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A FUNCTIONAL EQUATION ARISING FROM 
IVORY'S THEOREM IN GEOMETRY 

BY 

HIROSHI HARUKI 

1. Introduction. In previous papers (see [1, 2, 3, 4]), we solved the following 
functional equation: 

(i) I/(*+JO-/(*->OI = l/(*+y)-/(*-j')l, 
where/=/(z) is an entire function of a complex variable z and x, y are complex 
variables. 

The following theorem was proved in these papers [1, 2, 3, 4]: 

THEOREM A. The only solutions of (1) are 

f(z) = a sin az + fc cos az+c , 
and 

f(z) = a sinh az+fc cosh oaz+c, 
and 

f(z) = az2+bz+c, 

where a, b9 c are arbitrary complex constants and a is an arbitrary real constant. 

Equation (1) is closely related to the following Ivory's Theorem (see [1, 2, 3, 4, 
6]) in geometry: 

For a family of confocal conies, let P, Q, R, S be the four vertices of a curvi-

inear rectangle formed by any four members of this family arbitrarily chosen. 

Then PR=QS holds. 
Geometrically speaking, (1) is the above Ivory's property and the three solutions 

of (1) characterize the confocal conies. 
If we put x=y=i(s+it) in (1) where s, t are real variables and put ^(z)=/(z)— 

/(0), then we have 

(2) |g(s+iOI = \g(*)-g(it)\, 

where g=g(z) is an entire function of z and s, t are real variables. 
The following theorem was proved in [2] : 

THEOREM B. The only solutions of (2) are 

g(z) = a sin az + b cos ocz—b, 
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and 

g(z) = a sinh OLZ + b cosh acz — b, 
and 

g{z) = az2+bz, 

where a, b are arbitrary complex constants and a is an arbitrary real constant. 

Now, we shall consider the following functional equation: 

(3) g(x+y)h(x-y) = (g(x)-gGOX*(*)-&(-jO), 
where g=g(z), h=h(z) are unknown entire functions of z and x, y are complex 
variables. 

In Section 2 we shall prove that (3) is a generalization of (2). It is obvious that 
(3) is also a generalization of the following functional equation (see [5]) which is a 
generalization of sine functional equations : 

(4) f(x+y)f(x-y) = ( / (X) - /GOX/ (X) - / ( - JO) , 

where/=/(z) is an entire function of z and x, y are complex variables. 
The following theorem was proved in [5] : 

THEOREM C. The only solutions of (A) are 

f(z) = a sin 2pz + b sin2 pz, 
and 

f(z) = az + bz2, 

where a, b9 p are arbitrary complex constants. 

The purpose of this paper is to solve (3), in Section 4, with the help of Theorem C, 
i.e., to prove the following theorem and moreover, to prove Theorems A and B, 
in Section 5, by using it. 

THEOREM. The only systems of solutions of (3) are 

(i) g(z) = 0, h(z) = arbitrary, 
and 

(ii) g(z) = arbitrary, h(z) = 0, 
and 

(iii) g(z) = a sin 2pz+b sin2pz, h(z) = c sin 2pz+d sin2pz, 
and 

(iv) g(z) = az+bz2, h(z) = cz+dz2, 

where a, b, c, d, p are arbitrary complex constants. 

2. Proof that (2) implies (3). Squaring both sides of (2) and using the formula 
| A | 2 = A ! where X is an arbitrary complex number yields 

(5) g(s+it)g(s + it) = (g(s)-g(it))(g(s)-g(iO). 
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If we put h(z)=g(z), then h=h(z) is an entire function of z. Furthermore, by 
(5) we have for all real s, t 

(6) g(s+it)h(s-it) = (g(s)-g(it))(h(s)-h(-it)). 

By (6) and by the Identity Theorem we have for all complex x, y 

g(x+y)h(x-y) = (g(x)-g(y))(h(x)-h(-y)). 

Hence we conclude that (2) implies (3) with h(z)—g(z) which is an entire function 
of z. 

