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Analysis in L2(Rd)

In this chapter we describe basic properties of operators acting on L2(Rd). After
a preliminary Sect. 4.1, we will study the Weyl commutation relations and prove
the famous Stone–von Neumann uniqueness theorem. Then we define the so-
called x,D-quantization, with position to the left and the momentum to the
right. We will compare it to the D,x-quantization, which uses the reverse order of
position and momentum. The Weyl–Wigner quantization, in some sense superior
to the x,D- and D,x-quantizations, will be introduced in Chap. 8, which can be
viewed as a continuation of the present chapter.

4.1 Distributions and the Fourier transformation

Throughout this section, X is a real vector space of dimension d with a Lebesgue
measure dx. As in Subsect. 3.6.5, the dual space X # is then equipped with a
canonical Lebesgue measure, which we denote dξ. If additionally X is equipped
with a Euclidean structure, we take dx to be the unique compatible Lebesgue
measure (see Subsect. 3.6.5).

4.1.1 Distributions

Let Ω be an open subset of X .

Definition 4.1 C∞
c (Ω) denotes the space of smooth functions compactly sup-

ported in Ω. We equip C∞
c (Ω) with the usual topology and rename it D(Ω).

D′(Ω) denotes its topological dual. Elements of D′(Ω) are called distributions.

A large class of distributions in D′(Ω) is given by functions f ∈ L1
loc(Ω) with

the action on Φ ∈ C∞
c (Ω) given by

〈f |Φ〉 :=
ˆ

f(x)Φ(x)dx. (4.1)

We will use the integral notation on the r.h.s. of (4.1) also in the case of distribu-
tions that do not belong to L1

loc(Ω). Here are some examples with Ω = X = R:ˆ
δ(t)Φ(t)dt := Φ(0),

ˆ
(t± i0)λΦ(t)dt := lim

ε↘0

ˆ
(t± iε)λΦ(t)dt.
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4.1 Distributions and the Fourier transformation 93

4.1.2 Pullback of distributions

Let χ : Ω1 → Ω2 be a diffeomorphism between two open sets Ωi ⊂ Rd , i = 1, 2.

Definition 4.2 One defines the pullback χ# : D′(Ω2) → D′(Ω1) byˆ
χ# f(x1)Φ(x1)dx1 :=

ˆ
f(x2)Φ ◦ χ−1(x2)|det∇χ−1(x2)|dx2 , Φ ∈ D(Ω1).

Clearly, if f ∈ L1
loc(Ω2), then χ# f(x1) = f ◦ χ(x1).

The pullback of distributions can be generalized to a large class of transforma-
tions between sets of different dimension. Let Ωi ⊂ Rdi , i = 1, 2, be two open sets
and τ : Ω1 → Ω2 a submersion, that is, a smooth map whose derivative is every-
where surjective. We can find an open set Ω3 ⊂ Rd1 −d2 and a diffeomorphism
χ : Ω1 → Ω2 × Ω3 such that

πΩ2 ◦ χ = τ, (4.2)

where πΩ2 is the projection onto Ω2. We then define the map τ# : D′(Ω2) →
D′(Ω1) as

τ# f := χ# (f ⊗ 1),

where we consider f ⊗ 1 as an element of D′(Ω2 × Ω3). One can show that τ# is
independent on the choice of χ satisfying (4.2).

Definition 4.3 The map τ# : D′(Ω2) → D′(Ω1) is also called the pullback of
distributions.

In particular, if f ∈ L1
loc(Ω2), then

ˆ
τ# f(x1)Φ(x1)dx1 =

ˆ
f ◦ τ(x1)Φ(x1)dx1 . (4.3)

We will use the notation of the r.h.s. of (4.3) also for the pullback of distributions
that do not belong to L1

loc(Ω). For instance,
ˆ

δ(τ(t))Φ(t)dt =
∑

τ (s)=0

|τ ′(s)|−1Φ(s).

4.1.3 Schwartz functions and distributions

Definition 4.4 The space of Schwartz functions on X is defined as

S(X ) :=
{
Ψ ∈ C∞(X ) :

´ |xα∇β
xΨ(x)|2dx <∞, α, β ∈ Nd

}
. (4.4)

(In the definition we use an identification of X with Rd . It is clear that S(X )
does not depend on this identification.)

Remark 4.5 The definition (4.4) is equivalent to

S(X ) =
{
Ψ ∈ C∞(X ) : |xα∇β

xΨ(x)| ≤ cα,β , α, β ∈ Nd
}
. (4.5)
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94 Analysis in L2(Rd)

The definition (4.5) is more common in the literature, even though one can argue
that (4.4) is more natural.

Definition 4.6 On S(X ) we introduce semi-norms

‖Ψ‖α,β :=
( ˆ

|xα∇β
xΨ(x)|2dx

) 1
2
,

which make it into a Fréchet space. S ′(X ) denotes its topological dual.

Note that we have continuous inclusions

D(X ) ⊂ S(X ) ⊂ L2(X ) ⊂ S ′(X ) ⊂ D′(X ).

4.1.4 Derivatives

Let f be a complex function on X . Recall from the real case of Def. 2.50 (1) that
the derivative of f at x0 ∈ X in the direction q ∈ X is defined by

q·∇xf(x0) :=
d
dt

f(x0 + tq)
∣∣
t=0 . (4.6)

Proposition 4.7 The derivative of a C1 function at a point is a complex linear
functional on X , that is, ∇xf(x0) ∈ CX # .

Definition 4.8 If f ∈ C2(X , R), its Hessian at x0 ∈ X is denoted ∇(2)
x f(x0) ∈

Ls(X ,X # ) and defined by

q2 ·∇(2)
x f(x0)q1 :=

d2

dt1dt2
f(x0 + t1q1 + t2q2)

∣∣
t1 =t2 =0 , q1 , q2 ∈ X .

