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NONPARAMETRIC WEIGHTED
AVERAGE QUANTILE DERIVATIVE

YING-YING LEE

University of California Irvine

The weighted average quantile derivative (AQD) is the expected value of the partial
derivative of the conditional quantile function (CQF) weighted by a function of
the covariates. We consider two weighting functions: a known function chosen by
researchers and the density function of the covariates that is parallel to the average
mean derivative in Powell, Stock, and Stoker (1989, Econometrica 57, 1403–1430).
The AQD summarizes the marginal response of the covariates on the CQF and
defines a nonparametric quantile regression coefficient. In semiparametric single-
index and partially linear models, the AQD identifies the coefficients up to scale.
In nonparametric nonseparable structural models, the AQD conveys an average
structural effect under certain independence assumptions. Including a stochastic
trimming function, the proposed two-step estimator is root-n-consistent for the AQD
defined by the entire support of the covariates. To facilitate tractable asymptotic
analysis, a key preliminary result is a new Bahadur-type linear representation of
the generalized inverse kernel-based CQF estimator uniformly over the covariates
in an expanding compact set and over the quantile levels. The weak convergence to
Gaussian processes applies to the differentiable nonlinear functionals of the quantile
processes.

1. INTRODUCTION

The weighted average quantile derivative (AQD) is the weighted expected value
of the partial derivatives of the conditional quantile function (CQF), defined as

βW(τ ) ≡ E [∇Q(τ |X)W(X)], (1)

where Q(τ |X) is the τ th CQF of the dependent variable Y given the continuous
covariates X. The weighting function W(X) defines the AQD that conveys infor-
mation of the distributional impacts of the covariates on the response variable.
Thus, the AQD defines a nonparametric quantile regression (QR) parameter that
summarizes the marginal effect of X on the τ th CQF. Policy makers may specify
W(X) for counterfactual analysis to evaluate distributional policy effects (e.g.,
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Chernozhukov, Fernández-Val, and Melly, 2013). For W(X) = f (X) the density
of the covariates, we estimate the data-driven density weight nonparametrically.
We show that the proposed estimators of βW(τ ) are

√
n-consistent and weakly

converges to a Gaussian process indexed by τ . It follows that we can conduct
joint inference on the Hadamard-differentiable functionals of the conditional or
average quantile process, which can be nonlinear functionals. In an intermediate
step, we provide a new Bahadur-type linear representation for the generalized
inverse kernel-based CQF estimator uniformly over the covariates in an expanding
compact set and over the quantile levels, which can be of independent interest.

The AQD is a nonparametric alternative to the linear QR by Koenker and Bassett
(1978), just as the average mean derivative (AMD), E[∇E[Y|X]], is a nonparamet-
ric alternative to the ordinary least-squares (OLS) estimation. Powell, Stock, and
Stoker (1989) introduce the density-weighted AMD E[∇E[Y|X]f (X)], which has
received a lot of attention: Härdle and Stoker (1989), Powell and Stoker (1996),
Nishiyama and Robinson (2000), Schafgans and Zinde-Walsh (2010), Cattaneo,
Crump, and Jansson (2010, 2013, 2014a, 2014b), and Cattaneo and Jansson (2018),
to mention just a few. When the economic theory implies some semiparametric
single-index and partially linear models, the AQD identifies the coefficient up to
scale, e.g., Chaudhuri, Doksum, and Samarov (1997), Lee (2003), and Hoderlein
and Mammen (2009). The AQD gives a simple picture of the impacts of the
covariates on the outcome distribution and is more robust against possible extreme
values than the mean estimators. In nonparametric nonseparable structural models,
the derivative of the CQF has causal interpretation of continuous quantile treatment
effects, under certain conditional independence assumptions, e.g., Chesher (2003),
Chernozhukov and Hansen (2005), Hoderlein and Mammen (2007), Matzkin
(2007), and Sasaki (2015), among others. The AQD is a simple summary statistic
for the quantile treatment effects by averaging over the covariates.

