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Abstract

Let R be a commutative ring, I(R) be the set of all ideals of R and S be a subset of I∗(R) = I(R) \ {0}.
We define a Cayley sum digraph of ideals of R, denoted by

−−→
Cay+(I(R), S ), as a directed graph whose

vertex set is the set I(R) and, for every two distinct vertices I and J, there is an arc from I to J, denoted
by I −→ J, whenever I + K = J, for some ideal K in S . Also, the Cayley sum graph Cay+(I(R), S ) is an
undirected graph whose vertex set is the set I(R) and two distinct vertices I and J are adjacent whenever
I + K = J or J + K = I, for some ideal K in S . In this paper, we study some basic properties of the graphs
−−→
Cay+(I(R), S ) and Cay+(I(R), S ) such as connectivity, girth and clique number. Moreover, we investigate
the planarity, outerplanarity and ring graph of Cay+(I(R), S ) and also we provide some characterization
for rings R whose Cayley sum graphs have genus one.

2010 Mathematics subject classification: primary 05C10; secondary 05C69, 13A15.
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1. Introduction

The investigation of graphs related to algebraic structures is a very large and growing
area of research. One of the most important classes of graphs considered in this
framework is that of Cayley graphs. These graphs have been considered for example
in [3, 13, 17, 18]. Let us refer the reader to the survey article [21] for an extensive
bibliography devoted to various applications of Cayley graphs. In particular, the
Cayley graphs of semigroups are related to automata theory, as explained in [16] and
the monograph [15]. Several other classes of graphs associated to algebraic structures
have also been actively investigated. For example, power graphs and divisibility graphs
have been considered in [19, 20]. Graphs associated with rings have been studied with
respect to several ring constructions (see [12, 14]). The zero-divisor graphs of rings
have been investigated in [4–8]. Since most properties of a ring are closely tied to the
behaviour of its ideals, it is useful and interesting to associate graphs and digraphs to
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the ideals of a ring. To see some instances of these graphs, the reader is referred to
[1, 2, 10, 22].

In this paper, we define a Cayley sum digraph of ideals of a commutative ring.
Let R be a commutative ring, I(R) be the set of all ideals of R and S be a subset
of I∗(R) = I(R) \ {0}. We define the Cayley sum digraph of ideals of R, denoted by
−−→
Cay+(I(R), S ), as a directed graph whose vertex set is the set I(R) and, for every two
distinct vertices I and J, there is an arc from I to J, denoted by I −→ J, whenever
I + K = J, for some ideal K in S . In fact, the Cayley sum digraph

−−→
Cay+(I(R), S ) is

a Cayley digraph of semigroups. Also, the Cayley sum graph Cay+(I(R), S ) is an
undirected graph whose vertex set is the set I(R) and two distinct vertices I and J are
adjacent, denoted by I ∼ J, whenever I + K = J or J + K = I, for some ideal K in S .

In Section 2, we study some basic properties of the graphs
−−→
Cay+(I(R), S ) and

Cay+(I(R), S ) such as connectivity, girth and clique number. In Section 3, we
characterize all rings whose Cayley sum graphs are planar, outerplanar and ring graphs.
Finally, in Section 4, we study Cayley sum graphs with genus one.

Throughout this paper, all rings are assumed to be commutative with nonzero
identity. By I(R), Nil(R) and Max(R), we denote the set of all ideals, the set of all
nilpotent elements and the set of all maximal ideals of R, respectively. Moreover, I∗(R)
is the set of all nonzero ideals of R. A nonzero ideal I of R is said to be minimal if there
is no nontrivial ideal of R properly contained in I. We denote the set of all minimal
ideals of R and the set of all prime ideals of R by Min(R) and Spec(R), respectively.
Also, we denote the Jacobson radical of R by J(R).