If ζ ∈ Ls(X # ,X ), then ∇x ·ζ∇x denotes the corresponding differential operator:

∇x ·ζ∇xf(x0) := Tr ζ∇(2)
x f(x).

If X is a Euclidean space with the scalar product denoted by x1 · x2 , then
∇x · ∇x = ∇2

x = Δx stands for the Laplacian.

4.1.5 Complex derivatives

Let Z be a complex vector space. Let f be a complex function on Z.

Definition 4.9 The holomorphic, resp. anti-holomorphic derivative of f at z0 ∈
Z in the direction of w ∈ Z, resp. w ∈ Z is defined by

w·∇z f(z0) :=
1
2

d
dt

(f(z0 + tw)− if(z0 + itw))
∣∣
t=0 ,

w·∇z f(z0) :=
1
2

d
dt

(f(z0 + tw) + if(z0 + itw))
∣∣
t=0 .

Proposition 4.10 The holomorphic, resp. anti-holomorphic derivative of a
C1 function at a point is a linear, resp. anti-linear functional on Z, that is,
∇z f(z0) ∈ Z# , resp. ∇z f(z0) ∈ Z#

.
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Recall from the complex case of Def. 2.50 (1) that f possesses a (complex)
derivative at z0 in the direction of w if there exists the limit

lim
u→0

f(z0 + uw)− f(z0)
u

, (4.7)

where u is a complex parameter.

Definition 4.11 Assume that Z is finite-dimensional and let U ⊂ Z be an open
set. We say that f : U → C is holomorphic in U if it possesses a complex deriva-
tive at each z0 ∈ U .

Proposition 4.12 A function f : U → C is holomorphic iff f ∈ L1
loc(U) and

∇z f = 0 in U in the distribution sense. Then (4.7) equals w·∇z f(z0).

We consider also the realification of Z, denoted ZR, where the multiplication
by i is denoted by j.

Let ∇R
z denote the usual (real) derivative on ZR. We can express the holomor-

phic and anti-holomorphic derivative in terms of the real derivative:

w·∇z =
1
2
(
w·∇R

z − i(jw)·∇R

z

)
,

w·∇z =
1
2
(
w·∇R

z + i(jw)·∇R

z

)
,

w·∇z + w·∇z = w·∇R

z . (4.8)

(On the left w is treated as an element of Z and on the right w as a real vector
in ZR.)

Note that if we make the identification ZR � w �→ (w,w) ∈ Z ⊕ Z, as in (1.31),
then (4.8) can be written as ∇z +∇z = ∇R

z .

4.1.6 Position and momentum operators

Definition 4.13 For η ∈ X # and q ∈ X we set

(η·xΨ)(x) := η·xΨ(x), Dom η·x :=
{

Ψ ∈ L2(X ) :
ˆ
|η·x|2 |Ψ(x)|2dx <∞

}
,

(q·DΨ)(x) := −iq·∇Ψ(x), Dom q·D :=
{
Ψ ∈ L2(X ) :

ˆ
|q·∇xΨ(x)|2dx<∞

}
.

η·x and q·D are called respectively position and momentum operators and are
self-adjoint operators.

Remark 4.14 In the formulas above the symbol x is used with as many as three
different meanings:

(1) as an element of the space X , e.g. in Ψ(x) or in η·x on the right of :=;
(2) as the name of the “generic variable in X”; e.g. in dx or ∇x ;
(3) as a vector of self-adjoint operators, e.g. in η·x on the left of :=.
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96 Analysis in L2(Rd)

This ambiguous usage of the same symbol, although sometimes confusing, seems
to be difficult to avoid and is often employed. Sometimes one tries to differentiate
the third meaning by decorating x in some way, e.g. writing x̂.

Proposition 4.15 The Schwartz space S(X ) is the largest subspace of L2(X )
contained in the domain of position and momentum operators and preserved by
all the operators η·x and q·D.

The operator η·x and q·D, viewed as operators on S(X ), satisfy the so-called
Heisenberg commutation relations:

[η1 ·x, η2 ·x] = [q1 ·D, q2 ·D] = 0, [η·x, q·D] = iη·q1l. (4.9)

Definition 4.16 The algebra of differential operators with polynomial coeffi-
cients will be denoted CCRpol(X # ⊕X ).

Elements of CCRpol(X # ⊕X ) act naturally on S(X ). By duality, they also act
on S ′(X ).

Remark 4.17 In Subsect. 8.3.1 we will define a more general class of algebras,
denoted CCRpol(Y), where Y is a symplectic space.

Remark 4.18 The algebra CCRpol(X # ⊕X ) is sometimes called the Weyl alge-
bra. However, we prefer to use this name for a different class of algebras; see
Subsect. 8.3.5.

4.1.7 Fourier transformation

Definition 4.19 We denote by C∞(X ) the Banach space of continuous functions
on X tending to 0 at ∞.

Definition 4.20 For f ∈ L1(X ) the Fourier transform of f , denoted either Ff

or f̂ , is given by the formula

f̂(ξ) =
ˆ

f(x)e−ix·ξdx.

It is well known that F extends to a unique bounded operator from L2(X ,dx)
to L2(X # ,dξ), where dξ is the dual Lebesgue measure on X # .

The Riemann–Lebesgue lemma says that if f ∈ L1(X ), then f̂ ∈ C∞(X # ).
(2π)−

d
2 F is unitary, and we have the Fourier inversion formula

f(x) = (2π)−d

ˆ
f̂(ξ)eix·ξdξ.

