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Departamento de Matemática, Universidade Federal do Piauı́, Teresina, Piauı́, 64049-550, Brazil
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Abstract. In this paper, we deal with complete hypersurfaces immersed with
bounded higher order mean curvatures in steady state-type spacetimes and in
hyperbolic-type spaces. By applying a generalised maximum principle for the Yau’s
square operator [11], we obtain uniqueness results in each of these ambient spaces.
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1. Introduction. In this paper, we are interested in the study of complete non-
compact Riemannian hypersurfaces with bounded r-th mean curvatures in a class
of (n + 1)-dimensional semi-Riemannian warped product spaces, which include the
hyperbolic space �n+1 and the steady state space Hn+1 (cf. Remark 4.3). Before giving
details on our theorems, we present a brief outline of some recent results related to our
results.

Alı́as et al. [4] extended the classical theorem of Bernstein for minimal graphs
(that is, with zero mean curvature) in �3 to complete minimal surfaces in Riemannian
ambient spaces of non-negative Ricci curvature and endowed with a Killing field. This
was done under the assumption that the sign of the angle function between a global
Gauss map and the Killing field remains unchanged along the surface.

In [9], the second author jointly with Caminha have studied complete vertical
graphs of constant mean curvature in the hyperbolic and steady state spaces. They first
derived suitable formulas for the Laplacians of the height function h and of a support-
like function naturally attached to the graph; then, under appropriate restrictions on
the values of the mean curvature and the growth of the height function, they obtained
necessary conditions for the existence of such a graph. Further, in the 3-dimensional
case, they proved the Bernstein-type results in each of these ambient spaces.

More recently, by applying a technique of Yau [26] and imposing suitable
conditions on both the r-th mean curvatures and the norm of the gradient of the
height function, the second author jointly with Camargo and Caminha [8] obtained
another Bernstein-type results in the hyperbolic and steady state spaces.
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Here, motivated by the works described above and using a generalised maximum
principle developed in [10], we obtain in Sections 4 and 5 uniqueness theorems for
the spacelike slices of the semi-Riemannian warped product spaces ε� ×et Mn, under
suitable conditions on both the r-th mean curvatures and the normal angle of the
hypersurface (that is, angle between the Gauss map of the hypersurface and the unitary
vector field, ∂t). More precisely, we prove the following results (cf. Theorems 4.1 and 5.1;
see also Corollaries 4.5 and 5.4).

Let Mn be a complete connected Riemmanian manifold of non-negative sectional
curvature and ψ : �n → −� ×et Mn be a complete connected spacelike hypersurface
with non-negative sectional curvature less than or equal to one, and bounded away from
the future infinity of −� ×et Mn. Suppose that there exist positive constants α and β such
that β ≤ Hr ≤ Hr+1 ≤ α, for some 0 ≤ r ≤ n − 1. If the normal hyperbolic angle θ of �n

satisfies cosh θ ≤ inf�
Hr+1
Hr

, then �n is a slice of −� ×et Mn.

Let Mn be a complete connected Riemmanian manifold of zero sectional curvature
and ψ : �n → � ×et Mn be a complete connected hypersurface with non-negative
sectional curvature and bounded away from the future infinity of � ×et Mn. Suppose
that there exist positive constants α and β such that β ≤ Hr+1 ≤ Hr ≤ α, for some
0 ≤ r ≤ n − 1. If the normal angle θ of �n satisfies cos θ ≥ sup�

Hr+1
Hr

, then �n is a slice
of � ×et Mn.

Finally, we want to point out that our restrictions on the normal angle of the
hypersurfaces are motivated by gradient estimates due to Montiel in [20], related to
the steady state space, and López jointly with Montiel in [16], related to the hyperbolic
space (cf. Remarks 4.6 and 5.5).

2. Preliminaries. Let M
n+1

be a connected semi-Riemannian manifold with
metric g = 〈 , 〉 of index ν ≤ 1, and semi-Riemannian connection ∇. For a vector
field X ∈ X(M), let εX = 〈X, X〉. We will say that X is a unit vector field if εX = ±1,
and timelike if εX = −1.

In all that follows, we consider Riemannian immersions ψ : �n → M
n+1

, namely
immersions from a connected, n-dimensional orientable differentiable manifold �n

into M such that the induced metric g = ψ∗(g) turns � into the Riemannian manifold
(in the Lorentz case ν = 1, we refer to (�n, g) as a spacelike hypersurface of M), with
the Levi-Civita connection ∇. We orient �n by the choice of a unit normal vector field
N on it.

