a good example of how FFT methods can appear to give nonsensical results.

The second example shows how we can sometimes exploit aliasing to our advantage. It is often
suggested (e.g., Parodi, 2015, p. 248) that the FFT-based algorithm requires enough buckets to
capture the whole range of outcomes, from zero to the distribution’s right tail. In fact, it is nec-
essary to have enough buckets only to capture the range of outcomes that occur with probability
above a small threshold (say 10−20 or less), because adding such tiny probabilities to the correct
answer has no practical impact. Consider modeling a Poisson distribution with mean 100 million,
108 ≈ 227. It has standard deviation 104 and practically all outcomes fall in the range 108 ± 5× 104
of width 105 ≈ 217. Fig. 2 shows the result of applying the FFT-based algorithm to compute these
probabilities with only 217 buckets, less than one-thousandth of the 227 needed to capture the dis-
tribution from zero. We leverage aliasing to shift the apparently nonsensical result (left plot) to
the correct range (right plot), where we see it aligns almost perfectly with the exact calculation.
The error in the right tail is still caused by aliasing but is too small to have any practical effect. It
could be removed using 218 buckets.

2.3.3. The FFT algorithm
The FFT algorithm is a surprisingly fast way to compute DFTs. It is one of the most important
algorithms known to humankind and has revolutionized the practical usefulness of DFTs (Strang,
1986). The FFT works for vectors of any length, but it is most effective for vectors of length n= 2g
(Cooley & Tukey, 1965; Press et al., 1992). Computing the DFT Fx as a matrix multiplication
should take on the order of n2 operations. The FFT exploits a much faster approach. The kth
component of Fx can be rearranged into

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

202 Stephen Mildenhall

Figure 2. Exploiting aliasing to compute a Poisson distribution with a very highmean using substantially fewer buckets than
is normally recommended. The actual distribution (right) can be re-assembled from the aliased output (left) by shifting. This
figure can be recreated by running aggregate.extensions.poisson_example(10∗∗8, 17).

x̂k = x0 + x1ωk + x2ω2k + x3ω3k + x4ω4k + · · ·

= x0 + x2ω2k + x4ω4k + · · · +ωk
(
x1 + x3ω2k + · · ·

)
= x0 + x2(ω2)k + x4(ω2)2k + · · · +ωk

(
x1 + x3(ω2)k + · · ·

)
.

Define the even and odd parts xe = (x0, x2, . . . , xn−2) and xo = (x1, x2, . . . , xn−1). We recog-
nize the rearranged sum as a weighted sum of the kth elements of the two smaller DFTs

x̂k =
{
x̂ek +ωk x̂ok k< n/2

x̂el −ωl x̂ol k= n/2+ l
,

since ω2 is an n/2th root of unity, and ωk =−ωl implying ω2k =ω2l. Writing O(n) for the fewest
operations needed to compute the FFT of a vector of length n, this decomposition shows that

O(n)≤ 2O(n/2)+ 2n,

where the right-hand side counts the 2O(n/2) operations needed to compute the two shorter
FFTs and then the nmultiplications and n additions required to combine them. Iterating shows

O(n)≤ 4O(n/4)+ 4n≤ 8O(n/8)+ 6n≤ · · · ≤ nO(1)+ 2gn.

SinceO(1)= 1, this chain of inequalities shows thatO(n) has order at most n log2 (n)= ng. For
n= 220 (about 1 million), this a speedup factor of 50,000: the difference between 1 trillion and
20 million operations, revealing the power of the FFT algorithm.

2.4. The discrete representation of distributions
We must use a discrete approximation to the exact compound cdf because most lack an ana-
lytic expression. The FFT-based algorithm and Panjer recursion both begin by replacing severity
with an equally spaced discrete approximation and consequently generate an equally spaced dis-
crete approximation to the compound cdf. Hence, the considerations discussed in this section are
relevant to FFT and Panjer methods.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 203

2.4.1. Discrete and continuous representations
There are two apparent ways to construct a numerical approximation to a cdf.

1. As a discrete distribution supported on a discrete set of points.
2. As a continuous distribution with a piecewise linear distribution function.

A discrete approximation produces a step-function piecewise constant cdf and quantile func-
tion. The cdf is continuous from the right, and the (lower) quantile function is continuous from
the left. The distribution does not have a density function (pdf); it only has a probability mass
function (pmf). In contrast, a piecewise linear continuous approximation has a step-function pdf.

The continuous approximation suggests that the compound has a continuous distribution,
which is often not the case. For example, the Tweedie and all other compound Poisson distribu-
tions are mixed because they must have a mass at zero, and a compound whose severity has a limit
also has masses at multiples of the limit caused by the nonzero probability of limit-only claims.
When X is mixed, it is impossible to distinguish the jump and continuous parts using a numerical
approximation. The large jumps may be obvious, but the small ones are not. This is one argument
against continuous approximations. Another is the increased complexity. Robertson (1992) con-
sidered a quasi-FFT-based algorithm, using discrete-continuous adjustments to reflect a piecewise
linear instead of a fully discrete, cdf approximation. Reviewing that paper shows the adjustments
greatly complicate the analysis but reveals no tangible benefits. Based on these two considerations,
we use a discrete distribution approximation.

Using a discrete approximation has several implications. It means that when we compute a
compound, we have a discrete approximation to its distribution function concentrated on integer
multiples of a fixed bandwidth b specified by a vector of probabilities (p0, p1, . . . , pn−1) with the
interpretation

Pr (A= kb)= pk.

All subsequent computations assume that the compound is approximated in this way. It follows
that the cdf is a step function with a jump of size pk at kb, it is continuous from the right (it
jumps up at kb), and it can be computed from the cumulative sum of (p0, p1, . . . , pn−1). The
approximation has rth moment given by ∑

k
krpkb.

The limited expected value E[A∧ a]= ∫ a
0 SA(x) dx can be computed at the points a= kb as

b times the cumulative sum of the survival function. Finally, if the original pdf exists, it can be
approximated at kb by pk/b.

2.4.2. Methods to discretize the severity distribution
We need a discretized approximation to the severity distribution to apply the FFT-based algo-
rithm. In this subsection, we discuss different ways that it can be constructed.

Let F be a distribution function of gross loss Y and q the corresponding lower quantile function.
We want to approximate F with a finite, purely discrete distribution supported at points kb, k=
0, 1, . . . ,m, where b is called the bandwidth. Let’s split this problem into two: first create an infinite
discretization on k= 0, 1, . . . , and then truncate it. There are four standard methods to create an
infinite discretization.

1. The rounding method assigns p0 = F(b/2) and probability to the k> 1 bucket equal to

pk = Pr ((k− 1/2)b< Y ≤ (k+ 1/2)b)= F((k+ 1/2)b)− F((k− 1/2)b).

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

204 Stephen Mildenhall

2. The forward difference method assigns p0 = F(b) and

pk = Pr (kb< Y ≤ (k+ 1)b)= F((k+ 1)b)− F(kb).

3. The backward difference method assigns p0 = F(0) and

pk = Pr ((k− 1)b< Y ≤ kb)= F(kb)− F((k− 1)b).

4. The local moment matching method (Klugman et al. 2019, p. 180) ensures the discretized dis-
tribution has the same first moment as the original distribution. This method can be extended
to match more moments. However, the resulting probabilities are not guaranteed to be pos-
itive per Embrechts & Frei (2009), who also report that the gain from this method is “rather
modest,” so we do not implement it or consider it further.

Setting the first bucket to F(b/2) for the rounding method (resp. F(b), F(0)) means that any
values≤ 0 are included in the zero bucket. This behavior is useful because it allows severity to use
a distribution with negative support, such as the normal or Cauchy.

Each of these methods produces a sequence pk ≥ 0 of probabilities that sum to 1 and that
can be interpreted as the pmf and distribution function F(d)b of a discrete approximation random
variable Y(d)

b

Pr (Y(d)
b = kb)= pk

F(d)b (kb)=
∑
i≤k

pi

where superscript d= r, f , b describes the discretization method and subscript b the bandwidth.
We must be clear about how the rounding method is defined and interpreted. By definition,

it corresponds to a distribution with jumps at (k+ 1/2)b, not kb. However, the approximation
assumes the jumps are at kb to simplify and harmonize subsequent calculations across the three
discretization methods.

It is clear that (Embrechts & Frei, 2009)

F(b)b ≤ F ≤ F(f)b and F(b)b ≤ F(r)b ≤ F(f)b ,

Y(b)
b ≥ Y ≥ Y(f)

b and Y(b)
b ≥ Y(r)

b ≥ Y(f)
b ,

Y(b)
b ↑ Y and Y(f)

b ↓ Y as b ↓ 0.

(2.3)

Y(b)
b , Y(f)

b , and Y(r)
b converge weakly (in L1) to Y as b ↓ 0, and the same holds for a compound

distribution with severity Y . These facts are needed to show the FFT algorithm works.
Aggregate uses the rounding method by default and offers the forward and backward meth-

ods to compute explicit bounds on the distribution approximation if required. The rounding
method performs well on all examples we have run. This decision is consistent with findings
reported by Embrechts & Frei (2009), Klugman et al. (2019), and Panjer (1981).

Pittarello et al. (2024) included an illustration (Fig. 1) of the different discretizations. As they
explain, GEMAct offers the same discretization methods, but with one small difference. It puts
mass 1− F((m+ 1/2)b) in the last bucket to ensure the severity sums to one. In Aggregate,
distributions can be normalized to ensure they sum to 1 as described next.

2.4.3. Truncation and normalization
The discrete probabilities pk must be truncated into a finite-length vector for calculations. There
are two truncation options:

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 205

1. Truncate and then normalize, dividing the truncated vector by its sum, resulting in a vector
of probabilities that sums to 1.

2. Truncate without normalizing, possibly resulting in a vector of severity probabilities that sums
to less than 1.

A third option, to put a mass at the maximum loss, does not produce intuitive results because
the underlying distributions generally do not have such a mass.

The decision to normalize is based on the severity’s tail thickness. When severity is bounded
(e.g., by a policy limit) or is unbounded but thin-tailed, there is minimal truncation error (i.e., an
error caused by truncating the severity). Then, normalization is numerically cleaner and avoids
issues with quantiles close to 1. However, when severity is thick-tailed, truncation error is unavoid-
able. It should not be normalized, as doing so can lead to unreliable results and make interpreting
the estimated mean severity difficult. Without normalization, it is important to remember that the
compound’s right tail beyond the truncation point is understated. On the other hand, probabili-
ties for losses below the truncation are unaffected. The bandwidth and number of buckets should
be selected so that the right tail is accurate where it is being relied upon.

2.4.4. Approximating the density
The compound pdf at kb can be approximated as pk/b. This suggests another approach to
discretization. Using the rounding method

pk = F((k+ 1/2)b)− F((k− 1/2)b)

=
∫ (k+1)b

(k−1/2)b
f (x)dx

≈ f (kb)b.

Therefore, we could rescale the vector (f (0), f (b), f (2b), . . .) to have sum 1. This method works
well for continuous distributions but does not apply for mixed ones, e.g., when a policy limit
applies.

Grübel & Hermesmeier (2000) explained how to use Richardson extrapolation across varying b
to obtain more accurate density estimates. While their method does improve accuracy, it is rarely
necessary, given the power and speed of today’s computers.

2.4.5. Exponential tilting
As we have seen, the FFT-basedmethod’s circular convolution introduces aliasing error, where the
probability of large losses “wrap around” and appears near the origin, polluting the probabilities
of small losses, see Section 2.3.2. Grübel & Hermesmeier (1999) and Shevchenko (2010) explained
how to apply exponential tilting to the severity distribution to reduce aliasing error. Exponential
tilting is the same method used in exponential family distributions to adjust the mean. Tilting is
also known as an exponential window (Schaller & Temnov, 2008). It is implemented using a tilt
operator on discretized distributions defined by Eθ (p)= (p0, e−θp1, e−2θp2, . . . , e−(n−1)θpn−1).
The result is no longer a distribution (it does not sum to 1), but it can still be used as one in
the FFT-based algorithm. Tilting commutes with the convolution of distributions

Eθ (p1)+ Eθ (p2)= Eθ (p1 + p2)
because the lth term of the convolution sum equals∑

j+k=l
e−jθpje−kθpk = e−lθ

∑
j+k=l

pjpk.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

206 Stephen Mildenhall

Therefore, the tilt of a compound distribution equals the compound computed with tilted
severity. Finally, we can “untilt” by applying E−θ , scaling the lth term up by elθ .