The space S(X ) is mapped by F continuously onto S(X # ). F can be extended
to a unique continuous linear map from S ′(X ) onto S ′(X # ).
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4.1 Distributions and the Fourier transformation 97

4.1.8 Gaussian integrals

Let ν ∈ Ls(X ,X # ) be positive definite. Let η ∈ CX # . Then

(2π)−
d
2

ˆ
e−

1
2 x·νx+η ·xdx = (det ν)−

1
2 e

1
2 η ·ν−1 η . (4.10)

Note that the determinant det ν is defined w.r.t. the Lebesgue measure dx (see
Subsect. 3.6.6). In particular, if f(x) = e−

1
2 x·νx , then

f̂(ξ) = (2π)
d
2 (det ν)−

d
2 e−

1
2 ξ ·ν−1 ξ . (4.11)

If ν ∈ Ls(X ,X # ) is not necessarily positive definite and η ∈ X # , then

lim
R→∞

(2π)−
d
2

ˆ
|x|<R

e
i
2 x·νx+iη ·xdx = |det ν|− 1

2 e
i
4 π inert ν e−

i
2 η ·ν−1 η . (4.12)

In particular, if g(x) = e
i
2 x·νx , then

ĝ(ξ) = (2π)
d
2 e

i
4 π inert ν (det ν)−

d
2 e−

i
2 ξ ·ν−1 ξ .

We will sometimes abuse the notation and write det(−iν)−
1
2 for

|det ν|− 1
2 e

i
4 π inert ν .

4.1.9 Gaussian integrals for complex variables

Let Z be a complex space of dimension d. Recall from Subsect. 3.6.9 that the
integral of a function Z � z �→ F (z) over Z is interpreted as the integral of the
pullback of F by

Z � z �→ (z, z) ∈ Re(Z ⊕ Z)

on the space Re(Z ⊕Z), and i−ddzdz is used as the standard volume form.
Let us translate formula (4.10) into the context of complex variables. Let

β ∈ Lh(Z,Z∗) be positive definite, and w1 , w2 ∈ Z∗. Then

(2πi)−d

ˆ
e−z ·βz+w 1 ·z+w 2 ·zdzdz = (det β)−1ew 1 ·β−1 w 2 , (4.13)

where det β is computed w.r.t. the volume form dz.
Let us explain the proof of (4.13). As mentioned above, the integral in (4.13)

is interpreted as an integral on the real vector space Re(Z ⊕ Z). We choose
any scalar product on Z compatible with dz. Note from Subsect. 3.6.9 that
the volume form i−ddzdz is compatible with the Euclidean scalar product on
Re(Z ⊕ Z). We identify β with an element of L(Z) using the unitary structure
of Z. Then, setting

v = (z, z), m = 2d, dv = i−ddzdz,

ν :=
[

0 β

β 0

]
, ξ = (w1 , w2) ∈ CRe(Z ⊕ Z) � CRe(Z ⊕ Z)# ,
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98 Analysis in L2(Rd)

we see that (4.13) reduces to (4.10). To compute the determinant of ν as an
operator on Re(Z ⊕ Z), we use that

det ν = det νC = det β det β = det β det β# = det β2 ,

since β = β∗. Then (4.13) follows from (4.10).

4.1.10 Convolution operators

Definition 4.21 If f ∈ S ′(X ), Ψ ∈ S(X ), then their convolution product f � Ψ
is defined by

f � Ψ(x) :=
ˆ

f(x− x1)Ψ(x1)dx1 .

We have

F(f � Ψ) = (Ff)(FΨ).

Recall that D = 1
i∇x is a vector of commuting self-adjoint operators. Note that

FDF−1 = ξ where ξ is the operator of multiplication by ξ ∈ X # on L2(X # ).
Note the identities

f(D)Ψ(x) = (2π)−d

ˆ
ei(x−y )·ξ f(ξ)Ψ(y)dξdy

= (2π)−d

ˆ
f̂(y − x)Ψ(y)dy, f ∈ S(X # ).

If ν ∈ Ls(X # ,X ), then

e−
1
2 Dx ·νDx Ψ(x) = e

1
2 ∇x ·ν∇x Ψ(x) (4.14)

= (2π)−
d
2 (det ν)−

1
2

ˆ
e−

1
2 (x−x1 )·ν−1 (x−x1 )Ψ(x1)dx1 .

As a consequence, we obtain the following identity for Ψ ∈ CPols(X ):

(2π)−
d
2

ˆ
Ψ(x)e−

1
2 x·νxdx = |det ν|− 1

2

(
e

1
2 ∇x ·ν−1 ∇x Ψ

)
(0). (4.15)

As an example of (4.14) let us note

e−itDx ·Dξ Ψ(x, ξ) = (2πt)−d

ˆ
e

i
t (x−x1 )·(ξ−ξ1 )Ψ(x1 , ξ1)dx1dξ1 .

Let us write the analog of (4.14) on a complex space Z of dimension d, for
β ∈ L(Z,Z∗) and β > 0:

e∇z ·β∇z Ψ(z, z) = (2πi)−d(det β)−1
ˆ

e−(z−z 1 )·β−1 (z−z1 )Ψ(z1 , z1)dz1dz1 . (4.16)
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4.1 Distributions and the Fourier transformation 99

4.1.11 Sesquilinear forms on S(X )

Definition 4.22 A ∈ B
(
L2(X )

)
is called an S-type operator if it is given by an

integral kernel in S(X × X ), that is, there exists A(·, ·) ∈ S(X × X ) such that

AΨ(x) :=
ˆ

A(x, y)Ψ(y)dy.