Now, we recall some definitions and notation on graphs. We use the standard
terminology of graphs following [9]. Let G = (V, E) be a graph, where V is the set
of vertices and E is the set of edges. The graph H = (V0, E0) is a subgraph of G if
V0 ⊆ V and E0 ⊆ E. Moreover, H is called a spanning subgraph of G if its vertex set
is V . The distance between two distinct vertices a and b in G, denoted by d(a, b), is
the length of the shortest path connecting a and b, if such a path exists; otherwise,
we set d(a, b) := ∞. The diameter of a graph G is diam(G) = max{d(a, b): a and b
are distinct vertices of G}. The girth of G is the length of the shortest cycle in G,
denoted by gr(G) (gr(G) :=∞ if G has no cycles). Also, for two distinct vertices a and
b in G, the notation a ∼ b means that a and b are adjacent. A graph G is said to be
connected if there exists a path between any two distinct vertices, and it is complete
if it is connected with diameter one. We use Kn to denote the complete graph with n
vertices. For a vertex x in G, the degree of x is the number of vertices adjacent to x
and it is denoted by deg(x). A vertex x is an isolated vertex if deg(x) = 0. A clique
of a graph is a complete subgraph of it and the number of vertices in a largest clique
of G is called the clique number of G and is denoted by ω(G). An independent set of
G is a subset of the vertices of G such that no two vertices in the subset represent an
edge of G. The independence number of G, denoted by α(G), is the cardinality of a
largest independent set. For a positive integer r, an r-partite graph is one whose vertex
set can be partitioned into r subsets, so that no edge has both ends in any one subset.
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A complete r-partite graph is one in which each vertex is joined to every vertex that
is not in the same subset. The complete bipartite graph (2-partite graph) with part
sizes m and n is denoted by Km,n. A graph is said to be planar if it can be drawn in
the plane so that its edges intersect only at their ends. A subdivision of a graph is
any graph that can be obtained from the original graph by replacing edges by paths.
A remarkable simple characterization of planar graphs was given by Kuratowski in
1930. Kuratowski’s theorem says that a graph is planar if and only if it contains no
subdivision of K5 or K3,3 (cf. [9, page 153]).

2. Basic properties of the Cayley sum graph of ideals

Throughout this paper, S is a subset of I∗(R). For simplicity, we call the Cayley sum
digraph and the Cayley sum graph of ideals of R as the Cayley digraph and the Cayley
graph of ideals and denote them by

−−→
Cay(I(R), S ) and Cay(I(R), S ), respectively. We

also denote the zero ideal of R by 0.
In this section, we study some basic properties of the graphs

−−→
Cay(I(R), S ) and

Cay(I(R), S ). First, we bring the following definition.

Definition 2.1. A set S is minimal with respect to addition, and we denote it by m.r.a.,
whenever we have I * K1 + K2 + · · · + Kt, for every distinct ideals I, K1, . . . , Kt ∈ S ,
where t > 1.

Proposition 2.2. Suppose that I(R) = (S ). Then Cay(I(R), S ) is a connected graph.

Proof. Let I ∈ I(R). Since I(R) = (S ), there are ideals I1, I2, . . . , Ik ∈ S such that
I = I1 + I2 + · · · + Ik, where k > 1. Now, the directed path

0 −→ I1 −→ I1 + I2 −→ · · · −→ I1 + I2 + · · · + Ik

shows that the zero ideal connects to every ideal in I(R). Therefore, Cay(I(R), S ) is
connected. �

Proposition 2.3. If Cay(I(R), S ) is connected and S is m.r.a., then I(R) = (S ).

Proof. Suppose that I ∈ I(R). Since Cay(I(R),S ) is connected, we have a path between
the vertices 0 and I as follows:

0 ∼ I1 ∼ · · · ∼ Ik−1 ∼ I.
Since 0 is adjacent to I1, we have I1 ∈ S . Now, if I2 −→ I1, then there exists an ideal
K in S such that K ⊆ I1. Thus, we have I1 = I1 + K, which is impossible. So, we have
I1 −→ I2, and hence there is an ideal K1 in S such that I2 = I1 + K1. Therefore, we
have I2 ∈ (S ).

Now, let r be the minimum integer such that Ir+1 −→ Ir, where 1 ≤ r ≤ k, and so,
for every integer i with 1 ≤ i ≤ r, there exist ideals K1, K2, . . . , Ki−1 in S such that
Ii = I1 + K1 + · · · + Ki−1. Therefore, there are ideals K, K1, . . . , Ki−1 in S such that
Ir+1 + K = Ir = I1 + K1 + · · · + Kr−1. Thus, we have K ⊆ I1 + K1 + · · · + Kr−1, which is
a contradiction since S is m.r.a. Hence, for every integer r with 1 ≤ r ≤ k − 1, we have
Ir −→ Ir+1, and therefore I ∈ (S ). �
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Remark 2.4. As seen in the proof of Propositions 2.2 and 2.3, these propositions can
be formulated for every monoid.