The paper is concerned with the estimation and inference of the weighted AQD
in (1):

βW(τ ) = −E

[
Q(τ |X)

(
∇W(X)+W(X)

∇f (X)

f (X)

)]
, (2)

where the equality follows by integration by parts and assuming the covariates
have zero density on the boundary. Hence, the weighted AQD can be interpreted
as a weighted average CQF. More generally, we focus on the weighted average
quantile response (AQR)

βφ(τ) ≡ E
[
Q(τ |X)φ(X)

]
. (3)

When the weight φ(X) = −∇W(X) − W(X)∇f (X)
/

f (X), βφ(τ) = βW(τ ) is the
weighted AQD in (2). We propose a two-step estimator for βW(τ ): The first step is
leave-one-out nonparametric kernel-based estimation of the unknown functions
f (x), ∇f (x), and Q(τ |X). The CQF is estimated by a generalized inverse of
the estimated conditional distribution function, Q̂(τ |X) ≡ inf{y : F̂Y(y|X) ≥ τ },
where F̂Y(y|X) is a smoothed local constant regression estimator. In the second
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step, the expectation is replaced by its sample analog involving a stochastic
trimming function to account for estimating the CQF near the boundary with
small density. A stochastic trimming function selects a compact interior support
of the covariates by removing the observation i if f̂XY(Xi,Q̂(τ |Xi)) < δ, where the
trimming parameter δ vanishes at an appropriate rate as the sample size grows.
Hence, our estimator is consistent for βφ(τ) defined by the entire support of X.

We present three main results. First, to the best of our knowledge, this is the
first paper to provide the limit theory for the weighted AQD defined by the whole
support of X, which has zero density on the boundary and can be unbounded. Our
limit theorems also cover the case when the estimand is defined by a compact
interior support of X using a nonvanishing trimming parameter, commonly used
in previous research discussed below. Our tractable approach may be applied to
other multistep estimation problems based on a preliminary nonparametric kernel-
based estimator, where the stochastic trimming is required but often avoided due
to technical complication.

The second result is the density-weighted AQD by choosing W(X) = f (X).
The density weight inherits the spirit of the AMD in Powell et al. (1989). The
density-weighted AQD has a simplified expression in βφ with φ(X) = −2∇f (X)

by eliminating the denominator in (2). Consequently, compared with the AQD
with a known weight in (2), the density-weighted AQD estimator allows the
trimming parameter to vanish at a faster rate, so the estimator trims away less
observations in finite samples and also assumes weaker smoothness conditions on
the distributions. We also provide an optimal bandwidth that minimizes the mean
squared error (MSE), using the results of Powell and Stoker (1996).

The third result is a Bahadur-type linear representation of the CQF estimator
that is uniform over values of the covariates in a sequence of expanding compact
interior support and over quantile levels in a compact subset of (0,1). The new
Bahadur-type representation allows us to use the stochastic trimming function to
select the interior support of the covariates and the quantile. Hence, it is particularly
useful when the CQF is involved in a multistep estimation procedure, for example,
the first-price auction in Guerre, Perrigne, and Vuong (2000) and Marmer and
Shneyerov (2012) and the quantile correlated random coefficients panel data model
in Graham et al. (2018). We also derive the weak convergence of the conditional
quantile process estimator.

Now, we discuss our contributions of the above three results to the related
literature. The weighted AQD in (1) and (2) are first estimated by Chaudhuri
et al. (1997) using local polynomial estimators. Lee (2003) estimates (1) in a
partially linear model. Recently, Belloni et al. (2019) develop a nonparametric
series framework and perform inference on linear functionals of the CQF, including
the AQD with a known weight. We add to the literature by (i) an explicit expression
of the first-order bias that could be useful for robust inference in finite samples.
(ii) Our asymptotic analysis accounts for the estimation error of the density weight.
(iii) Using a stochastic trimming function, we are able to conduct inference on
the average quantile process defined by the whole support of X. In contrast,
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the abovementioned papers all employ a fixed trimming function for technical
simplification without losing their main focus. Consequently, their estimands are
defined by the interior support of the regressors. For the AQD to serve as a
nonparametric QR coefficient or in some economic applications, their estimands
would be different objects from the AQD defined by the entire support. Our
stochastic trimming approach has two advantages of consistency and efficiency
over the fixed trimming approach. In a nonparametric model, our estimator reaches
the semiparametric efficiency bound (Newey, 1990). In the semiparametric single-
index and partially linear models, a trimming function and the weighting function
do not affect the consistency of the estimators. But when the optimal weight in
terms of efficiency is concerned, a fixed trimming parameter results in efficiency
loss, as noted in Lee (2003).