The set of S-type operators is denoted CCRS(X # ⊕X ).

Definition 4.23 Continuous linear functionals on CCRS(X # ⊕X ) are called
S ′-type forms. Their space is denoted by CCRS′

(X # ⊕X ).

Clearly, elements of CCRS′
(X # ⊕X ) are represented by distributions in

S ′(X ⊕ X ). We have the obvious pairing for B ∈ CCRS′
(X # ⊕X ) and A ∈

CCRS(X # ⊕X ):

B(A) =
ˆ ˆ

B(x, y)A(x, y)dxdy.

Let

CCRS(X # ⊕X ) � A �→ B(A) ∈ C (4.17)

be an S ′-type form. Clearly, for any Ψ1 ,Ψ2 ∈ S(X ), the operator |Ψ2)(Ψ1 |
belongs to CCRS(X # ⊕X ). Thus we obtain a sesquilinear form

S(X )× S(X ) � (Ψ1 ,Ψ2) �→ B
(|Ψ2)(Ψ1 |

) ∈ C. (4.18)

We can interpret (4.18) as the action of BΨ2 on Ψ1, where B is a continuous
linear map from S(X ) to S ′(X ). Thus (4.18) can be written as (Ψ1 |BΨ2). We
call it the “operator notation for (4.18)”, and we will use it henceforth.

We can write

CCRS(X # ⊕X ) ⊂ B
(
L2(X )

) ⊂ CCRS′
(X # ⊕X ).

Theorem 4.24 (The Schwartz kernel theorem) B is a continuous linear trans-
formation from S(X ) to S ′(X ) iff B belongs to CCRS′

(X # ⊕X ), that is, iff there
exists a distribution B(·, ·) ∈ S ′(X ⊕ X ) such that

(Ψ1 |BΨ2) =
ˆ

Ψ1(x1)B(x1 , x2)Ψ2(x2)dx1dx2 , Ψ1 ,Ψ2 ∈ S(X ).

Definition 4.25 The distribution B(·, ·) ∈ S ′(X ⊕ X ) is called the distributional
kernel of the transformation B.

Definition 4.26 We define the adjoint form B∗ by (Ψ1 |B∗Ψ2) = (Ψ2 |BΨ1). If
B1 or B∗

2 are continuous operators on S(X ), then we can define B2 ◦B1 as an
element of CCRS′

(X # ⊕X ) by

(Ψ1 |B2 ◦B1Ψ2) := (Ψ1 |B2(B1Ψ)), or (Ψ1 |B2 ◦B1Ψ2) := (B∗
2 Ψ|B1Ψ).

In particular this is possible if B1 or B2 ∈ CCRpol(X # ⊕X ).
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100 Analysis in L2(Rd)

4.1.12 Hilbert–Schmidt and trace-class operators on L2(X )

Note that B ∈ B2(L2(X )) iff the distributional kernel of B belongs to L2(X ⊕
X ). Moreover, if B1 , B2 ∈ B2(L2(X )), then

Tr B∗
1 B2 =

ˆ
B1(x2 , x1)B2(x1 , x2)dx1dx2 .

Consider a trace-class operator B ∈ B1(L2(X )). On the formal level we have
the formula

TrB =
ˆ

B(x, x)dx.

The following theorem gives some of many possible rigorous versions of the above
identity:

Theorem 4.27 (1) If B ∈ CCRS(X # ⊕X ), then

Tr B =
ˆ

B(x, x)dx.

(2) Fix an arbitrary Euclidean structure on X . If B ∈ B1(L2(X )) then

Tr B = lim
ε↘0

(2π/ε)
d
2

ˆ
e−

1
2 ε (x1 −x2 )2

B(x1 , x2)dx1dx2 .

Proof (1) is left to the reader. To prove (2) we set Pε := e−
ε
2 D 2

. Note that
0 ≤ Pε ≤ 1l and w − lim

ε→0
Pε = 1l. By Subsect. 2.2.6, we know that TrB =

lim
ε→0

Tr(PεB) = lim
ε→0

Tr(Pε/2BPε/2). By (4.14), Pε has the kernel

(2πε)−
d
2 e−

1
2 ε (xx −x2 )2

,

and Pε/2BPε/2 has kernel B � Tε , where Tε(x1 , x2) = (πε)−de−
1
ε (x2

1 +x2
2 ) . Now B �

Tε ∈ S(X ⊕ X ), and by (1) we get

Tr(Pε/2BPε/2) = (πε)−d

ˆ
e−

1
ε (x−x1 )2 − 1

ε (x−x2 )2
B(x1 , x2)dx1dx2dx.

Next we use (4.14) and the fact that e−
ε
4 D 2

e−
ε
4 D 2

= e−
ε
2 D 2

to perform the inte-
gral in x, which yields

Tr(Pε/2BPε/2) = (2πε)−
d
2

ˆ
e−

1
2 ε (x1 −x2 )2

B(x1 , x2)dx1dx2 . �

4.2 Weyl operators

As in the previous section, X is a finite-dimensional real vector space with the
Lebesgue measure dx.

The Heisenberg commutation relations (4.9) involve two unbounded operators:
position and momentum. This makes them problematic as rigorous statements.
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4.2 Weyl operators 101

In the early period of quantum mechanics Weyl noticed that for many purposes it
is preferable to replace the Heisenberg commutation relations by relations involv-
ing the unitary groups generated by the position and momentum, since then
called the Weyl commutation relations. These relations involve only bounded
operators, hence their meaning is clear. On the formal level they are equivalent
to the Heisenberg relations.

Linear combinations of the position and the momentum are self-adjoint. Their
exponentials are often called Weyl operators. They are very useful in quantum
mechanics.