In this setting if we let A denote the corresponding shape operator, then at each
p ∈ �n, A restricts to a self-adjoint linear map Ap : Tp� → Tp�.

For 0 ≤ r ≤ n, let Sr(p) denote the r-th elementary symmetric function on the
eigenvalues of Ap; this way one gets n smooth functions Sr : �n → � such that

det(tI − A) =
n∑

k=0

(−1)kSktn−k,

where S0=1 by definition. If p ∈ �n and {ek} is a basis of Tp� formed by eigenvectors
of Ap, with corresponding eigenvalues {λk}, one immediately sees that

Sr = σr(λ1, . . . , λn),
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where σr ∈ �[X1, . . . , Xn] is the r-th elementary symmetric polynomial on
indeterminates X1, . . . , Xn.

Also, we define the r-th mean curvature Hr of ψ , 0 ≤ r ≤ n, by
(

n
r

)
Hr = εr

NSr = σr(εNλ1, . . . , εNλn).

We observe that H0=1 and H1 is the usual mean curvature H of �n.
For 0 ≤ r ≤ n, one defines the r-th Newton transformation Pr on �n by setting

P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence relation

Pr = εr
NSrI − εNAPr−1. (2.1)

A trivial induction shows that

Pr = εr
N(SrI − Sr−1A + Sr−2A2 − · · · + (−1)rAr),

so that the Cayley–Hamilton theorem gives Pn = 0. Moreover, since Pr is a polynomial
in A for every r, it is also self-adjoint and commutes with A. Therefore, all bases of
Tp� diagonalising A at p ∈ �n also diagonalise all of the Pr at p. Let {ek} be such a
basis. Denoting by Ai the restriction of A to 〈ei〉⊥ ⊂ Tp�, it is easy to see that

det(tI − Ai) =
n−1∑
k=0

(−1)kSk(Ai)tn−1−k,

where

Sk(Ai) =
∑

1≤j1<...<jk≤n
j1,...,jk 
=i

λj1 · · · λjk .

It is also immediate to check that Prei = εr
NSr(Ai)ei so that an easy computation

(cf. Lemma 2.1 in [6]) gives the following.

LEMMA 2.1. With the above notations, the following formulas hold:
(a) Sr(Ai) = Sr − λiSr−1(Ai),
(b) tr(Pr) = εr

N
∑n

i=1 Sr(Ai) = εr
N(n − r)Sr = crHr,

(c) tr(APr) = εr
N

∑n
i=1 λiSr(Ai) = εr

N(r + 1)Sr+1 = εNcrHr+1,
(d) tr(A2Pr) = εr

N
∑n

i=1 λ2
i Sr(Ai) = εr

N(S1Sr+1 − (r + 2)Sr+2),
where cr = (n − r)

(n
r

)
.

Associated to each Newton transformation Pr one has the second-order linear
differential operator, Lr : D(�) → D(�), given by

Lr(h) = tr(Pr Hess h).

In particular, L0 = � and if M has constant sectional curvature, Rosenberg proved
in [23] that Lrh = div(PrDh), where div stands for the divergence on �n and D denotes
the field gradient of h ∈ D(�).

For a smooth ϕ : � → � and h ∈ D(�), it follows from the properties of the
Hessian of functions that

Lr(ϕ ◦ h) = ϕ′(h)Lr(h) + ϕ′′(h)〈PrDh, Dh〉. (2.2)
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3. Semi-Riemannian warped products. In order to study the semi-Riemannian

warped products, we define conformal field vectors. A vector field V on M
n+1

is said
to be conformal if

LV 〈 , 〉 = 2φ〈 , 〉 (3.1)

for some smooth function φ ∈ D(M), where L stands for the Lie derivative of the
metric of M. The function φ is called the conformal factor of V .

Since LV (X) = [V, X ] for all X ∈ X(M), it follows from the tensorial character of
LV that V ∈ X(M) is conformal if and only if

〈∇X V, Y〉 + 〈X,∇Y V〉 = 2φ〈X, Y〉 (3.2)

for all X, Y ∈ X(M). In particular, V is the Killing vector field relatively to the metric
〈 , 〉 if φ ≡ 0.