Recall that R is called a principal ring if every ideal of R is principal, and R is called
a special ring if J(R) = Nil(R).

In the following theorem, we provide a necessary and sufficient condition for the
completeness of the Cayley graph Cay(I(R), S ).

Theorem 2.5. The Cayley graph Cay(I(R), S ) is complete if and only if S = I∗(R), and
R is either a local special principal ring or a local principal ideal domain.

Proof. First, assume that Cay(I(R), S ) is complete. Then, for every ideal I ∈ I(R), we
have 0 ∼ I. Thus, I ∈ S , which implies that S = I∗(R). Now, let m and m′ be two
distinct maximal ideals of R. Since Cay(I(R), S ) is complete, we have either m −→ m′

or m′ −→ m. This means that m ⊆ m′ or m′ ⊆ m, which is impossible. Hence, R is a
local ring.

If x and y are two distinct elements in a minimal generating set of m, then one can
easily see that x = ry or y = rx, for some element r ∈ R, which is impossible. Thus, m
is a principal ideal. Also, by a similar argument, one can see that every ideal of R is
principal.

Now, suppose that m = (x). If Ann(x) = 0, then R is an integral domain. So, in
this situation, R is a principal ideal domain. Otherwise, Ann(x) , 0. In this case there
exists an element uxi ∈ m such that uxi+1 = 0, where u ∈ U(R). Therefore, xi+1 = 0.
So, we have that x ∈ Nil(R). Hence, J(R) = Nil(R), which means that R is a special
principal ring.

Conversely, let S = I∗(R) and R be a local special principal ring or a local principal
ideal domain. Assume that m = (x) is a maximal ideal of R. Now, if I = (uxi) and
J = (vx j) are two distinct ideals of R, where j ≤ i, then we have I + (J \ I) = J.
Therefore, the Cayley graph Cay(I(R), S ) is complete. �

Theorem 2.6. The Cayley graph Cay(I(R), S ) is a star graph if and only if R is a field
or S = {R}.

Proof. Let Cay(I(R), S ) be a star graph with centre I. First, assume that I = 0. Hence,
S = I∗(R). Now, if there is a proper ideal J in I(R), then one can find a triangle
0 −→ J −→ R←− 0 in Cay(I(R), S ), which is impossible. So, R is a field. Now,
assume that I , 0. Then I ∈ S . Also, if J , I is an ideal in S , then we have the
triangle 0 −→ I ∼ J ←− 0, which is impossible. Thus, S = {I}. If I , R, then we have
0 −→ I −→ R, and so I + I = R, which is a contradiction. Therefore, S = {R}.

The converse statement is clear. �

In the following theorem, we investigate the girth of the graphs Cay(I(R), S ) and
−−→
Cay(I(R), S ).

Proposition 2.7. The following statements hold:

(i) gr(
−−→
Cay(I(R), S )) =∞;

(ii) gr(Cay(I(R), S )) ∈ {3, 4,∞}.
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Proof. (i) If there exists a directed cycle I1 −→ I2 −→ · · · −→ In −→ I1 of minimal
length with n > 3 in the Cayley digraph

−−→
Cay(I(R), S ), then I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ I1.

So, we have I1 = I2 = · · · = In, which is impossible. Thus,
−−→
Cay(I(R), S ) contains no

directed cycles.
(ii) First, assume that S = {I}. If we have the path I1 −→ I2 −→ I3 in Cay(I(R), S ),

then I1 + I = I2 and I2 + I = I3, which implies that I2 = I3. If we have the path
I1 ←− I2 −→ I3 in Cay(I(R), S ), then I1 = I + I2 = I3. Therefore, any path of length
two between I1 and I2 in Cay(I(R), S ) is of the form I1 −→ I2 ←− I3. Thus,
gr(Cay(I(R), S )) =∞.

Now, let |S | ≥ 2 and I, J be two distinct elements in S . If I ⊂ J or J ⊂ I, then we
have the triangle 0 ∼ I ∼ J ∼ 0. Otherwise, one can find the cycle 0 −→ I −→ I + J←−
J ←− 0. So, in this case, we have gr(Cay(I(R), S )) ∈ {3, 4}. �

For the rest of the paper, we assume that S = I∗(R) and we denote the Cayley graph
Cay(I(R), S ) by Cay(I(R), I∗).