One of the central results of mathematical foundations of quantum mechanics
is the Stone–von Neumann theorem, which says that the properties of the position
and momentum, up to a unitary equivalence, are essentially determined by the
Weyl relations.

4.2.1 Definition of Weyl operators

Let us consider the one-parameter unitary groups on L2(X)

X # � η �→ eiη ·x ∈ U
(
L2(X )

)
,

X � q �→ eiq ·D ∈ U
(
L2(X )

)
generated by the position and the momentum operators.

Theorem 4.28 Let η ∈ X # , q ∈ X . We have the so-called Weyl commutation
relations,

eiη ·xeiq ·D = e−iη ·qeiq ·D eiη ·x . (4.19)

The operator η·x + q·D is essentially self-adjoint on S(X ). For Ψ ∈ L2(X ) we
have

ei(η ·x+q ·D )Ψ(x) = e
i
2 η ·q+iη ·xΨ(x + q). (4.20)

Moreover, the following identities are true:

ei(η ·x+q ·D ) = e
i
2 η ·qeiη ·xeiq ·D = e−

i
2 η ·qeiq ·D eiη ·x

= e
i
2 η ·xeiq ·D e

i
2 η ·x = e

i
2 q ·D eiη ·xe

i
2 q ·D .

(4.21)

Proof Clearly, we have

eiq ·D Ψ(x) = Ψ(x + q).

This easily implies (4.19).
Define

U(t) := e
i
2 t2 η ·qeitη ·xeitq ·D ,

or

U(t)Ψ(x) := e
i
2 t2 η ·q+itη ·xΨ(x + tq).
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102 Analysis in L2(Rd)

We compute

∂tU(t)Ψ = i(ηx + qD)U(t)Ψ, Ψ ∈ S(X ).

Clearly, if Ψ ∈ S(X ), then U(t)Ψ ∈ S(X ) for all t. Therefore, by Nelson’s invari-
ant domain theorem, Thm. 2.74 (2),

U(t) = eit(η ·x+q ·D )

and S(X ) is a core of η·x + q·D. This implies (4.20).
The identities (4.21) follow from (4.20). �

Theorem 4.29 If B ∈ B
(
L2(X )

)
commutes with all operators in{

eiη ·x , eiq ·D : η ∈ X # , q ∈ X}, (4.22)

then B is proportional to identity. In other words, the set (4.22) is irreducible in
B
(
L2(X )

)
.

Proof L∞(X ), identified with multiplication operators in L2(X ), is a maximal
Abelian algebra in B

(
L2(X )

)
. By the Fourier transformation, linear combina-

tions of operators of the form eiη ·x are #-weakly dense in L∞(X ). Hence if B

commutes with all operators eiη ·x , it has to be of the form f(x) with f ∈ L∞(X ).
We have eiq ·D f(x)e−iq ·D = f(x + q). Hence if f(x) commutes with eiq ·D , then

f(x + q) = f(x). If this is the case for all q ∈ X , f has to be constant. �

Theorem 4.30 Let Ψ ∈ L2(X ). Then Ψ ∈ S(X ) iff

X # ⊕X � (η, q) �→ (Ψ|eiη ·xeiq ·D Ψ) (4.23)

belongs to S(X # ⊕X ).

Proof (4.23) is a partial Fourier transform of the function X ⊕ X � (x, q) �→
Ψ(x)Ψ(x + q). Thus (4.23) belongs to S(X # ⊕X ) iff Ψ(x)Ψ(x + q) belongs to
S(X ⊕ X ), which is equivalent to Ψ ∈ S(X ). �

4.2.2 Quantum Fourier transform

Operators can be represented as an integral of eiη ·xeiq ·D . This fact resembles the
Fourier transformation; therefore we call it the quantum Fourier transformation.

The following proposition will be used in our analysis of the x,D and Weyl
quantizations:

Proposition 4.31 (1) Let w ∈ L1(X # ⊕X ). Then the operator

(2π)−d

ˆ
w(η, q)eiη ·xeiq ·D dηdq (4.24)

belongs to B∞(L2(X )) and is bounded by (2π)−d‖w‖1 .
(2) Let B ∈ B1(L2(X )). Then the function

w(η, q) := TrBe−iq ·D e−iη ·x (4.25)

belongs to C∞(X # ⊕X ) and is bounded by Tr|B|.
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4.2 Weyl operators 103

(3) If B ∈ B1(L2(X )) and w is defined by (4.25), then

B = (2π)−d

ˆ
w(η, q)eiη ·xeiq ·D dηdq, (4.26)

as a quadratic form identity on S(X ).
(4) If, moreover, w ∈ L1(X # ⊕X ), then (4.26) is an operator identity on L2(X ).

Remark 4.32 Note that (4.26) follows from the following formal identity:

Tr eiη ·xeiq ·D = (2π)dδ(η)δ(q).

Proof (1) Let wn ∈ S(X # ⊕X ) be a sequence such that wn → w in L1(X # ⊕X )
and

Bn = (2π)−d

ˆ
wn (η, q)eiη ·xeiq ·D dηdq.

Then the integral kernel of Bn belongs to S(X ), hence Bn is Hilbert–Schmidt.
Besides, Bn → B in B

(
L2(X )

)
; therefore B is compact as the norm limit of

compact operators.
(2) The map X # ⊕X � (η, q) �→ e−iq ·D e−iη ·x ∈ B

(
L2(X )

)
is continuous for the

weak topology and e−iq ·D e−iη ·x tends weakly to 0 when (η, q) →∞. This easily
implies that w ∈ C∞(X # ⊕X ).