The lth term from the circular convolution algorithm equals the true value of the lth term of the
convolution plus some wrapped terms. The true term is multiplied by e−lθ whereas the wrapped
terms are all multiplied by at least e−(l+n)θ , where n is the length of p. Untilting multiplies them
all by elθ , shrinking the wrapped terms by at least e−nθ . The tilt parameter should be selected to
that nθ is between 20 and 36 to avoid underflow. Embrechts & Frei (2009) recommended θn≤ 20.
Schaller & Temnov (2008, Section 4.2) discussed other ways to select θ

Tilting is an effective way to reduce aliasing. However, once again, tilting is rarely necessary
given the power of modern computers. Wang (1998) described how to pad input vectors as a
more straightforward way to control aliasing, see Section 4.3. We find that padding almost always
suffices to control aliasing, although Aggregate offers the option to apply exponential tilting if
desired.

3. The grammar of distributions
Compound distributions used by practicing actuaries can be very complicated, leading to
our second challenge: devising a succinct yet flexible “grammar of distributions” specification.
Specification is a stand-alone problem independent of any implementation, and we solve it using
a domain-specific language called DecL. DecL can express complex real-world distributions in a
straightforward way, leveraging familiar insurance-domain terminology. At the same time, DecL
specifies simple compounds with minimal overhead, which eases the learning curve for a new
user. Any reasonably powerful compound distribution generator should be able to create any
distribution that can be expressed in DecL.

Aggregate parses and translates DecL code into API calls, which then create approximate
distributions, as explained in Section 5.1. DecL represents a mid-point between the API and a
GUI-based user interface. It speaks the user’s language and shields them from the intricacies of
the underlying class structure and method call signatures.

Section 3.1 describes domain-specific languages and Section 3.2 the lexer. The remaining sec-
tions detail the DecL grammar. In doing so, we present the full range of compound distributions
that can be approximated using Aggregate.

3.1. Domain-specific languages
A domain-specific language (DSL) is a programing or specification language dedicated to a par-
ticular problem domain. DSLs have a focused scope and can offer simple, expressive, and concise
syntax and powerful abstractions for tasks within their domain. They often include specialized
constructs and notations that are intuitive to professionals from the specific domain, even if those
professionals are not primarily programmers. SQL, HTML, and CSS are examples of DSLs.

DSLs can increase productivity and accuracy in their specific domain by allowing domain
experts to express concepts directly and succinctly. However, their specialized nature also means
they are not suitable for general-purpose programing tasks (Mernik et al., 2005). They can
improve productivity and broaden adoption by leveraging well-known domain-specific notations
and improve verification, analysis, and error reporting, among other advantages.

In the case of Aggregate, the domain-specific language DecL is employed to leverage a natural,
insurance-specific terminology familiar to users. The name DecL (Dec Language) derives from
an insurance policy’s declarations “dec” page that spells out key coverage terms and conditions.
A reinsurance placement slip performs the same functions. DecL is designed to make it easy to go
from “dec page to distribution.”

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 207

The DecL grammar is specified in Backus Naur form, a series of rules that show how higher-
level constructs are created from lower-level ones. For example, Section 3.5 is written:

exposures ::= numbers CLAIMS
| numbers LOSS
| numbers PREMIUM AT numbers LR
| numbers EXPOSURE AT numbers RATE

The grammar builds up various components until they are combined to specify the most
general compound distribution. The complete grammar is laid out in Mildenhall (2023, Section
4.3).

The grammar is interpreted using the SLY package (Beazely, 2022), a Python implementation
of lex and yacc (yet another compiler-compiler), tools commonly used to write parsers and com-
pilers. Parsing is based on the Look Ahead Left-to-Right Rightmost (LALR) algorithm. These
concepts are explained by Aho et al. (1986) and Levine et al. (1992).

3.2. The DecL lexer
When a DecL program is interpreted, a lexical analyzer (lexer) first breaks it into tokens and
passes them to the parser, which converts them into a keyword-value argument (∗∗kwarg) dic-
tionary understood by the object API. The lexer defines tokens of the language either as explicit
strings, like the agg, sev, or poisson or as patterns defined by regular expressions. For example,
a string identifier is determined by the regular expression [a-zA-Z][\.:∼_a-zA-Z0-9\-]∗. See
Mildenhall (2023, Section 4.2) for a full list of tokens.

The DecL lexer is case-sensitive and operates on single-line programs. While we sometimes
use line breaks for readability, they must be removed before executing the build function or
combined with a Python \ newline continuation.

The lexer accepts numbers in decimal, percent, or scientific notation. A minus sign joined to a
number, like−1, has a different effect than− 1 with a space, as explained in Section 3.8. DecL sup-
ports three arithmetic operations: division, exponentiation, and the exponential function. These
are sufficient to express probabilities as fractions and to calculate the scipy.stats scale for a
lognormal distribution as exp(mu)/exp(sigma∗∗2/2). Python’s f-string format lets you inject
variables directly into DecL programs, such as f’sev lognorm {x} cv {cv}’, eliminating the
need for extensive mathematical functionality.

3.3. The eight clause defining a compound distribution
Following the calculation in Section 2.1, the DecL grammar identifies eight clauses that define a
compound distribution.

agg <NAME> <EXPOSURE> <LIMIT*> <SEVERITY> <OCC_RE*> <FREQUENCY> <AGG_RE*> <NOTE*>

Clauses with an asterisk are optional. Throughout the rest of this section, terms in
<UPPER_CASE> represent user inputs, while lowercase terms refer to language keywords. The next
sections examine each clause separately.

3.4. The name clause
The name clause, agg <NAME> declares the start of a compound distribution using the agg key-
word. Keywords are part of the language, like select in SQL. Other parts of the aggregate
package define sev, port and distortion keywords to create severity, portfolio and spectral
distortion objects. NAME is a string identifier, such as Trucking or GL.1. Objects can be recalled
by name, see Section 3.10.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

208 Stephen Mildenhall

3.5. The exposure clause
The exposure clause determines the volume of insurance. Volume can be stipulated explicitly as
the expected loss or implicitly as the expected claim count or a claim count distribution. The clause
has five forms:
<EXP_LOSS> loss
<PREMIUM> premium at <LR> lr
<EXPOSURE> exposure at <RATE> rate

<CLAIMS> claims

dfreq <OUTCOMES> <PROBABILITIES>

• loss is a keyword and EXP_LOSS equals the expected loss (“loss pick”). The claim count is
derived by dividing by average severity. It is typical for an actuary to estimate the loss pick
and select a severity curve, and then derive frequency in this way.

• Similarly premium, at, lr, exposure, and rate are keywords to enter expected loss as pre-
mium times a loss ratio, or exposure times a unit rate. Actuaries often take plan premiums
and apply loss ratio picks to determine expected losses rather than starting with a loss pick.
Underwriters sometimes think of benchmark unit rates (e.g., per vehicle, per 100 insured
value, per location).

• claim and claims are interchangeable keywords and CLAIMS equals the expected claim
count. Expected loss equals expected claim count times average severity.

• The dfreq discrete distribution syntax directly specifies frequency outcome and probability
vectors, as described in Section 3.6. Expected loss equals the implied expected claim count
times average severity.

3.6. Discrete distributions
Discrete frequencies and severities can be specified using the keywords dfreq and dsev (used in
Section 3.8). There are some special rules for discrete distributions that we gather together here.
The general form is

dfreq <OUTCOMES> <PROBABILITIES>
dsev <OUTCOMES> <PROBABILITIES>

For example, specifying outcomes [1 2 3] and probabilities [0.75 3/16 1/16] means
there is a 3/4 chance of an outcome of 1, a 3/16 chance of 2, and so forth. If all outcomes are
equally likely, the probability vector may be omitted. Commas are optional in vectors, and only
division arithmetic is supported. Outcome ranges can be defined using the Python slice syntax
[1:6] for [1 2 3 4 5 6] or [0:50:25] for [0 25 50]. Note that, unlike Python, the last ele-
ment is included. Nonpositive outcomes are replaced by zero, but there should be none, given the
context. The outcomes need not be distinct or sorted. Aggregate accumulates the probability by
distinct outcome before using the distribution. Thus, a sample of losses or observed claim counts
can be input and used directly. This syntax is handy for constructing simple examples and using
empirical distributions. Entering dfreq [1] denotes one claim with certainty, which reduces the
compound to the severity, and dsev [1] is a loss of one with certainty, reducing to the frequency.

3.7. The limit clause
The optional limit clause specifies a per-occurrence limit and deductible, with

<LIMIT> xs <DEDUCTIBLE>

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 209

replacing ground-up severity X with gross loss Y =min (y, max (X− a, 0)) | X > a. If the clause
is missing, LIMIT is treated as infinite, but DEDUCTIBLE is subtly different from zero, as explained
in Section 3.8.

3.8. The severity clause
The severity clause specifies the unlimited ground-up loss distribution. Severity distributions can
be selected from any zero, one, or two shape parameter scipy.stats (Virtanen et al., 2020) con-
tinuous distribution, or entered as a discrete distribution. Continuous distributions are described
using the scipy shape-scale-location paradigm and are created by name, with no additional
coding. scipy.stats currently supports over 100 continuous distributions.

The severity clause can be specified in three ways. The first form enters the shape parameters
directly. The second reparameterizes shape in terms of CV. It can be used for distributions with
only one shape parameter or the beta distribution on [0, 1], and where the first two moments
exist. aggregate uses a formula (e.g., lognormal σ =√log (1+ cv2), gamma α = 1/cv2) or, for
all other distributions, the Newton–Raphson algorithm to solve for the shape parameter mapping
to the requested CV and then scales to the desired mean. The third defines a discrete distribution
analogously to dfreq. The discrete distribution is used directly.

sev <DIST_NAME> <SHAPE1> <SHAPE2>
sev <DIST_NAME> <MEAN> cv <CV>
dsev <OUTCOMES> <PROBABILITIES>

• sev is a keyword indicating the severity specification.
• DIST_NAME is the scipy.stats continuous random variable distribution name. Common

examples include norm Gaussian normal, uniform, and expon the exponential (with no
shape parameters); pareto, lognorm, gamma, invgamma, loggamma, and weibull_min
the Weibull (with one); and the beta and gengamma generalized gamma (with two).
Distributions with three or more shape parameters are not supported. See Mildenhall (2023,
Section 2.4.4.5) for a full list of available distributions.

• SHAPE1, SHAPE2 are the required scipy.stats shape variables for the distribution. Shape
parameters entered for zero parameter distributions are ignored.

• MEAN is the expected loss.
• cv (lowercase) is a keyword indicating the entry of the CV, to distinguish from inputting shape

parameters.
• CV is the loss coefficient of variation.
• dsev is a keyword to create discrete severity. It works in the same way as dfreq, see Section

3.6.

A parametric severity clause can be transformed by applying scaling and location factors,
following the scipy.stats loc (for a shift or translation) and scale syntax. The syntax and
examples are as follows.

sev <SCALE> * <DISTNAME> <SHAPE1> <SHAPE2> + <LOC>
sev <SCALE> * <DISTNAME> <SHAPE1> <SHAPE2> - <LOC>

• sev 10 ∗ lognorm 1.517+ 20 creates a lognormal, 10X+ 20, X∼ lognormal(μ= 0, σ =
1.517) with CV equal to

√
exp (σ 2)− 1= 3.0.