Recall that a graph on n vertices such that n − 1 of the vertices have valency one,
and all of which are adjacent only to the remaining vertex a, is called a star graph with
centre a. Also, a refinement of a graph H is a graph G such that the vertex sets of G
and H are the same and every edge in H is an edge in G.

In the following corollary, we gather together some basic properties of the Cayley
graph Cay(I(R), I∗), which can easily be gained by the definition of the graph.

Corollary 2.8. The following statements hold:

(a) Cay(I(R), I∗) is a connected graph and diam(Cay(I(R), I∗)) ≤ 2;
(b) Cay(I(R), I∗) contains a refinement of a star graph;
(c) α(Cay(I(R), I∗)) ≥ {|Max(R)|, |Min(R)|}.

3. Planar, outerplanar and ring graphs of Cay(I(R), I∗)

In this section, first we study the planarity of the Cayley graph Cay(I(R), I∗). Then
we characterize all rings R whose Cayley graphs Cay(I(R), I∗) are outerplanar graphs
and ring graphs.

Recall that the dimension of R, denoted by dim(R), is the supremum of the lengths
of prime ideals in R. It is a nonnegative integer or∞.

Theorem 3.1. The clique number of the induced subgraph Cay(I(R), I∗) on Spec(R) is
equal to dim(R) + 1.

Proof. Let G be the induced subgraph of Cay(I(R), I∗) on Spec(R) and let ω be the
clique number of G. At first, assume that dim(R) =∞. Since any chain of ideals with
length n is a clique with n vertices, the clique number ω of G is infinite. Also, if
dim(R) = n, then there exists a chain p0 ⊂ p1 ⊂ · · · ⊂ pn, where pi ∈ Spec(R). Since the
elements of this chain form a complete subgraph in G, we have n + 1 ≤ ω.

Now, assume that {q1, q2, . . . , qω} ⊆ Spect(R) is the vertex set of a clique in the
graph G. By using induction on ω, we show that the ideals q1, q2, . . . , qω form a chain
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of prime ideals. Clearly, for ω = 1, there is nothing to prove. Now, suppose that
the elements of Ω = {q1, q2, . . . , qk}, where 1 < k < ω, form a chain of prime ideals
of R. We show that the elements of Ω′ = {q1, q2, . . . , qk, qk+1} also form a chain. Let
qi1 ⊂ qi2 ⊂ · · · ⊂ qik , where i j ∈ {1, 2, . . . , k}, be the chain of elements in Ω. Now, if
qk+1 ⊂ qi1 , then there exists the chain qk+1 ⊂ qi1 ⊂ qi2 ⊂ · · · ⊂ qik in Ω′. Otherwise, let
qit be the maximal element of Ω which is a subset of qk+1. Moreover, one can easily
check that qk+1 ⊂ qit+1 . So, we have the following chain in Ω′:

qi1 ⊂ · · · ⊂ qit ⊂ qk+1 ⊂ qit+1 ⊂ · · · ⊂ qik .

Thus, ω ≤ n + 1. �

Theorem 3.2. If the Cayley graph Cay(I(R), I∗) is planar, then R is an Artinian ring.

Proof. It is clear that for every chain of ideals of R with length n, the Cayley graph
Cay(I(R), I∗) has a complete subgraph isomorphic to Kn+1. Therefore, all chains have
finite length, and so R is a Noetherian and also an Artinian ring. �

In the next theorem, we show that for a commutative ring with planar Cayley graph
Cay(I(R), I∗), the set of maximal ideals has at most three elements.

Theorem 3.3. If the Cayley graph Cay(I(R), I∗) is planar, then |Max(R)| ≤ 3.

Proof. Assume to the contrary that |Max(R)| > 3 and that m1,m2,m3 are distinct
maximal ideals in Max(R). Then m1 ∩ m2 ∩ m3 , 0 and we can find the following
chain in R:

0 ⊂ (m1 ∩m2 ∩m3) ⊂ (m1 ∩m2) ⊂ m1 ⊂ R.

Therefore, the Cayley graph Cay(I(R), I∗) contains a subgraph isomorphic to K5, which
is a contradiction. �

The following remark is needed in the rest of the paper.