(3) Let us fix Ψ ∈ S(X ). It is enough to show that

(Ψ|BΨ) = (2π)−d

ˆ
w(η, q)(Ψ|eiη ·xeiq ·D Ψ)dηdq. (4.27)

For B of finite rank, (4.27) follows by a direct computation. Let us extend it
to B of trace class.

From (2) we know that the map

B1(L2(X )) � B �→ w ∈ C∞(X # ⊕X )

is continuous. Clearly, (η, q) �→ (Ψ|eiη ·xeiq ·D Ψ) belongs to S(X # ⊕X ). The
maps

B1(L2(X )) � B �→ (Ψ|BΨ),

C∞(X # ⊕X ) � w �→ (2π)−d

ˆ
w(η, q)(Ψ|eiη ·xeiq ·D Ψ)dηdq

are continuous. Hence we can extend (4.27) to an arbitrary B ∈ B1(L2(X )) by
density.

(4) Clearly, if w ∈ L1(X # ⊕X ), the r.h.s. of (4.26) is a norm convergent
integral. �

Proposition 4.33 Let us equip X with a Euclidean structure. Let P0 :=
|Φ0)(Φ0 |, where Φ0 ∈ L2(X ) is given by

Φ0(x) := π− d
4 e−

1
2 x2

.
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104 Analysis in L2(Rd)

Then

(1) P0 = P ∗
0 = P 2

0 ,
(2) π

d
2 P0ex2

f(x)P0 = P0
´

f(x)dx, for f ∈ L1(X ),
(3) P0 = (2π)−d

´
e−

1
4 η 2 − 1

4 q 2 +i 1
2 q ·η eiη ·xeiq ·D dηdq,

(4) Spancl{eiη ·xeiq ·D Φ0 , η ∈ X # , q ∈ X} = L2(X ).

Proof (1) is immediate, since ‖Φ0‖ = 1. To prove (3), we note that
e−iη ·xP0e−iq ·D has the kernel π− d

2 e−
1
2 x2

e−iηxe−
1
2 (y+q)2

, which belongs to
S(X ⊕ X ). Hence, by Thm. 4.27,

Tr(P0e−iη ·xe−iq ·D ) = π− d
2

ˆ
e−

1
2 x2

e−iη ·xe−
1
2 (x+q)2

dx = e−
1
4 η 2 − 1

4 q 2 + i
2 η ·q .

Then we apply Prop. 4.31. (2) and (4) are left to the reader. �

4.2.3 Stone–von Neumann theorem

Theorem 4.34 (Stone–von Neumann theorem) Suppose that X is a finite-
dimensional vector space and we are given a pair of strongly continuous unitary
representations of the Abelian groups X # and X on a Hilbert space H,

X # � η �→ V (η) ∈ U(H),

X � q �→ T (q) ∈ U(H),

satisfying the Weyl commutation relations

V (η)T (q) = e−iη ·qT (q)V (η).

Then there exists a Hilbert space K and a unitary operator

U : L2(X )⊗K → H
such that

V (η)U = Ueiη ·x ⊗ 1lK,

T (q)U = Ueiq ·D ⊗ 1lK.

Proof Step 1. Clearly, the groups V (η) and T (q) can be written as

V (η) = eiη ·x̃ , T (q) = eiq ·D̃ ,

for some vectors of self-adjoint operators on H, x̃ and D̃. We can define

P0 := (2π)−d

ˆ
e−

1
4 η 2 − 1

4 q 2 + i
2 η ·qeiη x̃eiqD̃ dηdq

= (2π)−d

ˆ
e−

1
4 η 2 − 1

4 q 2 − i
2 η ·qeiq ·D̃ eiη ·x̃dηdq, (4.28)
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4.2 Weyl operators 105

and K := RanP0 . The definition of P0 is suggested by Prop. 4.33. The identities
of Prop. 4.33 are true for P0 defined in (4.28), since they only rely on the Weyl
commutation relations. Hence we get

P0 = P ∗
0 = P 2

0 ,

π
d
2 P0ex̃2

f(x̃)P0 = P0

ˆ
f(x)dx, f ∈ L1(X ). (4.29)

Step 2. Let

UΦ⊗Ψ := π
d
4 e

1
2 x̃2

Φ(x̃)Ψ, for Φ ∈ S(X ), Ψ ∈ K.

(Note that, by (4.29), f ∈ L2(X ) implies e
1
2 x̃2

f(x̃)P0 ∈ B(H).) We have

(UΦ1 ⊗Ψ1 |UΦ2 ⊗Ψ2) = π
d
2 (Ψ1 |ex̃2

Φ1(x̃)Φ2(x̃)Ψ2)

= π
d
2 (Ψ1 |P0ex̃2

Φ1(x̃)Φ2(x̃)P0Ψ2)

= (Ψ1 |Ψ2)
ˆ

Φ1(x)Φ2(x)dx,

by (4.29). Hence U uniquely extends to an isometry from L2(X )⊗K into H.
Step 3. We prove that U intertwines the Weyl commutation relations. To this
end, using (4.29), we first obtain

eiqD̃ P0 = e−q x̃− 1
2 q 2

P0 . (4.30)

Thus, for Ψ ∈ K,

eiq ·D̃ Ψ = e−q ·x̃− 1
2 q 2

Ψ.

Hence

eiq ·D̃ UΦ⊗Ψ = π
d
4 eiq ·D̃ e

1
2 x̃2

Φ(x̃)Ψ

= π
d
4 e

1
2 (x̃+q)2

Φ(x̃ + q)eiq ·D̃ Ψ

= π
d
4 e

1
2 x̃2

Φ(x̃ + q)Ψ = U eiq ·D Ψ⊗Φ.