• sev 5 ∗ expon creates an exponential with mean (scale) 5; there is no shape parameter.
• sev 5 ∗ uniform+ 1 creates a uniform with scale 5 and location 1, taking values between

1 and 6. The uniform has no shape parameters.
• sev 50 ∗ beta 2 3 creates 50Z, Z∼ β(2, 3) a beta with two shape parameters 2, 3.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://docs.scipy.org/doc/scipy/reference/stats.html
https://doi.org/10.1017/S1748499524000216

210 Stephen Mildenhall

• sev 100 ∗ pareto 1.3 creates a single parameter Pareto for x≥ 100 with shape 1.3 and
scale 100, whereas sev 100 ∗ pareto 1.3 - 100 creates a Pareto with survival function
S(x)= (100/(100+ x))1.3, x≥ 0. Note: a negative location shift must be entered with a space
since sev pareto 1.3 -10 appears to the parser as two shape parameters.

Ground-up losses can be conditioned to lie in a range (lb, ub] by using the splice keyword.
For example,

sev lognorm 100 cv 0.25 splice [80 130]

creates a lognormal ground-up severity with mean 100 and CV 0.25 conditioned to 80< X ≤ 130.
Conditioning differs from a layer 50 xs 80 in two ways: losses lie in the range 80 to 130 rather
than 0 to 50, and the result is a continuous distribution, whereas the layer has a probability mass
at 50. Splicing helps create flexible mixtures, see Section 3.13. It is implemented using Python
decorators to adjust the pdf, cdf, sf, and quantile functions. This approach has no impact on
performance when there is no conditioning.

Severity distributions created with the sev keyword are continuous unless the underlying
scipy.stats distribution can take negative values, in which case they have a mass at zero
corresponding to the probability of a nonpositive loss. Severities created using dsev are discrete.

Understanding the interaction of mixed and discrete severities with the limit clause is crucial.
If the limit clause is missing, gross loss equals ground-up loss with no adjustment. The result has a
mass at zero when ground-up loss does. When there is a limit clause, the gross loss is conditional
on a ground-up loss to the layer. As a result, a missing limit clause is subtly different from a layer
inf xs 0. Here are two examples. The first uses the (continuous) standard normal as severity.
All negative values are accumulated into the zero bucket, creating a mixed distribution. Consider:

agg NoLimitClause dfreq [1] sev norm
agg LimitClause dfreq [1] inf xs 0 sev norm

When there is no limit clause, the gross loss is a 50/50 mixture of zero and a half-normal
with mean

√
2/π = 0.79788, giving a gross mean of 0.39894. With a limit clause, the mass at

zero is conditioned away, and the gross loss is a half-normal. The second example uses a discrete
distribution.
agg NoLimitClause dfreq [1] dsev [-1 0 1 1 2]
agg LimitClause dfreq [1] 10 xs 0 dsev [-1 0 1 1 2]

Aggregate summarizes the input ground-up discrete distribution to outcomes 0, 1, and 2
with probabilities 2/5, 2/5, and 1/5. When there is no limit clause, gross loss equals ground-up,
giving mean severity of 4/5. With a limit clause, gross loss equals ground-up conditional on a loss,
meaning outcomes 1 and 2 with probabilities 2/3 and 1/3, giving mean severity 4/3. The behavior
illustrated in these two examples ensures that Aggregate works as expected. Without it, a mass
at zero defined by a discrete distribution would mysteriously disappear in simple examples.

Appending ! to the severity clause makes gross losses unconditional on attaching the layer,
altering the default behavior. To see the effect, consider the two DecL programs:

agg Conditional dfreq [1] 2 xs 1 dsev [1:3]
agg Uncond dfreq [1] 2 xs 1 dsev [1:3] !

Both programs have one claim for sure. The Conditional program uses severity (X− 1) | X >

1, giving outcomes 1 and 2, and expected severity of 1.5. The Uncond program models 1 claim
ground-up and then applies the limit and deductible, giving outcomes 0, 1, and 2, and expected
severity of 1.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 211

3.9. The frequency clause
The frequency clause completes the specification of the frequency distribution. The clause must
contain the distribution name and appropriate parameters unless dfreq is used in the exposure
clause, in which case there is nothing else to specify, and the frequency clause is empty.

There are two types of frequency distributions: basic named distributions falling into the Panjer
(a, b, 0) class (Klugman et al., 2019, Section 6.5), and mixed Poisson distributions. The basic
frequency distributions are the fixed, Poisson, Bernoulli, binomial, geometric, logarithmic, neg-
ative binomial, Neyman A (Poisson-Poisson compound), and Pascal (Poisson-negative binomial
compound). All take values 0, 1, . . . , except the logarithmic, which takes values 1, 2, These
distributions are specified by name. For example,

agg NB 10 claims dsev [1] negbin 3

creates a negative binomial with mean 10 and variance multiplier (the ratio of variance to mean)
of 3. This is an exception to the rule that frequency SHAPE1 inputs a CV.

Zero truncated and zero modified (Klugman et al., 2019, Section 6.6) versions of the Poisson,
Bernoulli, binomial, geometric, negative binomial, and logarithmic are specified by appending zt
or zm p0. For example,

agg NB 10 claims dsev [1] poisson zm 0.4

creates a zero modified Poisson with mean 10 and probability 0.4 of taking the value 0. The
modified and truncated versions are implemented using Python decorators in an entirely generic
manner, with essentially no additional coding. The basic frequency distributions are common in
textbook, catastrophe modeling, and small portfolio applications.

The fixed frequency supports a fixed claim count when losses are specified directly:
agg Example 100 claims sev gamma 2 fixed. In this case, the user must ensure that the
expected frequency is an integer. Fixed frequency can also be input in the exposure clause as
dfreq [n].

The second type, mixed Poisson frequency distributions, have N ∼ Po(nG) for a mixing dis-
tribution G with mean 1. These are appropriate for modeling larger portfolios (Mildenhall, 2017)
and are specified

agg Mixed 10 claims dsev [1] mixed <DISTRIBUTION> <SHAPE1> <SHAPE2>

SHAPE1 always specifies the CV of the mixing distribution.N has unconditional variance n(1+
(cv)2n). The meaning of the second shape parameter varies. The following mixing distributions
are supported.

• mixed gamma <SHAPE1> is a gamma-Poisson mix, i.e., a negative binomial. Since the mix
mean (shape times scale) equals one, the gamma mix has shape (cv)−2.

• mixed delaporte <SHAPE1> <SHAPE2> uses a shifted gamma mix. The second parameter
equals the proportion of certain claims, which determines a minimum claim count. This dis-
tribution is useful to ensure the compound distribution does not over-weight the possibility
of very low loss outcomes. A higher proportion of certain claims increases the skewness of the
frequency and compound distributions.

• mixed ig <SHAPE1> has an inverse Gaussian mix distribution.
• mixed sig <SHAPE1> <SHAPE2> has a shifted inverse Gaussian mix, with parameter 2 as

for the Delaporte.
• mixed beta <SHAPE1> is a beta-Poisson, where the beta has mean 1 and cv <SHAPE1>.
• mixed sichel <SHAPE1> <SHAPE2> is Sichel’s (generalized inverse Gaussian) distribution

with <SHAPE2> equal to the λ parameter (Johnson et al., 2005, Section 11.1.5).

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

212 Stephen Mildenhall

It is worth noting that the negative binomial distribution can be entered in two ways. The
first uses the negbin named frequency distribution and specifies the variance multiplier v. This
approach is commonly used for small claim counts. The second involves using mixed gamma
and setting the mixing CV. This approach is more suitable for larger claim counts. To recon-
cile these two methods, equate the frequency variance: nv= n(1+ (cv)2n), where n equals the
expected claim count. See Section 3.13 for more about mixed frequencies.

3.10. Using names
Compound and severity distributions can be recalled by name. The name is prefixed with the type.
Here, the first line creates a named severity that is used in the second line.

sev MySev 120 * lognorm 1.8
agg Gross 10 claims 1000 xs 100 sev.MySev poisson

The Gross distribution can be recalled as agg.Gross and used as a subject distribution for
reinsurance, see Section 3.11.

3.11. The reinsurance clauses
Aggregate can model nonoverlapping multilayer per-occurrence and aggregate reinsurance
structures. Reinsurance is specified in a flexible way that includes proportional (quota share) and
excess of loss covers as special cases, unlike some other approaches that unnecessarily separate the
two. For a comprehensive survey of reinsurance and its impact on transforming subject losses, see
Albrecher et al. (2017).

An individual layer, for both occurrence and aggregate covers, is specified as

<<SHARE> so> <LIMIT> xs <ATTACHMENT>

The number SHARE specifies a share (partial placement); so stands for “share of”. The default
share is 100% if the first sub-clause is omitted. The layer transforms gross loss Yi into

s×min (y, max (Yi − a))

where 0≤ s≤ 1, y, a≥ 0 are the share, limit, and attachment. Unlimited cover is entered using an
infinite limit inf. With this notation, a 65% quota share is simply 65% so inf xs 0. Severity
is not conditional on attaching occurrence reinsurance covers (whereas it is for the limit clause),
which is the expected behavior.

Multiple layers can be stacked together using the and keyword. For instance:

50% so 250 xs 250 and 90% so 500 xs 500 and inf xs 1000

models a 50% placement of a 250 xs 250 layer, 90% of 500 xs 500, and 100% of unlimited excess
1000. The layers must not overlap, but they do not need to be contiguous. Each layer is applied
separately to subject losses; they do not inure to each other’s benefit. It is possible to model
any nondecreasing function of underlying losses using multiple layers in this way, capturing all
reasonable indemnity functions (Huberman et al., 1983).

The concepts described so far apply to both occurrence and aggregate covers. Occurrence rein-
surance is applied to individual claims and adjusts severity. It is specified before the frequency
clause or after a named compound. The compound can capture the cession or losses net of the
cession, Eq. (2.2). The next two examples apply reinsurance to the Gross distribution created in
Section 3.10:

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 213

agg Net.1 agg.Gross occurrence ceded to 900 xs 100
agg Net.2 agg.Gross occurrence net of 75% so 750 xs 250

The first line models losses ceded to the 900 xs 100 layer creating a compound AC =∑N
i=1 min (900, max (Yi − 100, 0)). The second models losses net of a 75% placement 750 xs 250,

creating a compound AR =∑N
i=1 Yi − 0.75 min (750, max (Yi − 250)).

Aggregate reinsurance is always specified after the frequency clause and is applied to total
losses. It follows the same pattern as occurrence but uses the keyword aggregate. For example,

agg Net.3 agg.Net.2 aggregate ceded to 50% so 4000 xs 1000

models the cession 0.5 min (4000, max (A− 1000, 0)) where A represents the subject compound
distribution. When occurrence and aggregate programs are combined, the occurrence inures to
the benefit of aggregate. The same syntax allows:

occurrence ceded to 500 xs 500 poisson aggregate net of 1000 xs 0
occurrence net of 90% so 750 xs 250 poisson aggregate net of 30% inf xs 0

The first row models cessions to 500 xs 500 with a 1000 annual aggregate deductible, while the
second models the net result after an excess of loss and a 30% quota share on the net of excess
losses.

All occurrence reinsurance is modeled with unlimited reinstatements. Cessions to a program
with limited reinstatements can be modeled by combining occurrence and aggregate programs.
For example, a 500 xs 500 layer with 3 reinstatements (four limits in total) is expressed as:

occurrence ceded to 500 xs 500 poisson aggregate ceded to 2000 xs 0

Aggregate cannot directlymodel net losses from a limited reinstatement excess of loss because
doing so involves tracking both net without reinstatements and the impact of the reinstatement
clause.

Excess underwriters often layer a large program into multiple smaller layers. Such a tower of
layers can be specified by giving the layer breakpoints. For example,

occurrence net of tower [0 250 500 1000]
aggregate ceded to tower [0:10000:1000]

model 250 xs 0, 250 xs 250, and 500 xs 500 occurrence layers, and an aggregate program in bands
of 1000 up to 10,000, respectively.