Remark 3.4. Suppose that m and m′ are two distinct maximal ideals of R. If there
exists i ≥ 2 such that mi = 0, then, for every x ∈ m \ m′, we have that xi = 0, and so
x ∈ m′, which is a contradiction. This means that if R has at least two maximal ideals,
then, for all i ≥ 2, m2 , 0, for every maximal ideal m of R.

In the sequel of this section, we determine the family of commutative rings whose
Cayley graphs are planar.

Theorem 3.5. The Cayley graph Cay(I(R), I∗) is a planar graph if and only if
R � F1 × F2, where the Fi are fields, or (R,m) is a local ring which satisfies in one of
the following conditions:

(i) dim R
m

( m
m2 ) = 2 and I(R) = {0, (x), (y), (x, y),R}, where x, y ∈ m;

(ii) dim R
m

( m
m2 ) = 1, m2 , 0 and I(R) = {0, (x2), (x),R}, where x ∈ m;

(iii) dim R
m

( m
m2 ) = 1, m2 = 0 and I(R) = {0, (x),R}, where x ∈ m.
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Figure 1. A subdivision of K5.

F1 F2
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Figure 2.

Proof. First, suppose that Cay(I(R), I∗) is planar. Hence, by Theorem 3.3, R has at
most three maximal ideals. We have the following cases.

Case 1: |Max(R)| = 3. Suppose that Max(R) = {m1,m2,m3}. If J(R) , 0, then we
have the following chain that induces a subgraph of Cay(I(R), I∗) isomorphic to K5,
which is impossible:

0 ⊂ J(R) ⊂ m1 ∩m2 ⊂ m1 ⊂ R.
If J(R) = 0, then R � F1 × F2 × F3, where F1,F2,F3 are fields. Therefore, we can find
a subdivision of K5 with the following vertices (see Figure 1):

a = 0, b = F1 × F2 × 0, c = F1 × 0 × 0, d = 0 × F2 × 0,
e = F1 × F2 × F3, x = F1 × 0 × F3, y = 0 × 0 × F3, z = 0 × F2 × F3.

Thus, in this case Cay(I(R), I∗) is not planar.

Case 2: |Max(R)| = 2. If J(R) = 0, then R � F1 × F2, where the Fi are fields. Thus,
I(R) = {0, F1 × 0, 0 × F2, R} and, by Figure 2, Cay(I(R), I∗) is planar. Let J(R) , 0,
Max(R) = {m1,m2} and I be a nonzero ideal with I ⊂ J(R). Then we have a subgraph
isomorphic to K3,3 with the vertex set {0, I, J(R)} ∪ {R,m1,m2}, which is impossible.
Now, since Cay(I(R), I∗) is planar, for each nonzero ideal I with I , J(R), we have
I * J(R). Therefore, J(R)2 = J(R) or J(R)2 = 0. If J(R)2 = J(R), then, by Nakayama’s
lemma, J(R) = 0, which is a contradiction. Thus, J(R)2 = m2

1m
2
2 = 0, and so there

exists i with 1 ≤ i ≤ 2 such that m2
i , mi. Without loss of generality, we may assume

that m2
1 , m1. Now, if also m2

2 , m2, then m2
1 ∩ m2 = m2

1 ∩ m
2
2 = 0. Since m1 and m2

are minimal prime ideals associated to 0, by the second uniqueness decomposition
theorem, we get a contradiction. Therefore, m2 = m2

2 and J(R)2 = m2
1 ∩ m2 = 0.
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Hence, R � R/m2
1 × R/m2, and so J(R) � J(R/m2

1) × J(R/m2). Thus, m1m2 � m1 × 0,
which is impossible. Therefore, in this case Cay(I(R), I∗) is planar if and only if R is
the direct product of two fields.

Case 3: |Max(R)| = 1. So, suppose that (R,m) is a local ring and t = dim R
m

( m
m2 ).