3. Preliminary considerations. We split each of the functions g(z) and h(z) 
into an even and odd part: 

(7) go(z) = Kg(z)+g(-z)),gi(z) = « g ( z ) - g ( - z ) ) , 

(8) h0(z) = KKz)+h(-z)), hx{z) = i(h(z)-h(-z)), 
with 

(9) g(z) = go(z)+gl(z), h(z) = h0(z)+h1(z). 

We shall prove that gx(z)9 h0(z) and g0(z), hx(z) and gx(z)9 hx{z) and g0(z), h0(z) 
are four systems of solutions of (3), i.e., for all complex x, j , 

(10) gi(x+y)h0(x-y) = (g1(x)-g1(y))(h0(x)-h0(^y)l 

(11) goix+yMx-y) = (goW-go( j )X^iW-^i ( -y) ) ? 

(12) giix+y^ix-y) = (g1(x)-g1(y))(h1(x)^h1(^y))9 

(13) go(x+y)h0(x-y) = (g0(x)-g0(yy)(hQ(x)-h0(-y)). 

We shall give a proof of (10) only, because (11), (12), (13) are similarly proved. 
By (7), (8) we have 

gi(x+y)h0(x-y) = i(g(x+y)-g(-x-y))(h(x-y) + h(-x+y)) 

(14) = i(g(x+y)h(x-y)+g(x+y)h(-x+y) 

-g(-x-y)h(x-y)-g(-x-y)h(-x+y)). 
By (3) we have 

(15) g(x+y)h(x-y) = (g(x)-g(y))(h(x)-h(-y)), 

(16) g(x+y)h(-x+y) = (g(y)-g(x))(h(y)-h(-x)), 

(17) g ( - ^ - ^ ) / i ( x - y ) = (g(-3 ' ) -g(-x)) ( / l ( -y)- f t (x)) , 

(18) g(-x-y)h(-x+y) = (g(-x)-g(-y))(h(-x)-h(y)). 

Substituting (15), (16), (17), (18) into the right-hand side of (14) and rearranging 

the resulting expression yields 

gi(x+y)h(x-y) = (i(g(x)-g(-x))-i(g(y) 

-g(-yMKKx)+K-x))-m--y)+Kym 
and so, (10). 
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4. Proof of the theorem. Putting y=—x in (3) yields 

(19) h(x+y)g(x-y) = (h(x)-h(y))(g(x)-g(-y)). 

We may assume that g(z)?*0 and h(z)^àO. Putt ingy=x in (3) and (19) and taking 
into account the facts that g(z)^0 and h(z)jàO yields 

(20) g(0) = 0, h(0) = 0. 

We discuss nine cases (Case A-Case I). 
Case A. Suppose that g is odd and h is odd. (Then we have g(z)=g!(z) and h{z)= 

h(z).) 
Differentiating both sides of (3) with respect to y, putting y=0 and using (20) 

yields 

(21) g'(x)h(x)-g(x)h'(x) = -g>(0)h(x)+h'(0)g(x). 

Differentiating both sides of (3) with respect to y, putting y=x and using (20) 
and the oddness of h yields 

(22) h'(0)g(2x) = 2g'(x)h(x). 

Differentiating both sides of (3) with respect to y, putting y=—x, and using 
(20) and the oddness of g yields 

(23) g'(0)h(2x) = 2g(x)hf(x). 

By (21), (22), (23) we have 

(24) h'(0)g(2x)-g'(0)h(2x) = 2(h'(0)g(x)-gf(0)Hx)). 
If we put 

(25) P(x) = h'(0)g(x)-g'(0)h(x), 

then P(x) is an entire function of x and moreover, by (24), we have 

(26) P(2x) = 2P(x). 

By using the power series expansion of P(x) and by (26) we see that 

(27) P{x) = Kx, 
where K is a complex constant. 

Differentiating both sides of (25) and putting x=0 yields 

P'(0) = 0, 

and so, by (27), we have K=0. Hence, by (25), (27) we have 

(28) h'(0)g(x)-g'(0)h(x) = 0. 