A policy limit and deductible can be specified via a limit clause or a single occurrence reinsur-
ance clause. As a general rule, the limit clause should be preferred for its simplicity and precision
whenever feasible. While both yield identical results for ground-up covers, they exhibit a crucial
difference for excess covers. Losses are conditional on attaching for a limit clause, whereas they
are not for occurrence reinsurance. Consequently, the expected severity would be 1.5 in the first
scenario below (outcomes 1 or 2) and 1 in the second scenario (outcomes 0, 1, or 2).

agg Limit-Clause dfreq [1] 2 xs 1 dsev [1:3]
agg Reinsurance dfreq [1] dsev [1:3] occurrence ceded to 2 xs 1

The limit and occurrence reinsurance clauses also differ significantly in their implementation.
The limit clause is implemented analytically and adjusts the cumulative distribution function and
survival function of the underlying scipy.stats continuous random variable. Its strength lies
in precision, enabling its inclusion in validation, but it offers limited flexibility. For instance, it
only accommodates a single layer and does not allow partial placements. On the other hand,
the occurrence reinsurance clause is implemented numerically, allowing for greater flexibility,

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

214 Stephen Mildenhall

including partial placements and multiple layers. It modifies the discretized severity distribution
after applying the limit clause. However, this flexibility makes it inconvenient to include in the
validation process.

We end the discussion of reinsurance by pointing out that occurrence covers require far more
effort to model than aggregate ones. An occurrence cover adjusts severity andmust then be passed
through the FFT-based convolution algorithm. In contrast, aggregate covers are a straightforward
transformation of the compound distribution.

3.12. The note clause
The optional note clause is note{text of note}. It serves two purposes. It provides a space
to include a description or additional details about the compound distribution beyond its name.
It can be useful for providing context or clarifying the purpose of the compound distribution.
Secondly, it can be used to encode calculation parameters. By including specific parameters, users
can customize the behavior of the calculation process. For example,

note{Prems/Ops 3 Severity, 2023 update; log2=17; normalize=False}

adds a curve description and specifies that the object should be calculated using the parameters
log2= 17 and normalize=False. Semicolons separate different parts of the note and param-
eters are passed using the key=value syntax. For more detailed information on the available
parameters and their usage within the note clause, see Section 4.6.

3.13. Vectorization
The power of DecL is enhanced through vectorization, which enables the simultaneous process-
ing of multiple values for expected loss, claim counts, premium, loss ratio, exposures, unit rates,
limits, attachments, and severity parameters. The Aggregate implementation does a lot of work
to implement vectorization, saving the user the need to break up mixed severities into different
limit and attachment components, compute expected losses, and combine with a shared mix-
ing variable, and this is a distinguishing feature of the implementation. A similar result could
be obtained with GEMAct (Pittarello et al., 2024) but it would require manually assembling a
numerical approximation to the mixed severity.

Before describing vectorization, we must present its mathematical basis. Suppose there are r
families of iid gross loss random variables X(i). Each represents a different type of business, or a
different severity mixture component, or both. Family i has expected claim count ni. Frequency
for each family is a mixed Poisson, N(i) ∼ Po(niG) where G is a shared mixing distribution with
mean 1. G is used to capture common effects across families, such as the impact of weather or
economic activity on frequency. Compound losses for family i are

Ai = X(i)
1 + · · · + X(i)

N(i)

If G is nontrivial, then shared mixing induces correlation between the family compounds Ai;
otherwise they are independent. Standard results in the theory of compound Poisson processes
(Bowers et al., 1997, Section 12.4) show that the total loss across all families

A=A1 + · · · +Ar

is a mixed compound Poisson compound with frequency N ∼ Po(nG), n=∑i ni, and mixed
severity with distribution

FX(x)=
∑
i

ni
n
FXi(x).

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 215

Vectorized exposures and mixed severity distributions can only be used with mixed Poisson
frequency distributions because they rely on this identity.

With that background, we can describe the two main applications of vectorization. First, it is
used to specify a mixed severity distribution. For example, the widely used mixed exponential
distribution (Corro & Tseng, 2021; Parodi, 2015; Zhu, 2011) is specified as:

sev [<MEAN_1> ... <MEAN_n>] * expon wts [<WT_1> ... <WT_n>]

The weights are applied to expected claim counts. When exposure is entered as expected loss,
Aggregate automatically performs the slightly intricate calculations needed to determine the
claim counts by component.

The exponential has no shape parameter. More generally, the distribution type and shape
parameters can both be vectorized, an approach (Albrecher et al., 2017, Section 3.5), call splicing,
where different distributions are used for small and large claims. For example,

sev [100 150] * [expon pareto] [1 2.5] - [0 150] wts [0.8 0.2] splice [0 200 inf]

weights an exponential with mean 100 for losses between 0 and 200 with a Pareto with shape
α = 2.5 and scale 150 for loss above 200. The splice vector gives the range bounds for each dis-
tribution. Alternatively, splices can be specified with two vectors, giving the lower and upper
bounds: splice [0 200] [200 inf]. The two conditional distributions have weights 0.8 and
0.2, respectively. There are two subtle points to note: a shape parameter for the exponential of 1 is
added for clarity, but it is ignored, and the Pareto is shifted back to the origin by the location term
rather than being a single parameter Pareto.

The second vectorization application allows one compound distribution to model multiple
units with a shared frequency mixing distribution. Here, a single DecL program can effectively
capture the characteristics of multiple units by specifying the corresponding values in vector
notation. The DecL

agg MultiUnitExample
[1000 2000 3000] premium at [.8 .75 .7] lr

[1000 2000 5000] xs 0
sev

lognorm [50 100 150] cv [0.1 0.15 0.2]
mixed gamma 0.4

models three units with premiums of 1000, 2000, and 3000 and expected loss ratios of 80%, 75%,
and 70% from policies with limits of 1000, 2000, and 5000, where the units have lognormal sever-
ities with means 50, 100, and 150 and CVs 10%, 15% and 20%. The mixed Poisson frequency
distribution shares a gamma mixing variable with a CV of 40% across all three units to induce
correlation between them. The absence of a wts term distinguishes this from a mixed severity.
Appending a weights term to the severity clause results in each unit using the samemixed severity,
creating nine components in total.

When vectorized exposures are combined with a mixed severity distribution, Aggregate auto-
matically generates the relevant outer cross product of exposure and severity components. This
form of vectorization enables streamlined excess of loss reinsurance exposure rating.

4. Algorithm and implementation
This section describes the Aggregate convolution algorithm, its implementation, what errors it
introduces, and how they can be controlled.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

216 Stephen Mildenhall

4.1. Algorithm inputs
The Aggregate FFT-based algorithm relies on nine inputs:

1. Ground-up severity distribution cdf and sf. See Section 3.8 for the set of allowable severity
distributions and Sections 3.7 and 3.11 for how the input severity can be transformed by
policy limits and deductibles and per-occurrence reinsurance before frequency convolution.

2. Frequency distribution probability generating functionP(z) := E[zN]. See Section 3.9 for the
set of allowable frequency distributions.

3. Number of buckets n= 2g , g = log2 (n). By default g = 16 and n= 65536.
4. Bandwidth, b, see Section 4.2.
5. Severity calculation method: round (default), forward, or backward, see Section 2.4.2.
6. Discretization calculation method: survival (default), distribution, or both, see Section 4.5.
7. Normalization: true (default) or false, see Section 2.4.3.
8. Padding parameter, an integer d≥ 0 with default 1, see Section 4.3.
9. Tilt parameter, a real number θ ≥ 0, with default 0 meaning no tilting, see Section 2.4.5.

The number of buckets is a user selection. On a 64-bit computer with 32GB RAM, it is practical
to compute with g in the range 3≤ g ≤ 28− d.

4.2. Estimating the bandwidth
Correctly estimating the bandwidth is critical to obtaining accurate results from the FFT-based
algorithm, as we saw in Section 2.3.2. The bandwidth needs to be small enough to capture the
shape of the severity but large enough so that the range spanned by all the buckets contains the
shape of the compound.

Aggregate employs an bandwidth algorithm honed through extensive trial and error, running
thousands of examples. It performs well across a broad range of input assumptions. However,
due to the nonlocal behavior of thick-tailed distributions (Mandelbrot, 2013, Section 2.3.3) it is
always possible to find examples where any proposed algorithm fails. Nonlocal behavior can lead
to different moments being influenced by nonoverlapping parts of the support, suggesting that
different bandwidths are necessary tomatch different momentsmost accurately. Therefore, before
relying on any approximation, the user should check it does not fail the validation, see Section 4.7.

The bandwidth is estimated from the p-percentile of a moment-matched fit to the compound.
A higher value of p is used if the severity is unlimited than if it is limited. The user can also explic-
itly select p. Here are the details. On creation, Aggregate automatically computes the theoretical
mean, CV, and skewness γ of the requested compound. Using those values and p, the bandwidth
is estimated as follows:

1. If the CV is infinite the user must input b and an error is thrown if no value is provided.
Without a standard deviation, there is no way to gauge the scale of the distribution. Note that
the CV is automatically infinite if the mean does not exist, and conversely, the mean is finite
if the CV exists.

2. Else if the CV is finite and γ < 0, fit a normal approximation (matching two moments). Most
insurance applications have positive skewness.

3. Else if the CV is finite and 0< γ <∞, fit shifted lognormal and gamma distributions (match-
ing three moments), and a normal distribution. The lognormal and gamma always have
positive skewness.

4. Else if the CV is finite but skewness is infinite, fit lognormal, gamma, and normal distributions
(two moments).

5. Compute the maximum policy limit L across all severity components.
6. If L=∞ set p←max (p, 1− 10−8).
7. Compute b as the greatest of any fit distribution p-percentile (usually the lognormal).

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 217

8. If L<∞ set b←max (b, L)/n, where n is the number of buckets, otherwise set b← b/n
9. If b≥ 1 round to one significant digit and return.
10. Else if b< 1 return the smallest power of 2 greater than b, e.g., 0.2 rounds up to 0.25, 0.1 to

0.125.

Step 6 adjusts p to minimize truncation error for thick-tailed severity distributions. Step 9
ensures that b is a round number when b≥ 1 and step 10 that b< 1 is an exact binary float. It
can cause irritating numerical issues, particularly computing quantiles, if b< 1 is not an exact
binary float. Recall, 0.1 is not an exact binary fraction, its base 2 representation is 0.00011001.

4.3. Padding
Padding extends the computed severity distribution by appending zeros to increase the length to
2g+d. The default d= 1 doubles the length of the severity vector and d= 2 quadruples it. Setting
d= 0 results in no padding. Usually, d= 1 is sufficient, but Schaller & Temnov (2008) reported
requiring d= 2 in empirical tests with very high frequency and thick tailed severity. Usually, tilting
or padding is applied to manage aliasing, but not both. When both are requested, tilting is applied
first, and then the result is zero-padded.

4.4. Algorithm steps
The algorithm steps are as follows:

1. If the frequency is identically zero, then (1, 0, . . .) is returned without further calculation.
2. If the bandwidth is not specified, estimate it using Section 4.2.
3. Discretize severity into a vector p= (p0, p1, . . . , pn−1), see Section 2.4.2. This step uses the dis-

cretization, severity calculation, and normalization input variables. It also accounts for policy
limits and requested occurrence reinsurance.

4. If the frequency is identically one, then the discretized severity is returned without further
calculation.

5. If θ > 0 then tilt severity, pk← pke−kθ
6. Zero pad the vector p to length 2g+d by appending zeros to produce x.
7. Compute z := FFT(x).
8. Compute f := P(z).
9. Compute the inverse FFT, a := IFFT(f).
10. Set a← a[0:n], taking the first n entries.
11. If θ > 0 then untilt, ak← akekθ .
12. Apply aggregate reinsurance to a if applicable.

Grübel & Hermesmeier (1999) provided a detailed explanation of why this algorithm works.
A sketch is as follows: assuming no normalization and the rounding method of discretization. As
the bandwidth decreases to zero and the number of buckets increases to infinity, the discretized
severity converges almost surely to the actual severity because it is bounded between the forward
and backward discretizations, which decrease (increase) to severity, Eq. (2.3). The compounding
operator is monotonic in severity; therefore, the compound distributions with these severities also
converge to the true distribution. Finally, the FFT-based algorithm differs from the actual value
by, at most, the probability the actual compound distribution exceeds nb, which tends to zero.