It is easy to see that if t ≥ 3, then the Cayley graph Cay(I(R), I∗) has a subgraph
isomorphic to K5. Hence, suppose that t < 3. If t = 2, then there exist distinct
elements x and y in a minimal generating set of m such that m = (x, y). Since
Cay(I(R), I∗) is planar and there exists the chain 0 ⊂ (xy) ⊂ (x) ⊂ (x, y) ⊂ R, we have
(xy) = (x) or (xy) = 0. Clearly, (xy) , (x), and so (xy) = 0. Now, suppose that
I ∈ I(R) \ {0, (x), (y), (x, y)}. Then we have a subgraph of Cay(I(R), I∗) isomorphic
to K3,3 with vertex set {0, (x, y), R} ∪ {(x), (y), I}. Therefore, I(R) = {0, (x), (x, y), R}.
Now, assume that t = 1. Then R is a principal ring and, by using a proof similar to
that we used in the proof of Theorem 2.5, Cay(I(R), I∗) is complete. So, |I(R)| ≤ 4.
If m2 = 0, then I(R) = {0,m, R} and the graph Cay(I(R), I∗) is isomorphic to K3.
Otherwise, m2 , 0. In this situation I(R) = {0,m,m2, R}, and therefore the Cayley
graph Cay(I(R), I∗) is isomorphic to K4.

The converse statement is clear. �

Let G be a graph with n vertices and q edges. We recall that a chord is any edge
of G joining two nonadjacent vertices in a cycle of G. Let C be a cycle of G. We say
that C is a primitive cycle if it has no chords. Also, a graph G has the primitive cycle
property (PCP) if any two primitive cycles intersect in at most one edge.

The number frank(G) is called the free rank of G and it is the number of primitive
cycles of G. Also, the number rank(G) = q − n + r is called the cycle rank of G,
where r is the number of connected components of G. The cycle rank of G can be
expressed as the dimension of the cycle space of G. By [11, Proposition 2.2], we have
rank(G) ≤ frank(G). A graph G is called a ring graph if it satisfies one of the following
equivalent conditions (see [11]):

(i) rank(G) = frank(G);
(ii) G satisfies the PCP and G does not contain a subdivision of K4 as a subgraph.

Also, an undirected graph is an outerplanar graph if it can be drawn in the plane
without crossings in such a way that all of the vertices belong to the unbounded face
of the drawing. There is a characterization for outerplanar graphs that says that a graph
is outerplanar if and only if it does not contain a subdivision of K4 or K2,3.
Clearly, every outerplanar graph is a ring graph and every ring graph is a planar graph.

In the next two propositions, we characterize all rings R with ring graph and
outerplanar Cayley graph.

Proposition 3.6. The Cayley graph Cay(I(R), I∗) is a ring graph if and only if R
satisfies one of the following conditions:

(i) R � F1 × F2, where the Fi are fields;
(ii) (R,m) is a local ring, dim R

m
(m) = 1 and I(R) = {0,m,R}.
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Proof. Let Cay(I(R), I∗) be a ring graph. Since every ring graph is planar, it is enough
to consider planar Cayley graphs. Thus, by Theorem 3.5, we have the following cases.

Case 1: R � F1 × F2. Then one can easily check that the Cayley graph Cay(I(R), I∗)
is a ring graph.

Case 2: (R,m) is a local ring and I(R) = {0, (x), (y), (x, y),R}. Then the Cayley graph
has a subgraph isomorphic to K4 with vertices 0, (x), (x, y),R and therefore the Cayley
graph Cay(I(R), I∗) is not a ring graph.

Case 3: (R,m) is a local ring and I(R) = {0,m2,m, R}. So, the Cayley graph is
isomorphic to K4. Thus, in this case, the Cayley graph cannot be a ring graph.

Case 4: (R,m) is a local ring and I(R) = {0,m, R}. Then the Cayley graph
Cay(I(R), I∗) is a triangle, and hence it is a ring graph. �

Proposition 3.7. The Cayley graph Cay(I(R), I∗) is an outerplanar graph if and only
if the Cayley graph Cay(I(R), I∗) is a ring graph.

Proof. Assume that the Cayley graph Cay(I(R), I∗) is a ring graph. So, Cay(I(R), I∗)
is either a triangle or R � F1 × F2, where the Fi are fields. It is clear that in both cases
the graph is outerplanar.

Since every outerplanar graph is a ring graph, the converse statement is clear. �

4. Cayley graphs with genus one

We denote by S g the surface formed by a connected sum of g tori. The number g is
called the genus of the surface S g. Recall that a simple graph which can be embedded
in S g but not in S g−1 is called a graph of genus g. The notation γ(G) is denoted for the
genus of a graph G. It is easy to see that γ(H) ≤ γ(G) for all subgraphs H of G. Also,
a graph G is called toroidal if γ(G) = 1. Clearly, a graph G is planar if γ(G) = 0.