Let Mn be a connected, n-dimensional-oriented Riemannian manifold, I ⊆ �

an interval and f : I → � a positive smooth function. In the product differentiable

manifold M
n+1 = I × Mn, let πI and πM denote the projections onto the I and M

factors, respectively. A particular class of the semi-Riemannian manifolds having
conformal fields is the one obtained by furnishing M with the metric

〈v,w〉p = ε〈(πI )∗v, (πI )∗w〉 + f (p)2〈(πM)∗v, (πM)∗w〉,

for all p ∈ M and all v,w ∈ TpM, where ε = ε∂t and ∂t is the standard unit vector field
tangent to I . Moreover (cf. [18] and [19]), the vector field

V = (f ◦ πI )∂t

is conformal and closed (in the sense that its dual 1-form is closed) with conformal
factor φ = f ′ ◦ πI , where the prime denotes differentiation with respect to t ∈ I . Such a
space is a particular instance of the semi-Riemannian warped product, and, from now

on, we shall write M
n+1 = εI ×f Mn to denote it.

If ψ : �n → εI ×f Mn is the Riemannian immersion, with � oriented by the unit
vector field N, one obviously has ε = ε∂t = εN . We let h denote the (vertical) height
function naturally attached to �n, namely h = (πI )|� .

Let D and D denote gradients with respect to the metrics of εI ×f Mn and �n,
respectively. A simple computation shows that the gradient of πI on εI ×f Mn is given
by

DπI = ε〈DπI , ∂t〉 = ε∂t (3.3)

so that the gradient of h on �n is

Dh = (DπI )� = ε∂�
t = ε∂t − 〈N, ∂t〉N. (3.4)

In particular, we get

|Dh|2 = ε(1 − 〈N, ∂t〉2), (3.5)

where | | denotes the norm of a vector field on �n.
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In the Lorentz setting, the following result is a particular case of one obtained by
Alı́as and Colares (cf. [2], Lemma 4.1).

LEMMA 3.1. Let ψ : �n → εI ×f Mn be a Riemannian immersion. If h = (πI )|� :
�n → I is the height function of �n, then

Lr(h) = (log f )′(εtr(Pr) − 〈PrDh, Dh〉) + 〈N, ∂t〉tr(APr). (3.6)

Proof. Fix p ∈ M, v ∈ TpM and write v = w + ε〈v, ∂t〉∂t so that w ∈ TpM is
tangent to the fibre of M passing through p. Therefore, by repeated use of the formulas
of item (2) of Proposition 7.35 in [22], we get

∇v∂t = ∇w∂t + ε〈v, ∂t〉∇∂t∂t = ∇w∂t

= (log f )′w = (log f )′(v − ε〈v, ∂t〉∂t).

Thus, from (3.4) we obtain that

∇vDh = ∇vDh − ε〈Av, Dh〉N
= ∇v(ε ∂t − 〈N, ∂t〉N) − ε〈Av, Dh〉N
= ε(log f )′w − v(〈N, ∂t〉)N + 〈N, ∂t〉Av − ε〈Av, Dh〉N
= ε(log f )′w + (〈Av, ∂t〉 − 〈N,∇v∂t〉)N + 〈N, ∂t〉Av − ε〈Av, Dh〉N
= ε(log f )′w + (〈Av, ∂�

t 〉 − 〈N, (log f )′w〉)N + 〈N, ∂t〉Av − ε〈Av, Dh〉N
= ε(log f )′w + ε(log f )′〈v, ∂t〉〈N, ∂t〉N + 〈N, ∂t〉Av

= ε(log f )′{v − 〈v, ∂t〉(ε ∂t − 〈N, ∂t〉N)} + 〈N, ∂t〉Av

= (log f )′(ε v − ε〈v, ∂�
t 〉Dh) + 〈N, ∂t〉Av

= (log f )′(ε v − 〈v, Dh〉Dh) + 〈N, ∂t〉Av.

Now, by fixing p ∈ � and an orthonormal frame {ei} at Tp�, one gets

Lr(h) = tr(PrHess(h)) =
n∑

i=1

〈∇ei Dh, Prei〉

=
n∑

i=1

〈(log f )′(ε ei − 〈ei, Dh〉Dh) + 〈N, ∂t〉Aei, Prei〉

= (log f )′(εtr(Pr) − 〈PrDh, Dh〉) + 〈N, ∂t〉tr(APr).

�
REMARK 3.2. For t0 ∈ �, we orient the slice �n

t0
= {t0} × Mn by using the unit

normal vector field ∂t. According to [5], �t0 has constant r-th mean curvature Hr =
−ε( f ′(t0)

f (t0) )r with respect to ∂t. Since our applications in the next sections deal with the
semi-Riemannian warped products with warping function f (t) = et, all slices will have
r-th mean curvature, Hr = −ε with respect to ∂t.