It is easier to check that U intertwines the position operators:

eiη ·x̃UΦ⊗Ψ = π
d
4 eiη ·x̃e

1
2 x̃2

Ψ(x̃)Φ = Ueiη ·x̃Φ⊗Ψ.

Step 4. Finally, let us show that U is surjective. Clearly, if Ψ ∈ K, then UΦ0 ⊗
Ψ = Ψ, where we recall that Φ0 = π− d

4 e−
1
2 x2

. Hence K ⊂ RanU . Thus, using
Prop. 4.33 (3) and the intertwining property of U , it is enough to show that the
span of {

eiη ·x̃eiq ·D̃ Ψ : η ∈ X # , q ∈ X , Ψ ∈ K} (4.31)

is dense in H.
Let Ξ ∈ H and f(η, q) := (Ξ|eiη ·x̃eiq ·D̃ Ξ). Assume that Ξ is orthogonal to

(4.31). Then

0 = (Ξ|eiη ·x̃eiq ·D̃ P0e−iη ·x̃e−iq ·D̃ Ξ)
= (2π)−d

´
dq1dη1f(η1 , q1)e−

1
4 η 2 − 1

4 q 2 − i
2 η1 ·q1 +i(q ·η1 −η ·q1 )−iq ·η .
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106 Analysis in L2(Rd)

By the properties of the Fourier transformation, f(η, q) = 0 a.e. (almost every-
where). But (η, q) �→ f(η, q) is a continuous function and f(0, 0) = ‖Ξ‖2 . So
Ξ = 0. �

4.3 x,D-quantization

As in both previous sections, X is a finite-dimensional real vector space with the
Lebesgue measure dx.

Looking at operators on L2(X ) as a quantization of classical symbols, that is,
of functions on the classical phase space X ⊗ X # , has a long tradition in quantum
physics. In mathematics the usefulness of this point of view seems to have been
discovered much later. Apparently, among pure mathematicians this started with
a paper of Kohn–Nirenberg (1965). The calculus of pseudo-differential operators
introduced in that paper proved to be very successful in the study of partial
differential equations and originated a branch of mathematics called microlocal
analysis.

In this section we discuss the two most naive kinds of quantizations, com-
monly used in the context of partial differential equations – the x,D, and D,x-
quantizations. Other kinds of quantization, in particular the Weyl quantization,
will be discussed later in Chap. 8.

We will start with a discussion of quantization of polynomial symbols, where
certain properties have elementary algebraic proofs. (Actually, these proofs
generalize to the case where the symbols depend polynomially only on, say,
momenta.) The definition of the x,D- and D,x-quantizations has a natural gen-
eralization to a much larger class of symbols, that of tempered distributions,
which we will consider in the following subsection.

4.3.1 Quantization of polynomial symbols

Recall that CCRpol(X # ⊕X ) denotes the algebra of operators on S(X ) generated
by x and D.

Clearly, if f ∈ CPols(X ), then f(x) is well defined as an operator on S(X ).
Such operators form a commutative sub-algebra in CCRpol(X # ⊕X ).

Likewise, if g ∈ CPols(X # ), then g(D) is well defined as an operator on S(X ).
Such operators form another commutative algebra in CCRpol(X # ⊕X ).
Definition 4.35 We define the x,D-quantization, resp. the D,x-quantization
as the maps

CPols(X ⊕ X # ) � b �→ Opx,D (b) ∈ CCRpol(X # ⊕X ),

CPols(X ⊕ X # ) � b �→ OpD,x(b) ∈ CCRpol(X # ⊕X ),

as follows: if b(x, ξ) = f(x)g(ξ), f ∈ CPols(X ), g ∈ CPols(X # ), we set

Opx,D (b) := f(x)g(D), (4.32)

OpD,x(b) := g(D)f(x). (4.33)
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4.3 x,D-quantization 107

We extend the definition to CPols(X ⊕ X # ) by linearity.

We will treat the ordering x,D as the standard one. Instead of Opx,D (b) one
often uses the notation b(x,D).

Remark 4.36 The x,D-quantization is sometimes called the Kohn–Nirenberg
quantization.

Definition 4.37 The maps inverse to (4.32) and (4.33) are denoted

CCRpol(X # ⊕X ) � B �→ sx,D
B ∈ CPols(X ⊕ X # ), (4.34)

CCRpol(X # ⊕X ) � B �→ sD,x
B ∈ CPols(X ⊕ X # ), (4.35)

and the polynomials sx,D
B and sD,x

B are called the x,D- and D,x-symbols of the
operator B.

Theorem 4.38 (1) If b ∈ CPols(X ⊕ X # ), then

Opx,D (b)∗ = OpD,x(b). (4.36)

(2) If b−, b+ ∈ CPols(X ⊕ X # ), and OpD,x(b−) = Opx,D (b+), then

b+(x, ξ) = eiDx ·Dξ b−(x, ξ)

= (2π)−d

ˆ
e−i(x−x1 )·(ξ−ξ1 )b−(x1 , ξ1)dx1dξ1 . (4.37)

(3) If b1 , b2 ∈ CPols(X ⊕ X # ) then Opx,D (b1)Opx,D (b2) = Opx,D (b), for

b(x, ξ) = eiDξ 1 ·Dx 2 b1(x1 , ξ1)b2(x2 , ξ2)
∣∣∣
x1 = x2 = x,

ξ1 = ξ2 = ξ

= (2π)−d

ˆ
e−i(x−x1 )·(ξ−ξ1 )b1(x, ξ1)b2(x1 , ξ)dx1dξ1 . (4.38)

The operator eiDx ·Dξ in (4.37) and the similar operator in (4.38) are under-
stood as the sums of differential operators. In the case of this theorem, the
sum is finite, because we deal with polynomial symbols.