By our assumption we have g(z)ja0 and h(z)^0. By (21), (28) the Wronskian 

W(g, h)(z)—g(z)h'(z)—gf(z)h(z) is 0 in |z |< + oo. Hence we see that 

(29) h(z) = Ag(z) 
holds in | z |< + oo, A being a non-zero complex constant. 

https://doi.org/10.4153/CMB-1975-093-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-093-8


1975] A FUNCTIONAL EQUATION 511 

Substituting (29) into (3), dividing both sides of the resulting equality by A(j^O) 
and using the oddness of g yields 

g(x+y)g(x-y) = (g(*)-g(y))(g(*)+gO0). 

This equation is the so-called sine functional equation. Since g is odd, g(z) 
is a solution of (4). Selecting odd functions from the solutions of (4) (see Theorem 
C) and using (29) yields 

(30) g{z) = a sin 2pz, h(z) = c sin 2pz, 

or 

(31) g(z) = az, h(z) = cz, 

where a, c(=Aa), p are non-zero complex constants. 
Case B. Suppose that g is even and h is even. (Then we have g(z)=g0(z) and 

h(z)=h0(z).) 
Since g, h are even by our assumption, we have 

(32) g'(0) = 0, fe'(0) = 0. 

Differentiating both sides of (3) with respect to y, putting y=0 and using (32) 
yields 

(33) g'(x)h(x)-g(x)h'(x) = 0. 

By our assumption we have g(z)^0 and /z(z)^0. By (33) the Wronskian 
W(g, h)(z)=g(z)h'(z)—g'(z)h(z) is 0 in |z |< + oo. Hence we see that 

(34) h(z) = Bg(z) 

holds in |z |< + oo, B being a non-zero complex constant. 
Substituting (34) into (3), dividing both sides of the resulting equality by i?(^0) 

and using the evenness of g yields 

g(x+y)g(x-y) = (g(x)-g(j))2 . 

Since g is even, g(z) is a solution of (4). Selecting even functions from the solu
tions of (4) and using (34) yields 

(35) g{z) = b sin2 pz, h(z) = d sin2 pz, 

or 

(36) g(z) = bz\ h(z) = dz\ 

where b, d(=Bb),p are non-zero complex constants. 
Case C. Suppose thatg is odd and h is even. (Then we haveg(z)=gi(z) and h{z)= 

hiz).) 
Since g is odd and h is even by our assumption, we have 

(37) g"(0) = 0, *'(0) = 0. 
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Differentiating both sides of (3) with respect to y, putting y=0 and using (20), 
(37) yields 

(38) g\x)h(x) - g(x)h'(x) = - g'(0)h(x). 

Differentiating both sides of (3) twice with respect to j , putting j = 0 and using 
(20), (37) yields 

(39) g"(x)h(x)-2g'(x)h'(x) + g(x)h"(x) = -/i"(0)g(x). 

Differentiating both sides of (3) twice with respect to y, putting y=x and using 
(20), (37) and the evenness of h(h' odd) yields 

(40) h"(0)g(2x) = 2g'(x)h'(x). 

Differentiating both sides of (3) with respect to y, putting j = — x and using 
(20) and the oddness of g yields 

(41) g'(0)fc(2x) = 2g(x)h'(x). 

Differentiating both sides of (38) yields 

(42) g"(x)h(x)-g(x)h"(x) = -g'(0)fc'(*). 

Subtracting (39) from (42) side by side yields 

(43) 2g'(x)h'(x)-2g(x)h"(x) = -g'(0)h'(x)+h"(p)g(x). 

Differentiating both sides of (41) yields 

(44) 2g(x)h"(x) = 2g'(0W(2x)-2g'(x)h'(x). 

Substituting (44) into (43) yields 

(45) 4g'(x)h'(x)-2g'(Q)h'(2x) = -g'(0)h'(x)+h"(0)g(x). 

By (40), (45) we have 

(46) 2(/l"(0)g(2x)-g'(0)/l'(2x)) = h"(0)g(x)-g'(0)h'(x). 