Recall that for a rational number q, dqe is the first integer number greater than or
equal to q. In the following two lemmas, we bring some well-known formulas for the
genus of a graph (see [23, 24]).

Lemma 4.1. The following statements hold:

(a) for n ≥ 3, we have γ(Kn) = d 1
12 (n − 3)(n − 4)e;

(b) for m, n ≥ 2, we have γ(Km,n) = d 1
4 (m − 2)(n − 2)e.

According to Lemma 4.1, we have γ(Kn) = 0, for n = 3, 4, γ(Kn) = 1, for n = 5, 6, 7,
and, for other values of n, γ(Kn) ≥ 2. Moreover, γ(K4,4) = γ(K3,m) = 1, if m = 3, 4, 5, 6.

Lemma 4.2. If G is a finite and connected graph with n vertices, m edges and genus g,
then

n − m + r = 2 − 2g,

where r is the number of regions created when G is minimally embedded on a surface
of genus g.

https://doi.org/10.1017/S144678871400007X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871400007X


298 M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad [10]

Notation 4.3. We use Fi1i2...it instead of the ideal F1 × · · · × Fs when all components
are zero except for Fi1 , Fi2 , ..., Fit . For example, we use F134 for the set F1 × 0 × F3 ×

F4 × 0 × 0.

Proposition 4.4. If the genus of the Cayley graph Cay(I(R), I∗) is finite, then R is an
Artinian ring.

Proof. Clearly, with every chain of length n, we can construct a complete graph
isomorphic to Kn+1. So, if γ(Cay(I(R), I∗)) is finite, then, by Lemma 4.1, the length of
every chain is finite. Thus, every chain is stationary. �

In the following theorem, we provide a relation between the genus of the Cayley
graph Cay(I(R), I∗) and the number of maximal ideals of R.

Proposition 4.5. If |Max(R)| = t and γ(Cay(I(R), I∗)) = g is finite, then

2t < 5(1 +
√

2 + 2g).

Proof. Let m1,m2, . . . ,mt be distinct maximal ideals of R. So, we have the following
chain:

(m1 ∩m2 ∩ · · · ∩mt) ⊂ (m1 ∩m2 ∩ · · · ∩mt−1) ⊂ · · · ⊂ (m1 ∩m2) ⊂ m1 ⊂ R.
Hence, the Cayley graph Cay(I(R), I∗) has a subgraph isomorphic to Kt+1. So, by
Lemma 4.1,

g ≥ γ(Kt+1) = d 1
12 ((t + 1) − 3)((t + 1) − 4)e.

Now clearly we have 12g > t2 − 5t − 6 and, with a simple calculation, we obtain
2t < 5(1 +

√
2 + 2g). �

Theorem 4.6. Let R be a ring with at least three maximal ideals. Then γ(Cay(I(R),
I∗)) = 1 if and only if R � F1 × F2 × F3, where the Fi are fields.

Proof. First, assume that the Cayley graph Cay(I(R), I∗) is toroidal. Then, by
Proposition 4.5, one can easily check that |Max(R)| ≤ 6. Suppose that |Max(R)| = t.
Then we have the following cases.

Case 1: t = 6. Suppose that Max(R) = {m1,m2, . . . ,m6} and J(R) , 0. Then, in view
of Figure 3, we have a subgraph of Cay(I(R), I∗) isomorphic to K8, with the following
vertices:

u1 = 0, u2 = m1 ∩m2 ∩m3 ∩m4 ∩m6, u3 = m1, u4 = m1 ∩m2 ∩m3,

u5 = J(R), u6 = m1 ∩m2 ∩m3 ∩m4, u7 = R, u8 = m1 ∩m2.

Now, by Lemma 4.1, it is impossible because of the fact that the Cayley graph is
toroidal.

Now, suppose that J(R) = 0. So, R � F1 × F2 × F3 × F4 × F5 × F6, where the Fi are
fields. In this situation, by considering the following vertices, we have a subdivision
of K8 in the Cayley graph Cay(I(R), I∗) (see Figure 4):

a = 0, b = F1, c = F12, d = F123, e = F1234,

f = F1235, g = F12345, h = R, k = F13.

Again, by Lemma 4.1, it is impossible.
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u1

u2
u3

u4

u5
u6

u7

u8

Figure 3. The complete graph K8.
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Figure 4. A subdivision of K8.