The required FFTs in steps 7 and 9 are performed by functions from scipy.fft called rfft()
and irfft() (there are similar functions in numpy.fft). They are tailored to taking FFTs of
vectors of real, as opposed to complex, numbers. The FFT routine automatically handles padding
the input vector (step 6). The inverse transform returns real numbers only, so there is no need to
take the real part to remove noise-level imaginary parts.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

218 Stephen Mildenhall

4.5. Error analysis
There are four sources of error in the FFT-based algorithm, each controlled by different parame-
ters.

1. Discretization error arises from replacing the original severity distribution with a discretized
approximation. It is controlled by decreasing the bandwidth.

2. Truncation error arises from truncating the discretized severity distribution at nb. It is con-
trolled by increasing nb, which can be achieved by increasing the bandwidth or the number
of buckets.

3. The FFT circular convolution calculation causes aliasing error. It is also controlled by
increasing nb.

4. The discretization and FFT-based algorithms introduce numerical errors. These are usually
immaterial.

There is an inherent tension here: for fixed n, a smaller b is needed to minimize discretization
error but a larger value to minimize truncation and aliasing error. Grübel & Hermesmeier (1999)
presented explicit bounds on the first three types of error.

If the input severity is discrete and bounded, the only error comes from aliasing. In particular,
the algorithm can compute frequency distributions essentially exactly, as demonstrated for the
Poisson in Section 2.3.2.

There are numerical issues in the discretization calculation, which by default computes pk =
F((k+ 1/2)b)− F((k− 1/2)b). Aggregate supports three different calculation modes.

1. The distribution mode takes differences of the sequence F((k+ 1/2)b). This results in a
potential loss of accuracy in the right tail, where the distribution function increases to 1. The
resulting probabilities can be no smaller than the smallest difference between 1 and a float.

2. The survival mode takes the negative difference of the sequence S(k+ 1/2)b) of survival
function values. This results in a potential loss of accuracy in the left tail, where the survival
function increases to 1. However, it provides better resolution in the right tail.

3. A combined mode both attempts to take the best of both worlds, computing:

np.maximum(np.diff(fz.cdf(adj_xs)), -np.diff(fz.sf(adj_xs)))

It does double the work and is marginally slower.
The default is survival mode. The calculation method does not usually impact the aggregate

distribution when FFTs are used because they only compute to accuracy about 10−16. However,
the option is helpful in creating a visually pleasing graph of severity log density.

The FFT routines are accurate up to machine noise, of order 10−16. The noise comes from
floating point issues caused by underflow and (rarely) overflow. Since the matrix F has a 1 in every
row, the smallest value output by the FFT-based algorithm is the smallest x so that 1− x �= 1 in the
floating point implementation, which is around 2−53 ≈ 10−16 with 64 bit floats. The noise can be
positive or negative, the latter highly undesirable in probabilities. Noise appears random and does
not accumulate undesirably in practical applications. It is best to strip out the noise, setting to zero
all values with absolute value less than machine epsilon, numpy.finfo(float).esp. The option
remove_fuzz controls this behavior, and it is set True by default. Brisebarre et al. (2020) provided
a thorough survey of FFT errors. They can result in large relative errors for small probabilities. See
Wilson & Keich (2016) for examples and an approach to minimizing relative error.

4.6. The updatemethod
As we have discussed, two steps are required to calculate a numerical compound in Aggregate:
specification and numerical approximation. DecL or direct API calls can specify a compound and

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 219

produce a Aggregate object, see Section 5.1. Then, the object has a update method that is called
to calculate the numerical approximation. Here is how the algorithm parameters listed above map
to update arguments.

1. The number of buckets to use is input using log2 to enter g. The default value is 16.
2. The bandwidth is input using bs (“bucket size”). If bs= 0, it is estimated using Section 4.2.
3. Padding is input using padding. The default value is 1.
4. The tilt parameter is input using tilt_vector with a value None (the default) signaling no

tilting.
5. Severity discretization method is selected using the sev_calc argument, which can take the

values round (default), forward, and backward.
6. Discretization calculation mode is selected by discretization_calc, which can take the

values survival (default), distribution, or both.
7. Normalization is controlled by normalize, equal to True (default) or False.
8. Remove fuzz is controlled by remove_fuzz, equal to True (default) or False.
9. The percentile p used to estimate the bandwidth is passed through the argument

recommend_p. The default value is 0.99999. It is only a recommendation because the
algorithm will not use p< 1− 10−8 for any unlimited severity.

4.7. Validation
Validation is an important differentiating feature of the implementation. Aggregate automat-
ically calculates the theoretical values of the first three moments for the gross severity and
compound distributions using the well-known relationships between frequency and severity
moments and compound moments (Klugman et al., 2019, p. 153). The theoretical calculation
uses analytic expressions for the frequency and the lognormal, gamma, exponential, and Pareto
severity moments and high-accuracy numerical integration for other severities. Validation is per-
formed when the object is created before any numerical approximations with update. After each
numerical update, the approximation’s moments can be compared to the theoretical moments.
When they align, the user can trust that the approximation is valid. The validation workstream is
entirely independent of the FFT convolution calculation, giving the user additional confidence in
the results.

The validation process comprises seven tests. The tests use a relative error ε = 10−4 threshold
by default, a setting that can be changed by altering the validation_eps global variable. The
update fails validation if any of the following conditions are true.

1. The relative error in expected severity is greater than ε. This test fails if severity does not have
a mean.

2. The relative error in expected aggregate loss is greater than ε.
3. The relative error in aggregate losses ismore than 10 times the relative error in severity. Failing

this test suggests aliasing.
4. The severity CV exists, and its relative error is greater than 10ε.
5. The aggregate CV exists, and its relative error is greater than 10ε.
6. The severity skewness exists, and its relative error is greater than 100ε.
7. The aggregate skewness exists, and its relative error is greater than 100ε.

The property a.valid of an Aggregate object a returns a Validation set of flags (a bit
field) that encodes the results of the tests. Once a moment fails, no higher moments are con-
sidered. The object returns the best outcome <Validation.NOT_UNREASONABLE: 0> if no test
fails, otherwise it describes which tests fail. For example, the compound agg Tricky 10 claims

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

220 Stephen Mildenhall

sev lognorm 3 poisson is hard to estimate because the severity CV is over 90. After updating
with default parameters, validation returns

<Validation.AGG_SKEW|AGG_CV|AGG_MEAN|SEV_SKEW|SEV_CV|SEV_MEAN: 63>

indicating that it fails all moment tests.
If the object has reinsurance, validation returns <Validation.REINSURANCE: 128>, because

validation applies only to specifications without reinsurance, see the discussion at the end
of Section 3.11. If a has not been updated, a.valid returns <Validation.NOT_UPDATED:
256> because there is no numerical approximation to validate. Lastly, the method
a.explain_validation() returns a short text description of the result. Validation information
is presented automatically when the object is printed.

5. Examples and workflow
This section starts by showing how to create a simple Aggregate object first using the API and
then using DecL, to establish the relationship between the two approaches. Section 5.3 repli-
cate exhibits from Parodi (2015) and Grübel and Hermesmeier (1999), useful for actuaries and
researchers. They confirm that Aggregate reproduces previously published results. Section 5.4
addresses a more complex actuarial pricing problem, using an intricate spliced mixed severity dis-
tribution from Albrecher et al. (2017). The last example, Section 5.5, is tailored to the pedagogical
needs of teachers and students. Readers should engage with the code to get the most out of this
section.

The examples illustrate the recommended specify-update-validate-adjust-use (SUVA-use)
workflow:

• Specify the gross compound using DecL.
• Update the numerical approximation using the updatemethod (performed automatically for

objects created using DecL and build).
• Validate the results are “not unreasonable” by reviewing the diagnostics; if necessary, adjust

the calculation parameters and re-run update.
• Adjust the specification for reinsurance and update using the same parameters.
• Use the output.

The SUVA-use workflow leverages the built-in validation on objects without reinsurance and
helps ensure the validity of net and ceded distributions.

5.1. Using the API and DecL
We show how to create the same compound object using the Aggregate API and then using
DecL. While DecL simplifies the workflow for users, programmers may find working with the
class API easier.

We want to model a book of trucking third-party liability insurance business assuming:

• Premium equals 750, and the expected loss ratio equals 67.5% (expected losses 506.25),
• Ground-up severity has been fit to a lognormal distribution with a mean of 100 and CV of

500% (σ = 1.805),
• All policies have a limit of 1000 with no deductible or retention, and
• Frequency is modeled using a Poisson distribution.

The following steps create this example using the API. The first line imports the Aggregate
class and qd, a “quick display” helper function.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 221

In [1]: from aggregate import Aggregate, qd

In [2]: api = Aggregate(name='Trucking',
...: exp_premium=750.0, exp_lr=0.675,
...: exp_attachment=0.0, exp_limit=1000.0,
...: sev_name='lognorm', sev_mean=100.0, sev_cv=5.0,
...: freq_name='poisson')
...:

In [3]: qd(api)

E[X] CV(X) Skew(X)
X
Freq 6.3884 0.39564 0.39564
Sev 79.245 2.1191 3.825
Agg 506.25 0.92708 1.5644
log2 = 0, bandwidth = na, validation: n/a, not updated.

At this point, api exists as a Python object but it does not contain a numerical cdf. Note the
steps taken by the constructor: it converts premium and loss ratio into an expected loss, com-
putes the shape parameter from the CV, the limited expected value of the lognormal reflecting
the policy limit and attachment, and derives expected claim count. It also computes the validation
moments, as printed above by qd(api). The updatemethod uses the FFT-basedmethod tomake
a numerical approximation to the cdf.

In [4]: api.update()

In [5]: qd(api)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

46593.046593.04883.6qerF
Sev 79.245 79.245 -5.8027e-09 2.1191 2.1191 3.825 3.825
Agg 506.25 506.25 -5.8039e-09 0.92708 0.92708 1.5644 1.5644
log2 = 16, bandwidth = 1/8, validation: not unreasonable.

After updating, the validation information, stored in the dataframe api.describe, compares
the theoretic expected value E[X], CV(X), and skewness Skew(X) for the frequency, severity, and
aggregate distributions. The columns prefixed Est show the corresponding statistics computed
using the FFT-based calculation. The mean matches with a relative error of 5.8× 10−9, within the
validation tolerance of 10−4 (resp. within 10−3, 10−2 for CV and skewness; the latter errors not
shown), producing a “not unreasonable” validation. Users should always review this table before
using the numerical output. The display also reports the number of buckets and bandwidth.

The aggregate density, distribution, and other quantities are stored in a dataframe
api.density_df. Using the updated object, we can request various statistics.

In [6]: print(f'Pr(Loss <= 500) = {api.cdf(500):.3f}, '
...: f'Pr(Loss > 2000) = {api.sf(2000):.3f}\n'
...: f'VaR 99% {api.q(0.99):,.0f}, VaR 99.9% {api.tvar(0.999):,.0f}')
...:

Pr(Loss <= 500) = 0.633, Pr(Loss > 2000) = 0.013
VaR 99% 2,082, VaR 99.9% 3,166

DecL insulates the nonprogramming user from the API and expresses the inputs in a more
human-readable form, closer to the problem statement. The DecL code is:

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

222 Stephen Mildenhall

agg Trucking 750 premium at 0.675 lr 1000 xs 0 sev lognorm 100 cv 5 poisson

DecL code is interpreted into a Python Aggregate object using the build function. The build
function combines the specification and update steps. It takes a DecL program, and optionally any
update parameters (see Section 4.6) as keyword arguments, and returns an updated Aggregate
object. The following Python code illustrates the recommended Aggregate workflow:

In [7]: from aggregate import build

In [8]: t = build('agg Trucking 750 premium at 0.675 lr 1000 xs 0 '
...: 'sev lognorm 100 cv 5 poisson')
...:

The build function automatically applies the update method, with sensible default val-
ues. The object t is the same as the updated api object and has the same validation (not
shown). Note that build provides much more functionality: execute x = build.show(’Ca.
Freq0(2|3|4)’, verbose=True) or help(build) to discover more.