We will also need the well-known Generalized Maximum Principle due to Omori
and Yau [21, 25].

LEMMA 3.3. Let �n be an n-dimensional complete Riemannian manifold whose Ricci
curvature is bounded from below and u ∈ D(�) be a smooth function which is bounded
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from above on �n. Then there exists a sequence (pk)k≥1 in �n such that

u(pk) > sup
�

u − 1
k
, |Du(pk)| <

1
k
, �u(pk) <

1
k
.

In order to prove our uniqueness theorems related to the case of the higher order
mean curvatures, we will need for Yau’s square operator an analogue of Lemma 3.3.

Let �n be a complete n-dimensional Riemannian manifold. Let also � : X(�) →
X(�) denote a field of self-adjoint linear transformations on �n. We consider the
second-order linear differential operator � : D(�) → D(�) defined by

�u = tr (� Hess u). (3.7)

In this setting, Caminha jointly with the second author have proved the following
(cf. [10], Corollary 3.3).

LEMMA 3.4. Let �n be a complete Riemannian manifold with non-negative sectional
curvature, and u ∈ D(�) be a function which is bounded from above on �n. If � is positive
semi-definite and tr(�) is bounded from above on �n, then there exists a sequence (pk)k≥1

in �n such that

u(pk) > sup
�

u − 1
k
, |Du(pk)| <

1
k
, �u(pk) <

1
k
.

4. Uniqueness results in steady state-type spacetimes. In this section we consider
(according to [1]; see also Remark 4.3) steady state-type spacetimes, i.e. the Lorentzian
warped products,

−� ×et Mn, (4.1)

where Mn is an n-dimensional complete, connected Riemannian manifold (see
Remark 4.2).

As we have pointed out by the end of Section 3, each slice �t0 = {t0} × Mn is a
complete, connected spacelike hypersurface with r-th mean curvature equal to 1 if we
take the orientation given by the unit normal vector field N = ∂t.

In what follows, we consider that our spacelike hypersurfaces ψ : �n → −� ×et

Mn are oriented by the time-like unit vector field N such that 〈N, ∂t〉 < 0. The normal
hyperbolic angle θ of ψ is defined as being the smooth function θ : ψ(�) → [0,+∞)
such that

cosh θ = −〈N, ∂t〉 ≥ 1. (4.2)

Following [1], we say that a spacelike hypersurface ψ : �n → −� ×et Mn is
bounded away from the future infinity of −� × et Mn if there exists t ∈ � such that

ψ(�) ⊂ {(t, x) ∈ −� ×et Mn; t ≤ t}.
Now we present our uniqueness theorem in the steady state-type space.

THEOREM 4.1. Let Mn be a complete connected Riemmanian manifold of non-
negative sectional curvature and ψ : �n → −� ×et Mn be a complete connected spacelike
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hypersurface with non-negative sectional curvature less than or equal to one, and bounded
away from the future infinity of −� ×et Mn. Suppose that there exist positive constants
α and β such that β ≤ Hr ≤ Hr+1 ≤ α, for some 0 ≤ r ≤ n − 1. If the normal hyperbolic
angle θ of �n satisfies cosh θ ≤ inf�

Hr+1
Hr

, then �n is a slice of −� ×et Mn.

Proof. We set

� = HrPr.

Thus, since tr(�) = crH2
r ≥ 0, � is positive semi-definite. In addition, since Hr is

bounded on �n, the same is true of tr(�) and, hence, we can apply Lemma 3.4 to such
a �.

On the other hand, from formulas (2.2) and (3.6), we get

Lr(eh) = −creh(Hr + 〈N, ∂t〉Hr+1).

Thus, we have

�eh = tr(� Hess(eh)) = HrLr(eh)

= −crehHr(Hr + 〈N, ∂t〉Hr+1).

Consequently, since we are supposing that �n is bounded away from the future infinity
of −� ×et Mn, by applying Lemma 3.4 we obtain a sequence (pk)k≥1 in �n such that

lim
k

(eh)(pk) = esup� h

and

0 ≥ lim
k

�eh(pk) = cresup� h lim
k

(Hr(−〈N, ∂t〉Hr+1 − Hr)) .

Hence, our assumptions on Hr and Hr+1 together with the reverse Cauchy–Schwarz
inequality give

0 ≥ lim
k

�eh(pk) ≥ cresup� hβ2 lim
k

(
Hr+1

Hr
− 1

)
≥ 0.