Case 2: t = 5. Suppose that J(R) , 0. If Max(R) = {m1,m2, . . . ,m5}, then, by
Figure 4, we have a subdivision of K8 in the Cayley graph Cay(I(R), I∗) with the
following vertices, which is impossible:

a = R, b = m1, c = m2m1, d = m3m2m1, e = m4m3m2m1,

k = m1m3, f = m5m3m2m1, g = m5m4m3m2m1, h = 0.

If J(R) = 0, then there exist fields F1, . . . , F5 such that R � F1 × · · · × F5. Hence,
we have a subgraph isomorphic to K5,5 with vertex set {a, b, c, d, e} ∪ {a′, b′, c′, d′, e′},
where

a = F1, b = F2, c = F3, d = F12, e = F13,

a′ = F123, b′ = F1234, c′ = F1235, d′ = 0, e′ = R.

So, in this situation, the genus of the graph is at least two.

Case 3: t = 4. Suppose that Max(R) = {m1,m2,m3,m4}. First, assume that J(R) , 0.
So, we find a subdivision of K4,6, which is pictured in Figure 5 with the following
vertices, which is impossible:

a = m1, b = m2, c = m3, d = m1m2, e = m1m3, f = m4,

a′ = R, b′ = 0, c′ = J(R), d′ = m1m2m3, u = m2m3, v = m2m3m4.
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a b c d e f

a′ b′ c′ d′

u

v

Figure 5. A subdivision of K4,6.

Figure 6.

Now, let J(R) = 0, and so there exist fields F1, F2, F3, F4 such that R � F1 × F2 ×

F3 × F4. Therefore, the Cayley graph Cay(I(R), I∗) has 16 vertices. If we consider the
induced subgraph G with vertex set I(R) \ {R}, then G has 15 vertices, 50 edges and
without the vertex 0, as is shown in Figure 6, it has 23 faces. Now, by counting
the triangles in G which contain the zero ideal as a vertex, we find that G has at
least 59 faces and, by Lemma 4.2, we have 15 − 50 + 59 , 0. So, G does not have
genus one. Since G has a subgraph isomorphic to K3,3, we have γ(G) ≥ 2, and hence
γ(Cay(I(R), I∗)) ≥ 2, which is impossible.

Case 4: t = 3. Suppose that J(R) = 0. Then R � F1 × F2 × F3, and therefore I(R) =

{0, F1, F2, F3, F12, F13, F23,R}. Therefore, by Figure 7, we have that Cay(I(R), I∗) is
toroidal.

Now, suppose that J(R) , 0. Let I be a nonzero ideal of R such that I ⊆ J(R) and
m1,m2,m3 be distinct maximal ideals of R. If I , J(R), then we find a subgraph
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Figure 7.

isomorphic to K4,6 with the following vertices, which is impossible:

v1 = 0, v2 = J(R), v3 = I, v4 = R, u1 = m1,

u2 = m2, u3 = m3, u4 = m1m2, u5 = m1m3, u6 = m2m3.

Thus, we have I = J(R). In particular, J(R)2 = J(R) or J(R)2 = 0. If J(R)2 = J(R),
then, by Nakayama’s lemma, we have J(R) = 0, which is impossible. So, J(R)2 =

m2
1m

2
2m

2
3 = 0. Now, if, for every i = 1, 2, 3, we have m2

i , mi, then m2
im

2
jmk =

J(R) or 0. Since R is an Artinian ring, the set of all maximal ideals of R is exactly
the set of all minimal ideals of R. Therefore, by the second uniqueness decomposition
theorem, we get a contradiction. Therefore, at least one of the maximal ideals is
equal to its square, say m2

3 = m3. Now, by a similar method, we find that m2
i = mi,

for some i = 1 or 2. So, we may assume that m2
2 = m2. Since J(R)2 , J(R), we

have 0 = m2
1 ∩ m2 ∩ m3. Thus, R � R/m2

1 × R/m2 × R/m3, and so J(R) � J(R/m2
1) ×

J(R/m2) × J(R/m3). Hence, we have m1m2m3 � m1 × 0 × 0, which is impossible.
So, if R is a ring with three maximal ideals and nonzero Jacobson radical, then
Cay(I(R), I∗) is not toroidal.

The converse statement is clear. �
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