Using the full density, it is easy to produce visualizations using standard Python functional-
ity. For example, t.plot() method creates density (left) and log density (center) plots, showing
severity (dashed) and compound losses (solid). The severity distribution has a mass at the pol-
icy limit, and the compound distribution has masses at zero (no claims) and at multiples of the
limit. These are easiest to see on the log density plot. The mixed nature of this type of compound
has been noted before (Hipp, 2006) but the accuracy of FFT-based methods makes it especially
apparent. The right plot shows the severity and compound quantile functions.

In [9]: t.plot(); t.figure.suptitle('Density and quantile plots');

The API arguments created from DecL needed to recreate an object are stored in a dictionary
called spec. The object t2 = Aggregate(∗∗t.spec) replicates t.

Having established the relationship between the API and DecL, all subsequent examples use
DecL and build.

5.2. Discretizationmethod and varying bandwidth
This example reproduces an exhibit from Parodi (2015, p. 250) that explores quantiles of a com-
poundwithmean 3 Poisson frequency, and lognormal severity withμ= 10 and σ = 1. Translating
the Poisson-lognormal compound into DecL is straightforward: σ is the shape parameter, and
μ= 10 is a scale factor exp (10). (A scipy.stats.lognorm object with shape σ is lognormal with
μ= 0.) Running the model with normalize=False, because severity is unlimited and thick-
tailed Section 2.4, and taking defaults for other update parameters produces an approximation
that is not unreasonable. Aggregate selects a bandwidth of 70.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 223

In [10]: from aggregate import build, qd

In [11]: a = build('agg Parodi 3 claims sev exp(10) * lognorm 1 poisson'
....: , normalize=False)
....:

In [12]: qd(a)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

53775.053775.03qerF
Sev 36316 36315 -1.2535e-06 1.3108 1.3107 6.1849 6.1431
Agg 1.0895e+05 1.0895e+05 -1.4149e-06 0.95189 0.95181 2.5875 2.5743
log2 = 16, bandwidth = 70, validation: not unreasonable.

In [13]: print(f'mean={a.agg_m:,.0f}, sd={a.agg_sd:,.0f}')
mean=108,947, sd=103,705

Readers should try updating the object with normalize=True to see the impact of this set-
ting. The discretized severity CV and skewness statistics are closer to their actual values without
normalization.

Continuing, we can update the Aggregate object a to match Parodi’s calculations. Parodi
uses 65,536 buckets, the Aggregate default, and recomputes the compound using band-
widths of 10, 50, 100, and 1000. He then extracts various percentiles. He discretizes severity
by re-scaling the density evaluated on multiples of the bucket size. This method close to the
sev_calc=’backward’, see Section 2.4. He does not discuss padding, so we set padding= 0.
Some basic Python code produces the following table.

In [14]: import pandas as pd

In [15]: import numpy as np

In [16]: means = ['Mean', a.est_m]; sds = ['SD', a.est_sd]

In [17]: p = np.array([.5, .75, .8, .9, .95, .98, .99, .995, .998, .999, .9999])

In [18]: df = pd.DataFrame({'p': p, 'Aggregate': a.q(p)})

In [19]: for bs in [100, 50, 10, 1000, '1000']:
....: if type(bs) == str:
....: sev_calc = 'discrete'; bs = float(bs); cn = 'h=1000r';
....: else:
....: sev_calc = 'backward'; bs = float(bs); cn = f'h={bs:.0f}';
....: a.update(bs=bs, log2=16, padding=0, sev_calc=sev_calc)
....: df[cn] = a.q(p)
....: means.append(a.est_m)
....: sds.append(a.est_sd)
....:

In [20]: df.loc['Mean', :] = means

In [21]: df.loc['Error on Mean', :] = ['Error on Mean'] + [f'{m / a.agg_m - 1:.2%}'
....: for m in means[1:]]
....:

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

224 Stephen Mildenhall

In [22]: df.loc['SD', :] = sds

In [23]: df.loc['Error on SD', :] = ['Error on SD'] + [f'{s / a.agg_sd - 1:.2%}'␣
�� for s in sds[1:]]

In [24]: df['p'] = [i if type(i) == str else (f'{i:.1%}' if i <= 0.999 else f'{i:.2
�� %}') for i in df.p]

In [25]: qd(df.set_index('p'), ff=lambda x: f'{x:10,.0f}')

Aggregate h=100 h=50 h=10 h=1000 h=1000r
p
50.0% 82,320 82,500 82,400 82,090 84,000 82,000
75.0% 148,820 149,100 148,950 148,140 151,000 149,000
80.0% 169,610 169,800 169,750 168,680 172,000 170,000
90.0% 234,570 234,800 234,700 232,390 237,000 235,000
95.0% 302,050 302,300 302,150 297,160 304,000 302,000
98.0% 398,020 398,300 398,150 384,660 401,000 398,000
99.0% 478,030 478,300 478,100 450,200 481,000 478,000
99.5% 566,230 566,500 566,350 511,030 569,000 566,000
99.8% 699,160 699,400 699,200 575,820 702,000 699,000
99.9% 815,010 815,300 814,950 609,190 818,000 815,000
99.99% 1,329,510 1,329,700 1,326,800 649,890 1,332,000 1,330,000
Mean 108,946 109,096 109,018 107,019 110,446 108,947
Error on Mean -0.00% 0.14% 0.07% -1.77% 1.38% 0.00%
SD 103,697 103,752 103,652 96,020 104,234 103,706
Error on SD -0.01% 0.04% -0.05% -7.41% 0.51% 0.00%

The last table agrees closely with Fig. 17.5 (p. 250) in Parodi’s book. Interestingly, almost all the
error across bandwidths > 10 is caused by the way Parodi discretizes. The last column h= 1000r
shows the result using the rounding method: it is much closer to the first column. In particular,
the mean is almost exact. When h= 10 there is too much truncation error to obtain accurate
results.

This example highlights the importance of the discretization method, the superiority of the
rounding discretizationmethod over backwards or forwards, and the need to select the bandwidth
carefully.

5.3. Aliasing, tilting, and padding
This example reproduces a table from Grübel & Hermesmeier (1999) based on a compound with
mean 20 Poisson frequency and a Levy stable severity with α = 1/2. The Levy distribution is a
zero shape parameter distribution in scipy.stats.

The mean of the Levy distribution does not exist, implying that Aggregate cannot estimate
the bandwidth, so the user must supply it to avoid an error. The example takes bs= 1. In this
case, the diagnostics are irrelevant, and the usual SUVA-use workflow is adjusted. To validate, we
use the stable property to compute the compound probabilities exactly. Being stable with index
α = 1/2 means that

X1 + · · · + Xn ∼ n2X. (5.1)

This identity and conditional probability are used to compute the compound probability that
x− 1/2< X ≤ x+ 1/2.

The code below starts by building the Aggregate object with update=False. The first table
shows the diagnostics dataframe before updating. Then update is applied with bs= 1 and various
other input parameters. The results across update parameters are then assembled, along with an
analytic estimate of the distribution using Eq. (5.1).

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 225

In [28]: a = build(f'agg L {en} claims sev levy poisson', update=False)

In [29]: qd(a)

E[X] CV(X) Skew(X)
X
Freq 20 0.22361 0.22361
Sev inf
Agg inf
log2 = 0, bandwidth = na, validation: n/a, not updated.

In [30]: bs = 1

In [31]: a.update(log2=16, bs=bs, padding=2, normalize=False, tilt_vector=None)

In [32]: df = a.density_df.loc[[1, 10, 100, 1000], ['p_total']] / a.bs

In [33]: df.columns = ['Agg pad=2']

In [34]: def exact_cdf(x, en):
....: n = 5 * en
....: p = np.zeros(n)
....: a = np.zeros(n)
....: p[0] = np.exp(-en)
....: fz = levy()
....: for i in range(1, n):
....: p[i] = p[i-1] * en / i
....: a[i] = fz.cdf((x+0.5)/i**2) - fz.cdf((x-0.5)/i**2)
....: return np.sum(p * a)
....:

In [35]: df['True'] = [exact_cdf(i, en) for i in df.index]

In [36]: log2 = 10

In [37]: for tilt in [None, 1/1024, 5/1024, 25/1024]:
....: a.update(log2=log2, bs=bs, padding=0,
....: normalize=False, tilt_vector=tilt)
....: if tilt is None:
....: tilt = 0
....: df[f'Tilt {tilt:.2g}'] = a.density_df.loc[[1, 10, 100, 1000],
....: ['p_total']]/a.bs
....:

In [38]: df.index = [f'{x: 6.0f}' for x in df.index]; df.index.name = 'x'

In [39]: qd(df.iloc[:, [1,0,2,3,4, 5]], ff=lambda x: f'{x:11.3e}')

True Agg pad=2 Tilt 0 Tilt 0.00098 Tilt 0.0049 Tilt 0.024
x

1 1.078e-07 2.462e-07 2.064e-04 7.346e-05 1.560e-06 2.462e-07
10 3.075e-05 3.432e-05 2.380e-04 1.067e-04 3.562e-05 3.432e-05
100 1.155e-03 1.156e-03 1.321e-03 1.215e-03 1.157e-03 1.156e-03
1000 2.013e-04 2.012e-04 2.134e-04 2.056e-04 2.013e-04 2.012e-04

In [26]: from scipy.stats import levy

In [27]: en = 20

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

226 Stephen Mildenhall

The last table is identical to that shown in the paper. The column computed using Panjer recur-
sion in the original paper is replicated by Aggregate using log2= 16, padding= 2, and bs= 1.
The remaining models use bs= 1 with log2= 10, no padding, and varying amounts of tilting as
shown in the column headings.

This example confirms that padding is an effective way to combat aliasing. Padding is simpler to
implement than tilting and is the Aggregate default. The example also shows the FFT-based algo-
rithm matches the exact probabilities computed analytically. Running with normalize=True
shows the impact of normalizing a thick-tailed severity. Mildenhall (2023) presented other similar
examples from Embrechts & Frei (2009), Schaller & Temnov (2008), and Shevchenko (2010).

5.4. A more complex pricing problem
This example builds a more complex model, similar to one an actuary might use to exposure
rate a per-occurrence or aggregate excess reinsurance treaty. The analysis is from the cedent’s
perspective, focusing on the distribution of net outcomes. Following the SUVA-use workflow, the
example is built up in stages, starting with the gross distribution. The underlying book is motor
third-party liability, and we use parameters fit by Albrecher et al. (2017), Section 6.6, for MTPL
Company A.

Albrecher models frequency using a Poisson distribution with an annual expected claim count
of 55.27. Severity is a splice mixture of a gamma (Erlang) mixture and a single parameter Pareto
(ibid. p.110). There are two gamma components with shapes 1 and 4, common scale 63,410, and
weights 0.155 and 0.845, respectively. The Pareto distribution is spliced in for claims above 500,000
and has a shape parameter equal to 1/0.506= 1.976 (mean but no variance). The gamma mixture
has weight 0.777. The next code block creates a named severity MTPL.Awith these parameters that
we can use in subsequent calculations. It uses Python f-strings to substitute values into the DecL
program.

In [40]: from aggregate import build, qd, pprint_ex

In [41]: import pandas as pd

In [42]: pi = 0.777; alpha = np.array([0.155, 0.845]); r = np.array([1, 4])

In [43]: scale = 63410.; pareto_alpha = 1 / 0.506; t = 500000.