Consequently,

inf
�

Hr+1

Hr
= 1.

Therefore, from our hypothesis under the normal hyperbolic angle of �n, we conclude
that �n is a slice of −� ×et Mn. �

REMARK 4.2. According to Lemma 7 in [1] if −� ×et Mn is to admit a complete
hypersurface bounded away from the future infinity, then Mn must be necessarily
complete.

REMARK 4.3. An interesting special case is that of the (n + 1)-dimensional steady
state space, i.e. the warped product Hn+1 = −� ×et �n, which is isometric to an open
subset of the de Sitter space �n+1

1 . In this case, the slice �t0 is isometric to �n and is
called a hyperplane of Hn+1.
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The importance of considering Hn+1 comes from the fact that in Cosmology H4 is
the steady state model of the universe proposed by Bondi and Gold [7], and Hoyle [15]
when looking for a model of the universe which looks the same not only at all points
and in all directions (that is, spatially isotropic and homogeneous) but also at all times
(cf. Section 14.8 in [24], and Section 5.2 in [14]).

REMARK 4.4. Let Mn be of non-negative sectional curvature. As a consequence of
the classical Bonnet–Myers theorem, if a complete spacelike hypersurface ψ : �n →
−� ×et Mn has (not necessarily constant) mean curvature H satisfying

|H| ≤ c <
2
√

n − 1
n

(c a positive real constant), then �n has to be compact. In fact if we let Ric� stand for
the Ricci tensor of �n, then inequality (16) of [1], together with the non-negativity of
the sectional curvature of M and the above bound on H, gives

Ric� ≥ (n − 1) − n2H2

4
> 0. (4.3)

We observe that 2
√

n−1
n ≤ 1 for n ≥ 2.

However, in case Mn = �n (so that −� ×et Mn = Hn+1) if �n is bounded away
from the future infinity, then Lemma 1 in [1] assures that �n is diffeomorphic to
�n; in particular, Hn+1 does not possess any compact (without boundary) spacelike
hypersurface.

On the other hand, it follows from the classification of totally umbilical spacelike
hypersurfaces of the de Sitter space (cf. Example 1 in [17]) that there exists no totally
umbilical complete immersed spacelike hypersurfaces with mean curvature 0 ≤ H < 1
in the steady state space.

It follows from all of the above that, in a certain sense, it is natural to restrict
attention to mean curvature H ≥ 1.

COROLLARY 4.5 (Theorem 5.2 in [12]). Let Mn be a complete connected
Riemmanian manifold of non-negative sectional curvature and ψ : �n → −� ×et Mn

be a complete connected spacelike hypersurface bounded away from the future infinity of
−� ×et Mn. Suppose that there exists a constant α such that 1 ≤ H ≤ α. If the normal
hyperbolic angle θ of �n satisfies cosh θ ≤ inf�H, then �n is a slice of −� ×et Mn.

Proof. Following the same steps of the proof of Theorem 4.1 together with Lemma
3.3, and taking into account estimate (4.3) for the Ricci curvature of �n, we obtain the
result. �

REMARK 4.6. We observe that when �n is a compact spacelike hypersurface
immersed with constant mean curvature H > 1 in Hn+1, and with its boundary ∂�

contained into a spacelike hyperplane of Hn+1, a gradient estimate due to Montiel
(cf. Theorem 7 in [20]) guarantees that the normal hyperbolic angle θ of �n satisfies
cosh θ ≤ H.

REMARK 4.7. In [1], Albujer and Alı́as have proved that if a complete spacelike
hypersurface with constant mean curvature is bounded away from the infinity of the
steady state spaceHn+1, then its mean curvature must be identically 1. As a consequence
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of this result, they concluded that only complete Constant Mean Curvature (CMC)
spacelike surfaces which lie between two planes of H3 are also the planes.

5. Uniqueness results in hyperbolic-type spaces. In analogy to the Lorentz case,
we now turn our attention to hyperbolic-type spaces, i.e. warped products,

� ×et Mn,

where Mn is a complete, connected Riemannian manifold (see Remarks 5.2 and 4.2).
According to Section 3, these hypersurfaces have constant mean curvature 1 if we take
the orientation given by the unit normal vector field N = −∂t. For this reason, we will
consider that our hypersurfaces ψ : �n → � ×et Mn are such that their Gauss map
satisfies −1 ≤ 〈N, ∂t〉 ≤ 0. In this setting, we define the normal angle θ of �n as being
the smooth function θ : �n → [0, π

2 ] given by

0 ≤ cos θ = −〈N, ∂t〉 ≤ 1.