If we put 

(47) Q(x) = h"(0)g(x)-g'(0)h'(x), 

then Q(x) is an entire function of x and moreover, by (46), we have 

(48) 2Q(2x) = <2(x). 

By using the power series expansion of Q(x) and by (48) we see that for all 
complex x 

Q(x) = 0. 

Hence, by (47) we have for all complex x 

(49) h"(0)g(x)-g'(0)hXx) = 0. 
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By our assumption we have g(z)^0. Since by our assumption we have h(z)z£0 
and by (20) we have A(0)=0, we see that h'(z)jâO. By (43), (49) the Wronskian 
W(g, h')(z)=g(z)h"(z)-g'(z)h'(z) is 0 in \z\ < + oo. Hence we see that 

(50) g(z) = Ch'(z) 

holds in \z\ < + oo, C being a non-zero complex constant. 
Substituting (50) into (38) and using C^O yields 

(51) h"(x)h(x)-h'(xf = (-g'(0)/C)K*). 

Since h(x)^àO by our assumption, there exist a circular neighbourhood N and a 
regular function k(x) in N such that 

(52) h(x) = fc(x)2 (T* 0) 

holds in JV. 
Substituting (52) into (51) and using the fact that k{x)y£§ in N, we have in N 

(53) 2k\x)k{x)-2k'(xf = -g'(0)/C. 

Differentiating both sides of (53) and using the fact that k(x)^0 in N, we have 
inN 

{k\x)lk{x))f = 0, 
or 

(54) k"(x) = Dk(x), 

where D is a complex constant. 
Solving (54), observing (52), (50) and taking (20) into account yields 

(55) g(z) = a sin 2pz, h(z) = d sin2 pz, 

or 

(56) g(z) = az, h(z) = dz\ 

where #, d, p are non-zero complex constants. 
Case D. Suppose that g is even and h is odd. (Then we have g(z)=gQ{z) and 

h(z)=h(z).) 
Observing (19) and interchanging the roles of g and h in Case C yields 

(57) g(z) = b sin2 pz, h{z) = c sin 2pz, 

or 

(58) g(z) = fcz2, /*(z) = cz, 

where &, c, /? are non-zero complex constants. 

Case E. Suppose that g is neither odd nor even and h is neither odd nor even. 
(Then we have gl(z)&0, g0(z)&0, h{z)&Q, h0(z)^a0.) 

Since g\(z)(&G) is odd and h0(z)(ja0) is even and (10) holds for all complex 
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x, y, by the result obtained above in Case C we have 

(59) gx(z) = a sin 2pz, h0(z) = d sin2 pz, 

or 

(60) gx(z) = az, h0(z) = dz2, 

where a, d, p are non-zero complex constants. 
Since gx(z)(pÉ0), /z^zX^O) are odd and (12) holds for all complex x, y, by the 

result obtained above in Case A hx(z) is a non-zero constant multiple of gi(z). 
Hence, by (59), (60) we have 

(61) gx(z) = a sin 2pz, hx(z) = c sin 2pz, 

or 

(62) gx(z) = az, ft^z) = cz, 

where c is a non-zero complex constant. 
Since g0(z)(^0), hQ(z)(=£0) are even and (13) holds for all complex x, y, by the 

result obtained above in Case B gb(z) is a non-zero constant multiple of h0(z). 
Hence, by (59), (60) we have 

(63) g0(z) = b sin2 pz, h0(z) = d sin2 pz, 

or 

(64) gQ(z) = fez2, ft0(z) = dz2, 

where & is a non-zero complex constant. 
By (9), (61), (62), (63), (64) we have in this case 

(65) g{z) = a sin 2pz + b sin2 pz, h(z) = c sin 2pz+d sin2pz, 

or 

(66) g(z) = az+bz2, h(z) = cz + dz2, 

where a, b, c, d,p are non-zero complex constants. 
Case F. Suppose that g is odd and h is neither odd nor even. (Then we have 

g(z)=gl(z), A1(z)^0, hoiz&O.) 
By a similar argument to that in Case E (use (10), (12)) we have 