In [44]: wts = np.hstack((alpha * pi, 1-pi))

In [45]: shape = np.hstack((r, pareto_alpha))

In [46]: s = build(f'sev MTPL.A [{scale} {scale} {t}] * '
....: f'[gamma gamma pareto] {shape} '
....: f'wts {wts} splice [0 0 {t}] [{t} {t} inf] ')
....:

In [47]: print(pprint_ex(s.program, split=60))
sev MTPL.A [63410.0 63410.0 500000.0] * [gamma gamma pareto] [1. 4. 1.97628458]

wts [0.120435 0.656565 0.223] splice [0 0 500000.0] [500000.0 500000.0 inf]

Next, we build the gross compound distribution, using the DecL sev.MTPL.A to recall the
severity created in the last step. Since the Pareto component has no variance, we must input
a bandwidth, here 5000. We also increase the default number of buckets, using log2= 19.
Finally, we set normalization=False since severity is uncapped and thick-tailed. We show
the validation dataframe and report quantiles that closely match those shown in Albrecher
Table 6.1.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 227

In [51]: df['Sev VaR'] = gross.q_sev(df.p)

In [52]: df['Alb sev'] = [1065451., 2405538., 3416123.]

In [53]: df['Agg VaR'] = gross.q(df.p)

In [54]: df['Alb agg'] = [31100000., 41420000., 48760000.]

In [55]: qd(df, ff='basic', index=False)

p Sev VaR Alb sev Agg VaR Alb agg
95.0% 1,065,000 1,065,451 31,160,000 31,100,000
99.0% 2,405,000 2,405,538 41,505,000 41,420,000
99.5% 3,415,000 3,416,123 48,915,000 48,760,000

In [48]: gross = build('agg Gross 55.27 claims sev.MTPL.A poisson'
....: , bs=5000, log2=19, normalize=False)
....:

In [49]: qd(gross)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

15431.015431.072.55qerF
Sev 3.8928e+05 3.8925e+05 -7.5109e-05 inf 2.5796 517.08
Agg 2.1515e+07 2.1514e+07 -7.5663e-05 inf 0.37196 56.117
log2 = 19, bandwidth = 5000, validation: not unreasonable.

In [50]: df = pd.DataFrame({'p': [0.95, 0.99, 0.995]})

The property gross.statistics returns an expanded table of theoretic frequency, severity,
and compound statistics by severity mixture component (not displayed).

In the SUVA-use workflow, we have fixed the specification of the gross portfolio and deter-
mined appropriate update parameters. Moving on, we adjust the gross by adding an occurrence
reinsurance tower. The DecL recalls the gross specification using agg. Gross and then appends
the reinsurance, ensuring consistency between gross and net. The tower has two layers, a 50%
share (placement) of 500,000 xs 500,000 and a 100% placement of 1M xs 1M. When reinsurance
is present the validation dataframe shows theoretic gross moments and numeric net or ceded
losses, making it easy to see the impact of reinsurance. This behavior is flagged by the validation
result: n/a, reinsurance.

In [56]: net = build('agg Net agg.Gross occurrence net of '
....: '50% so 500000 xs 500000 and 1000000 xs 1000000 '
....: , bs=5000, log2=19, normalize=False)
....:

In [57]: qd(net)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

15431.015431.072.55qerF
Sev 3.8928e+05 3.3283e+05 -0.145 inf 2.7731 661.81
Agg 2.1515e+07 1.8396e+07 -0.145 inf 0.39633 73.833
log2 = 19, bandwidth = 5000, validation: n/a, reinsurance.

In [58]: df['Net Sev VaR'] = net.q_sev(df.p)

In [59]: df['Net Agg VaR'] = net.q(df.p)

In [60]: df['Occ Chg'] = df['Net Agg VaR'] / df['Agg VaR'] - 1

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

228 Stephen Mildenhall

In [61]: qd(df.drop(columns=['Alb sev', 'Alb agg']), ff='basic', index=False)

p Sev VaR Agg VaR Net Sev VaR Net Agg VaR Occ Chg
95.0% 1,065,000 31,160,000 750,000 25,860,000 -17.0%
99.0% 2,405,000 41,505,000 1,155,000 36,195,000 -12.8%
99.5% 3,415,000 48,915,000 2,165,000 43,835,000 -10.4%

The reinsurance has the anticipated impact on losses, lowering the tail quantiles by 10–17%.
Finally, we add an aggregate excess of loss program, covering from the 95th to the 99th percentiles
of net losses. We start with the net program and append the new program, passing in the limit
and attachment using the quantile function on the net. The combined program lowers the tail
quantiles by between 17% and 38%.

....: , bs=5000, log2=19, normalize=False)

....:

In [63]: qd(net_agg)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

15431.015431.072.55qerF
Sev 3.8928e+05 3.3283e+05 -0.145 inf 2.7731 661.81
Agg 2.1515e+07 1.8163e+07 -0.15581 inf 0.36533 94.217
log2 = 19, bandwidth = 5000, validation: n/a, reinsurance.

In [64]: df['Net-net Agg'] = net_agg.q(df.p)

In [65]: df['Agg Chg'] = df['Net-net Agg'] / df['Agg VaR'] - 1

In [66]: qd(df.drop(columns=['Alb sev', 'Alb agg', 'Net Sev VaR', 'Occ Chg']),
....: ff='basic', index=False)
....:

p Sev VaR Agg VaR Net Agg VaR Net-net Agg Agg Chg
95.0% 1,065,000 31,160,000 25,860,000 25,860,000 -17.0%
99.0% 2,405,000 41,505,000 36,195,000 25,860,000 -37.7%
99.5% 3,415,000 48,915,000 43,835,000 33,500,000 -31.5%

In [62]: net_agg = build('agg Net-Net agg.Net aggregate net of '
....: f'{net.q(0.99) - net.q(0.95)} xs {net.q(0.95)} '

This analysis is from the cedent’s perspective, focusing on the distribution of net outcomes.
It can be switched to the reinsurer’s perspective by replacing net of with ceded to to obtain
the distribution of ceded losses for each treaty. One caveat: it is impossible to obtain the total
occurrence plus aggregate cession in one step using Aggregate.

Table L and M charges (Fisher et al., 2017) compare expected losses with different occurrence
and aggregate limits. Thus, by adjusting the occurrence and aggregate layers, they can be com-
puted using this template. It can also be extended to incorporate a limits profile andmore complex
reinsurance arrangements, such as sliding scale or profit commissions, loss corridors, or swing
rating (Bear and Nemlick, 1990; Clark, 2014).

This example uses a realistic, three-way conditional mixture to model a multilayer occurrence
and aggregate excess of loss program. It illustrates the SUVA-use workflow and shows how DecL’s
ability to store and recall compounds provides a succinct and reliable way to specify complex
structures.

5.5. A discrete compound for educators and students
This example uses Aggregate as an educational tool by setting up and solving a textbook problem
about a compound with discrete frequency and severity.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 229

Question. You are told that frequency N can equal 1, 2, or 3, with probabilities 1/2, 1/4, and
1/4, and that severity X can equal 1, 2, or 4, with probabilities 5/8, 1/4, and 1/8. Model the com-
pound distribution A= X1 + · · · + XN using the collective risk model and answer the following
questions.

1. What are the expected value, CV, and skewness of N, X, and A?
2. What possible values can A take? What are the probabilities of each?
3. Plot the pmf, cdf, and the quantile function for severity and the compound distribution.

Solution: Use the dfreq and dsev DecL keywords to specify the frequency (exposure) and
severity by entering vectors of outcomes and probabilities. The discrete syntax is very convenient
for this type of problem. The FFT-based algorithm is exact for models with discrete severity and
bounded frequency because padding removes aliasing, and there is no discretization error. Thus,
the validation dataframe answers question 1.

In [68]: ex = build('agg Discrete.Eg dfreq [1 2 3] [1/2 1/4 1/4] '
....: 'dsev [1 2 4] [5/8 1/4 1/8]')
....:

In [69]: qd(ex)

E[X] Est E[X] Err E[X] CV(X) Est CV(X) Skew(X) Est Skew(X)
X

83394.08374.057.1qerF
Sev 1.625 1.625 0 0.61056 0.61056 1.5719 1.5719
Agg 2.8438 2.8437 -1.1102e-16 0.66144 0.66144 1.0808 1.0808
log2 = 5, bandwidth = 1, validation: not unreasonable.

In [67]: from aggregate import build, qd

The aggregate pmf is available in the dataframe ex.density_df. Here are the pmf, cdf, and sf
evaluated for all possible outcomes, answering question 2. The index is adjusted to an int to print
nicely.

In [70]: bit = ex.density_df; bit.index = bit.index.astype(int)

In [71]: qd(bit.query('p_total > 0')[['p_total', 'F', 'S']], ff='int_ratio')

p_total F S
loss
1 5/16 5/16 11/16
2 57/256 137/256 119/256
3 285/2048 1381/2048 667/2048
4 155/1024 1691/2048 357/2048
5 35/512 1831/2048 217/2048
6 115/2048 973/1024 51/1024
7 15/512 1003/1024 21/1024
8 5/512 1013/1024 11/1024
9 15/2048 2041/2048 7/2048
10 3/1024 2047/2048 1/2048
12 1/2048 1 0

The possible outcomes range from 1 (frequency 1, outcome 1) to 12 (frequency 3, all outcomes
4). It is easy to check that the reported probabilities are correct, and a moment’s thought confirms
that obtaining an outcome of 11 is impossible.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000216

230 Stephen Mildenhall

Finally, the graphs requested in question 3 are produced by ex.plot() using data in the
ex.density_df dataframe. They automatically use settings appropriate to a discrete distribution.

In [72]: ex.plot()

This example shows how Aggregate can be used to set up and solve simple classroom
problems about compound distributions and illustrates DecL’s very concise syntax for discrete
distributions.

6. Conclusion
The collective risk model, a foundation of actuarial science, relies on frequency-severity com-
pound distributions. Aggregate brings these models to life by approximating compound dis-
tributions using a fast, accurate, and flexible FFT-based algorithm. It simplifies the use of FFTs
by providing default values for the bandwidth and other crucial parameters and includes a val-
idation process to bolster user confidence. It introduces DecL, a domain-specific language that
enables users to specify compound distributions using familiar insurance and actuarial terms.
Distributions can be parameterized using the mean, CV, and other user-relevant quantities. To
our knowledge, Aggregate is the first package to speak the user’s language this way.

Practicing actuaries, researchers, teachers, and students can all benefit from using Aggregate.
Its speed, accuracy, and flexibility make it an ideal tool for actuaries working in large account,
reinsurance, excess of loss, or property pricing, risk management, and catastrophe risk manage-
ment, or any other application requiring the entire distribution of potential outcomes. Researchers
can use it to observe subtle distributional properties, test hypotheses, and create edifying exam-
ples swiftly and simply. Finally, Aggregate is a workbench on which teachers and students can
set up and solve a wide variety of textbook problems about frequency, severity, and compound
distributions. It helps students see the underlying theory, avoiding mechanical computations.

The Aggregate class is part of the larger aggregate Python package that aims to broaden
the appeal of FFT-based methods. The time is ripe for this contribution. Today, the actuarial
profession is more willing to use open-source software, spurred on by the successful adoption
of R and Python in machine learning and predictive modeling. Aggregate can help FFT-based
algorithms become the mainstream methods they deserve to be.

Acknowledgements. I would like to add an acknowledgement as follows: I would like to thank all users of this software and
the reviewers for their helpful comments.

Data availability statement. The data and code that support the findings of this study are openly available on GitHub
at https://github.com/mynl/aggregate. The results contained in the manuscript are reproducible in a virtual environment,
excluding environment-specific numerical errors. These discrepancies do not affect the overall validity of the results. The
repository is registered with the unique Zenodo DOI reference number https://doi.org/10.5281/zenodo.10557198.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://github.com/mynl/aggregate
https://doi.org/10.5281/zenodo.10557198
https://doi.org/10.1017/S1748499524000216

Annals of Actuarial Science 231

Funding statement. This work received no specific grant from any funding agency, or commercial or not-for-profit
organization.

Competing interests. The author declares no competing interests.