Similar to the Lorentz case, we say that a complete hypersurface ψ : �n → � ×et

Mn is bounded away from the future infinity of � ×et Mn if there exists t ∈ � such that
ψ(�) is contained below the slice �t.

We can finally state and prove, in the Riemannian setting, the analogue of
Theorem 4.1.

THEOREM 5.1. Let Mn be a complete connected Riemmanian manifold of zero
sectional curvature and ψ : �n → � ×et Mn be a complete connected hypersurface with
non-negative sectional curvature and bounded away from the future infinity of � ×et Mn.
Suppose that there exist positive constants α and β such that β ≤ Hr+1 ≤ Hr ≤ α for
some 0 ≤ r ≤ n − 1. If the normal angle θ of �n satisfies cos θ ≥ sup�

Hr+1
Hr

, then �n is a
slice of � ×et Mn.

Proof. As in the proof of Theorem 4.1, by setting � = HrPr, we have that � is
positive semi-definite with tr(�) bounded on �n. So, we can apply Lemma 3.4 to such
a �.

On the other hand from formulas (2.2) and (3.6) we obtain

�eh = tr(� Hess(eh)) = HrLr(eh)

= crehHr(Hr + 〈N, ∂t〉Hr+1).

Consequently, since we are supposing that �n is bounded away from the future infinity
of � ×et Mn, by applying Lemma 3.4 we obtain a sequence (pk)k≥1 in �n such that

lim
k

(eh)(pk) = esup� h

and

0 ≥ lim
k

�eh(pk) = cresup� h lim
k

(Hr(Hr + 〈N, ∂t〉Hr+1)) .
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Hence, our assumptions on Hr and Hr+1 together with the Cauchy–Schwarz inequality
give

0 ≥ lim
k

�eh(pk) ≥ cresup� hβ2 lim
k

(
1 − Hr+1

Hr

)
≥ 0.

Consequently,

sup
�

Hr+1

Hr
= 1.

Therefore, from our hypothesis under the normal angle of �n, we conclude that �n is
a slice of � ×et Mn. �

REMARK 5.2. A motivation to consider the spaces � ×et Mn comes from the fact
that the (n + 1)-dimensional hyperbolic space �n+1 is isometric to � ×et �n, an explicit
isometry being found in [3]. It can easily be seen from such isometry that the slices
�t0 = {t0} × �n of the warped product model of the hyperbolic space are precisely the
horospheres.

REMARK 5.3. We note that when the ambient space ε� ×et Mn has constant
sectional curvature, it follows from Proposition 7.42 in [22] that the sectional curvatures
of the fibre Mn must vanish identically. Moreover, since our hypersurfaces are to be
complete, Remark 4.2 shows that Mn must be also complete, i.e. Mn must be a space
form of zero sectional curvature.

Taking into account Remark 5.3, we obtain the following extension of Theorem
3.3 in [13].

COROLLARY 5.4. Let Mn be a Riemmanian space form of zero sectional curvature
and ψ : �n → � ×et Mn be a complete connected hypersurface with bounded second
fundamental form and bounded away from the future infinity of � ×et Mn. Suppose that
there exists a positive constant β such that β ≤ H ≤ 1. If the normal angle θ of �n

satisfies cos θ ≥ sup�H, then �n is a slice of � ×et Mn.

Proof. From the Gauss equation and with a straightforward computation, we
obtain, for any unit tangent vector field X, that

Ric�(X) = −(n − 1) + nH〈AX, X〉 − 〈AX, AX〉,

where Ric� stands for the Ricci curvature of �n. Hence,

Ric� ≥ −(n − 1) − nH|A| − |A|2.

Thus, since we are supposing that �n has bounded second fundamental form, following
the same ideas of the proof of Theorem 5.1 together with Lemma 3.3, we get the
result. �

REMARK 5.5. Let ψ : �n → �n+1 be an immersion from a compact manifold �n

with mean convex boundary ∂� contained into a horosphere of �n+1. Suppose that
ψ has constant mean curvature 0 ≤ H ≤ 1. From the gradiente estimate (19) in [16],
taking into account our choice of the orientation N of �n, we conclude that its normal
angle θ satisfies cos θ ≥ H.
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REMARK 5.6. In [3], Alı́as and Dajczer studied complete surfaces properly
immersed in �3, which are contained between two horospheres, obtaining a Bernstein-
type result for the case of constant mean curvature −1 ≤ H ≤ 1.
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