(67) g(z) = a sin 2pz, h(z) = c sin 2pz + d sin2 pz, 

or 

(68) g(z) = az, h(z) == cz + dz2, 

where a, c, d, p are non-zero complex constants. 
Case G. Suppose that g is neither odd nor even and h is odd. (Then we have 
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By a similar argument to that in Case E (use (11), (12)) we have 

(69) g(z) = a sin 2pz+b sin2 pz, h(z) = c sin 2pz, 

or 

(70) g(z) = az+bz2, h(z) = cz, 

where a, b, c,p are non-zero complex constants. 
Case H. Suppose that g is even and h is neither odd nor even. (Then we have 

g(z)=g0(z), Ax(z)»S0, Ao(z)5ÉO.) 
By a similar argument to that in Case E (use (11), (13)) we have 

(71) g(z) = b sin2 pz, h(z) = c sin 2pz+d sin2 pz, 

or 

(72) g(z) = fez2, h(z) = cz+rfz2, 

where &, c, rf, p are non-zero complex constants. 
Case I. Suppose that g is neither odd nor even and h is even. (Then we have 

gi(z)&0, g0(z)&0, h(z)=h0(z).) 
By a similar argument to that in Case E (use (10), (13)) we have 

(73) g(z) = a sin 2pz+b sin2 pz, h(z) = d sin2 pz, 

or 

(74) g(z) = az+bz2, h(z) = dz2, 

where #, Z>, J,/? are non-zero complex constants. 
Summing up, by all results obtained in Case A-Case I ((30), (31); (35), (36); 

(55), (56); (57), (58); (65), (66); (67), (68); (69), (70); (71), (72); (73), (74)) we 
have 

(75) g(z) = a sin 2pz + b sin2 pz, h(z) = c sin 2pz+d sin2 pz, 

or 

(76) g(z) = az+bz2, h(z) = cz+dz2, 

where a, b, c, d,p are complex constants with |a| + |6 |>0, \c\ + \d\>0,p^0. 
Direct substitution shows that (75), (76) satisfy our original equation (3). 

Since all possible cases were taken into consideration, the theorem is proved. 

5. Proofs of Theorems A and B. 

Proof of Theorem B. In Section 2 we proved that (2) implies (3) with 

(77) h(z) = £(z). 

We discuss two cases. 
Case 1. g(z)=asin2/?z+Z>sin2/?z, h(z)=c sin 2pz+d sin2pz where a, b, c, d, 

p are complex constants; then by (77) we have 

(78) c sin 2pz+d sin2 pz = à sin 2pz+h sin2 pz. 
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Differentiating both sides of (78) j times (7=1 , 2, 3, 4) and putting z = 0 yields 
in turn 

(79) cp = àp, 

(80) dp2 = bp\ 

(81) cp3 = âp\ 

(82) dp* = bp\ 

We may assume that 

(83) \a\ + \b\ + \c\ + \d\ > 0. 

By (79), (80), (81), (82), (83) we have 

2 -2 

V = P • 
Hence/? is real or purely imaginary. Hence, by using the formula sin2 z = | ( l — 

cos 2z) and changing letters denoting constants we see that g{z) must be of the 
form 

(84) g(z) = a sin az + fc cos ocz—b, 

or 

(85) g(z) = a sinh az + è cosh az —fo, 

where a, 6 are complex constants and a is a real constant. 
Direct substitution shows that (84), (85) satisfy (2). 
Case 2. g(z)=az+bz2, h(z)=cz+dz2, where a, b, c, d are complex constants; 

then direct substitution shows that g(z)=az+bz* satisfies (2). Interchanging a, 
b yields a solution g(z)=az2+bz of (2). (See Theorem B.) 

Since all possible cases were taken into consideration, Theorem B is proved. 
By the relation between (1) and (2) which is shown in Section 1, Theorem A 

readily follows from Theorem B. 
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