References
Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques. Addison Wesley.
Albrecher,H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. John Wiley & Sons.
Bahnemann, D. (2015). Distributions for Actuaries. Casualty Actuarial Society Mongraphs No. 2. ISBN 9780962476280.

www.casact.org.
Bear, R. A., & Nemlick, K. J. (1990). Pricing the impact of adjustable features and loss sharing provisions of reinsurance

treaties. Proceedings of the Casualty Actuarial Society, 77(147), 86–87. doi: 10.1016/0167-6687(93)91078-9.
Beazely,D. (2022). Sly (sly lex-yacc). https://github.com/dabeaz/sly.
Bertram, J. (1981). Numerische berechnung von gesamtschadenverteilungen. Blätter der DGVFM, 15(2), 175–194.
Bohman, H. (1969). The numerical integration of the fourier inversion formula for distribution functions. Scandinavian

Actuarial Journal, 1969(3), 52–62. doi: 10.1080/03461238.1969.10404608.
Bohman,H. (1974). Fourier inversion-distribution functions-long tails. Scandinavian Actuarial Journal, 1974(1), 43–45. doi:

10.1080/03461238.1974.10408660.
Bowers, N., Gerber, H., Hickman, J., Jones, D., & Nesbitt, C. (1997). Actuarial mathematics. Society of Actuaries. doi:

10.2307/253313
Brisebarre, N., Joldeş,M.,Muller, J. M., Naneş, A. M., & Picot, J. (2020). Error analysis of some operations involved in the

Cooley-Tukey fast fourier transform. ACM Transactions on Mathematical Software, 46(2), 1–27. doi: 10.1145/3368619.
Bühlmann, H. (1984). Numerical evaluation of the compound Poisson distribution: Recursion or fast fourier transform?

Scandinavian Actuarial Journal, 1984(2), 116–126. doi: 10.1080/03461238.1984.
Clark, D. R. (2014). Basics of Reinsurance Pricing Actuarial Study Note. CAS Study Note. http://www.casact.org/

library/studynotes/Clark
Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex fourier series. Mathematics of

Computation, 19(90), 297–301. doi: 10.2307/2003354.
Corro,D., & Tseng, Y.-c. (2021). NCCI’s 2014 Excess loss factors. Variance, 14(1), 1–28.
Daykin, C. D., Pentikainen, T., & Pesonen,M. (1994). Practical risk theory for actuaries. Chapman and Hall.
Dutang,C.,Goulet,V., & Pigeon,M. (2008). Actuar: An R package for actuarial science. Journal of Statistical Software, 25(7),

1–37. doi: 10.18637/jss.v025.i07.
Embrechts, P., & Frei, M. (2009). Panjer recursion versus FFT for compound distributions. Mathematical Methods of

Operations Research, 69(3), 497–508. doi: 10.1007/s00186-008-0249-2.
Embrechts, P., Grübel, R., & Pitts, S. M. (1993). Some applications of the fast fourier transform algorithm in insurance

mathematics. Statistica Neerlandica, 47(1), 59–75. doi: 10.1111/j.1467-9574.1993.tb01406.x
Embrechts,P.,Klüppelberg,C., &Mikosch,T. (2013).Modelling extremal events: For insurance and finance, vol. 33. Springer

Science & Business Media.
Fisher, G. K., McTaggart, L., Petker, J., & Pettingell, R. (2017). Individual Risk Rating. Technical Report April, Casualty

Actuarial Science.
Frees, E. (2018). Loss Data Analytics. https://openacttexts.github.io/Loss-Data-Analytics/. arXiv:1808.06718.
Grübel, R., & Hermesmeier, R. (1999). Computation of compound distributions I: Aliasing errors and exponential tilting.

Astin Bulletin, 29(2), 197–214. doi: 10.2143/AST.29.2.504611.
Grübel, R., & Hermesmeier, R. (2000). Computation of compound distributions II: Discretization errors and Richardson

extrapolation. ASTIN Bulletin, 30(2), 309–332. doi: 10.2143/AST.30.2.504638.
Heckman, P. E., &Meyers, G. G. (1983) The calculation of aggregate loss distributions from claim severity and claim count

distributions. In: Proceedings of the casualty actuarial society (pp. 49–66).
Hipp, C. (2006). Speedy convolution algorithms and Panjer recursions for phase-type distributions. Insurance: Mathematics

and Economics, 38(1), 176–188. doi: 10.1016/j.insmatheco.2005.08.009.
Huberman, G., Mayers, D., & Smith, C. W. (1983). Optimal insurance policy indemnity schedules. The Bell Journal of

Economics, 14(2), 415. doi: 10.2307/3003643.
Hürlimann, W. (1986). Error bounds for stop-loss premiums calculated with the fast fourier transform. Scandinavian

Actuarial Journal, 1986(2), 107–113. doi: 10.1080/03461238.1986.
Johnson, N. L., Kotz, S., & Kemp, A.W. (2005). Univariate discrete distributions (3rd ed.). John Wiley & Sons.
Kaas, R., Goovaerts,M., Dhaene, J., & Denuit,M. (2008).Modern actuarial risk theory. Springer. ISBN 978-3-540-70992-3.

arXiv:1011.1669v3. doi: 10.1007/978-3-540-70998-5.

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

www.casact.org
https://doi.org/10.1016/0167-6687(93)91078-9
https://github.com/dabeaz/sly
https://doi.org/10.1080/03461238.1969.10404608
https://doi.org/10.1080/03461238.1974.10408660
https://doi.org/10.2307/253313
https://doi.org/10.1145/3368619
https://doi.org/10.1080/03461238.1984
http://www.casact.org/library/studynotes/Clark
http://www.casact.org/library/studynotes/Clark
https://doi.org/10.2307/2003354
https://doi.org/10.18637/jss.v025.i07
https://doi.org/10.1007/s00186-008-0249-2
https://doi.org/10.1111/j.1467-9574.1993.tb01406.x
https://openacttexts.github.io/Loss-Data-Analytics/
http://arxiv.org/abs/1808.06718
https://doi.org/10.2143/AST.29.2.504611
https://doi.org/10.2143/AST.30.2.504638
https://doi.org/10.1016/j.insmatheco.2005.08.009
https://doi.org/10.2307/3003643
https://doi.org/10.1080/03461238.1986
http://arxiv.org/abs/1011.1669v3
https://doi.org/10.1007/978-3-540-70998-5
https://doi.org/10.1017/S1748499524000216

232 Stephen Mildenhall

Klugman, S. A., Panjer,H. H., &Willmot,G. E. (2019). Loss models: From data to decisions, vol. 715 (5th ed.). JohnWiley &
Sons.

Levine, J. R.,Mason, T., & Brown,D. (1992). lex & yacc. O’Reilly.
Mandelbrot,B. B. (2013) Fractals and scaling in finance: Discontinuity, concentration, risk, Selecta volume E. Springer Science

& Business Media.
Marc Goovaerts, F. E. De V., &Haezendonck, J. (1984). Insurance premiums. North-Holland.
McKinney,W. (2010). Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference,

1(Scipy), 56–61. doi: 10.25080/majora-92bf1922-00a.
Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-specific languages. ACM Computing

Surveys, 37(4), 316–344. doi: 10.1115/IPC2010-31470.
Mildenhall, S. J. (2005). Correlation and aggregate loss distributions with an emphasis on the iman-conover method.

Casualty Actuarial Society Forum. https://www.casact.org/sites/default/files/database/forum
Mildenhall, S. J. (2017). Actuarial geometry. Risks, 5(2), 31. doi: 10.3390/risks5020031.
Mildenhall, S. J. (2023). Aggregate documentation. URL: https://aggregate.readthedocs.io/&/downloads/en/latest/pdf/.
Mildenhall, S. J., &Major, J. A. (2022). Pricing insurance risk: Theory and practice. John Wiley & Sons, Inc.
Milevsky, M. A., & Posner, S. E. (1998). Asian options, the sum of Lognormals, and the reciprocal Gamma distribution.

Journal of Financial and Quantitative Analysis, 33(3), 409–422.
Pandas-dev/pandas:pandas (2020). Pandas-dev/pandas: pandas. doi: 10.5281/zenodo.3509134.
Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN Bulletin, 12(1), 22–26. doi:

10.1017/S0515036100006796.
Parodi, P. (2015). Pricing in general insurance. CRC Press. file:///C:/Users/youhe/Downloads/kdoc_o_00042_01.pdf. ISBN

9781466581487.
Pittarello,G., Luini, E., &Marchione,M.M. (2024). GEMAct: a Python package for non-life (re)insurancemodelling.Annals

of Actuarial Science, 4–11. doi: 10.1017/S1748499524000022.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C (2nd ed.). Cambridge

University Press. ISBN 0521431085.
Robertson, J. P. (1992). The computation of aggregate loss distributions. Proceedings of the Casualty Actuarial Society,

79(150), 57–133.
Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking &

Finance, 26(7), 1443–1471.
Schaller, P., & Temnov, G. (2008). Efficient and precise computation of convolutions: Applying FFTs to heavy tailed

distributions. Computational Methods in Applied Mathematics, 8(2), 187–200.
Shevchenko,P.V. (2010). Calculation of aggregate loss distributions. Journal of Operational Risk, 5(2), 3–40. arXiv:1008.1108.
Strang, G. (1986). Introduction to applied mathematics. Wellesley-Cambridge Press.
Van Rossum, G., &Drake, F. L. (2009). Python 3 Reference manual). CreateSpace. ISBN 1441412697.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,

Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K.Mayorov, N., Nelson, A.
R. J., Jones, E., Kern, R., Eric Larson, C. J. C., İ., Polat,. . .,Pedregosa, F. (2020). Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: fundamental algorithms for scientific computing in python. Nature Methods, 17(3), 261–272.
doi: 10.1038/s41592-019-0686-2.

Wang, S. S. (1998) Aggregation of correlated risk portfolios: Models and algorithms. In Proceedings of the casualty actuarial
society (pp. 848–939). http://www.casact.com/pubs/proceed/proceed98/980848.pdf

Wilson, H., & Keich, U. (2016). Accurate pairwise convolutions of non-negative vectors via FFT. Computational Statistics
and Data Analysis, 101, 300–315. doi: 10.1016/j.csda.2016.03.010.

Zhu, L. (2011) Introduction to increased limit factors. In CAS ratemaking seminar (pp. 1–31).

Cite this article: Mildenhall S (2025). Aggregate: fast, accurate, and flexible approximation of compound probability
distributions, Annals of Actuarial Science, 19, 193–232. https://doi.org/10.1017/S1748499524000216

https://doi.org/10.1017/S1748499524000216 Published online by Cambridge University Press

https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1115/IPC2010-31470
https://www.casact.org/sites/default/files/database/forum
https://doi.org/10.3390/risks5020031
https://aggregate.readthedocs.io/&/downloads/en/latest/pdf/
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1017/S0515036100006796
https://doi.org/10.1017/S1748499524000022
http://arxiv.org/abs/1008.1108
https://doi.org/10.1038/s41592-019-0686-2
http://www.casact.com/pubs/proceed/proceed98/980848.pdf
https://doi.org/10.1016/j.csda.2016.03.010
https://doi.org/10.1017/S1748499524000216
https://doi.org/10.1017/S1748499524000216

	
	Introduction
	Background and motivation
	Context and literature
	Installation and reproducibility
	Similar software
	Problem and algorithms
	The aggregate calculation

	Estimating compound distributions with Fourier transforms
	Discrete Fourier transforms and fast Fourier transforms
	Discrete Fourier transforms
	Aliasing examples
	The FFT algorithm
	The discrete representation of distributions
	Discrete and continuous representations
	Methods to discretize the severity distribution
	Truncation and normalization
	Approximating the density
	Exponential tilting
	The grammar of distributions
	Domain-specific languages
	The DecL lexer
	The eight clause defining a compound distribution
	The name clause
	The exposure clause
	Discrete distributions
	The limit clause
	The severity clause
	The frequency clause
	Using names
	The reinsurance clauses
	The note clause
	Vectorization
	Algorithm and implementation
	Algorithm inputs
	Estimating the bandwidth
	Padding
	Algorithm steps
	Error analysis
	The update method

	Validation
	Examples and workflow
	Using the API and DecL
	Discretization method and varying bandwidth
	Aliasing, tilting, and padding
	A more complex pricing problem
	A discrete compound for educators and students
	Conclusion
	References