The integral formulas in (4.37) and (4.38) should be understood in the
sense of oscillatory integrals.
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108 Analysis in L2(Rd)

Proof To prove (4.37) it is sufficient to consider monomials. By a simple com-
binatorial argument,

(η1 ·x) · · · (ηn ·x)(q1 ·D) · · · (qm ·D)

=
min(n,m )∑

k=0

∑
i1 < ···<ik

∑
distinct j1 ,...,jk

(ηi1 ·qj1 ) · · · (ηik
·qjk

)

×
∏

i∈{1,...,m}\{j1 ,...,jk }
(qi ·D)

∏
i∈{1,...,n}\{i1 ,...,ik }

(ηi ·x)

= OpD,x
(min(n,m )∑

k=0

1
k!

(−i∇x ·∇ξ )k (q1 ·ξ) · · · (qm ·ξ)(η1 ·x) · · · (ηn ·x)
)
.

(4.38) follows easily from (4.37). In fact, it is enough to assume that bi(x, ξ) =
fi(x)gi(ξ). Set a(x, ξ) = f2(x)g1(ξ). Then

Opx,D (b1)Opx,D (b2) = f1(x)OpD,x(a)g2(D)

= f1(x)Opx,D (b̃)g2(D) = b(x,D),

where

b̃(x, ξ) = e−i∇x ·∇ξ a(x, ξ), b(x, ξ) = f1(x)b̃(x, ξ)g2(ξ).

�

Formulas (4.37) and (4.38) follow also (in a much larger generality) from inte-
gral formulas considered in the next subsection.

The following formula is a version of Wick’s theorem. It follows from (4.38).
We will see similar theorems later on for other quantizations.

Theorem 4.39 Let b1 , . . . , bn , b ∈ CPols(X ⊕ X # ) and

b(x,D) = b1(x,D) · · · bn (x,D).

Then

b(x, ξ) = exp
(
i
∑
i<j

Dξi
·Dxj

)
b1(x1 , ξ1) · · · bn (xn , ξn )

∣∣
x = x1 = · · · = xn ,

ξ = ξ1 = · · · = ξn .

4.3.2 Quantization of distributional symbols

Recall that CCRS′
(X # ⊕X ) denotes the family of operators (or, actually,

quadratic forms on S(X )) whose distributional kernels belong to S ′(X × X ).
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4.3 x,D-quantization 109

Definition 4.40 If b ∈ S ′(X ⊕ X # ), then we define Opx,D (b) and OpD,x(b) as
the elements of CCRS′

(X # ⊕X ) whose distributional kernels are

Opx,D (b)(x1 , x2) = (2π)−d

ˆ
X#

b(x1 , ξ)ei(x1 −x2 )·ξdξ,

OpD,x(b)(x1 , x2) = (2π)−d

ˆ
X#

b(x2 , ξ)ei(x1 −x2 )·ξdξ. (4.39)

Theorem 4.41 (1) For b ∈ CPols(X ⊕ X # ) ⊂ S ′(X ⊕ X # ), the above defin-
ition coincides with (4.32) and (4.33).

(2) The maps

S ′(X ⊕ X # ) � b �→ Opx,D (b) ∈ CCRS′
(X # ⊕X ),

S ′(X ⊕ X # ) � b �→ OpD,x(b) ∈ CCRS′
(X # ⊕X )

are bijective. Denote their inverses (symbols) as in (4.34) and (4.35). Then
for B ∈ Op(S ′(X ⊕ X # )) we have

sx,D
B (x, ξ) =

ˆ
X

B(x, x− y)e−iξ ·ydy,

sD,x
B (x, ξ) =

ˆ
X

B(x + y, x)e−iξ ·ydy. (4.40)

(3) The formulas (4.36) and (4.37) are true.
(4) The formula (4.38) is true, for instance, if either b1 ∈ S ′(X ⊕ X # ) and b2 ∈

CPols(X ⊕ X # ), or the other way around.
(5) (4.38) is also true if the Fourier transforms of b1 and b2 belong to

L1(X # ⊕X ).
(6) We have b(x,D) ∈ B2(L2(X )) iff b ∈ L2(X ⊕ X # ). Moreover,

Tr b(x,D)∗a(x,D) = (2π)−d

ˆ
X⊕X#

b(x, ξ)a(x, ξ)dxdξ, a, b ∈ L2(X ⊕ X # ).

Proof (2) follows from (4.39) by the inversion of the Fourier transform. (4.37)
follows by combining the first formula of (4.39) with the second formula of
(4.40). �

Example 4.42 Fix a Euclidean structure in X . Let P0 be the orthogonal projec-
tion onto the normalized vector Φ0 = π− d

4 e−
1
2 x2

(as in Prop. 4.33). The integral
kernel of P0 is

P0(x, y) = π− d
2 e−

1
2 x2 − 1

2 y 2
.

Its x,D- and D,x-symbols are

sx,D
P0

(x, ξ) = 2
d
2 e−

1
2 x2 − 1

2 ξ 2 −ix·ξ ,

sD,x
P0

(x, ξ) = 2
d
2 e−

1
2 x2 − 1

2 ξ 2 +ix·ξ .
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4.4 Notes

An exposition of the theory of distributions can be found e.g. in Schwartz (1966)
and Gelfand–Vilenkin (1964).

The Stone–von Neumann theorem was announced by Stone in 1930, but the
first published proof was given by von Neumann (1931). Proofs can be found in
Emch (1972) and Bratteli–Robinson (1996).

The x,D− and D,x− quantization goes back to a paper by Kohn–Nirenberg
(1965).
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