We contribute a new tractable approach to handle the stochastic trimming in
asymptotic analysis. Toward this end, we apply the result of the nonparametric
kernel-based estimators in Hansen (2008) and Cattaneo et al. (2013). In particular,
to account for the entire support of the covariates, we face two challenges: The
first issue is the “denominator problem” for estimating the CQF when the density is
small near the boundary. Second, we derive the limit theory by plugging a Bahadur-
type representation for the CQF estimator into the two-step AQD estimator, which
becomes a U-statistic. The linear representation of Q̂(τ |X) is uniform over X in
a compact inner subset of the support, rather than the entire support. The key
to overcome these two problems is to incorporate a Bahadur-type representation
of Q̂(τ |X) on an expanding compact interior support with a stochastic trimming
function. The smoothed estimator F̂Y(y|x) utilizes the uniform convergence results
on expanding interior support in Hansen (2008) and Cattaneo et al. (2013). The
trimming function selects the expanding compact interior support by controlling
the lower bound of the joint density fXY(X,Q(τ |X)) converging to zero. Then, we
derive a Bahadur representation for the generalized inverse estimator of the CQF
uniformly over X in this trimmed interior support at an appropriate rate as the
sample grows, depending on a tradeoff between the tail behavior of the distribution
and the estimation error from the CQF. Therefore, the trimmed compact interior
support, where we have the uniform linear representation for Q̂(τ |X), is expanding
to the entire support as the sample grows.

Finally, our third result contributes a Bahadur representation of the generalized
inverse smoothed estimator for the CQF. Bhattacharya and Gangopadhyay (1990)
provide a Bahadur representation uniformly over the bandwidth, and Dabrowska
(1992) derives the uniformity over the quantiles. For the local polynomial esti-
mator of the CQF, Chaudhuri et al. (1997) and Kong, Linton, and Xia (2010)
derive Bahadur representations for uniformity in the covariates X, Qu and Yoon’s
(2015) result is uniform over the quantile τ , and Guerre and Sabbah (2012)
and Fan and Guerre (2016) provide the uniformity in X and τ . To extend their
Bahadur representations to uniformity on expanding interior supports, the uniform
convergence rate is penalized by the lower bound of the density at a slower
rate, as noted in Hansen (2008). As a result, compared with our local constant
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estimator, using a local linear quantile estimator trims more observations in finite
samples.

The paper proceeds as follows. In Section 2, we discuss applications of the AQD.
Section 3 introduces the estimators. In Section 4, we first show a uniform linear
representation and weak convergence for the nonparametric kernel-based CQF
estimation. The AQD estimators are

√
n-consistent and asymptotically normal. We

suggest a consistent estimator for the asymptotic covariance matrix and an optimal
bandwidth choice. In Section 5, by a simple simulation study, we compare the
proposed AQD estimator with the AMD estimator in Powell et al. (1989), the linear
QR estimator in Koenker and Bassett (1978), and the OLS for the semiparametric
partially linear models. We also implement several bootstrap-based confidence
intervals (CIs). All proofs are in the Appendix.

2. APPLICATIONS

We discuss applications of the AQD by starting with a general nonparametric
nonseparable structural model. We demonstrate how the AQD captures informative
causal features under certain conditional independence assumptions. By imposing
further assumptions on the data generating processes (DGPs) and the structural
equations, the AQD estimates the coefficients (up to scale) in semiparametric
QR models. Another application relates to the counterfactual distribution or
decomposition analysis literature. We discuss some earlier work that is most
related to ours; more details are in their references therein.

Consider the general setting in Newey and Stoker (1993), Y = φ(X,e), where e
captures the unobserved individual heterogeneity and could be multidimensional.
Let X = (X1,X′

2)
′ and X1 be conditionally independent of e given X2. Hoderlein

and Mammen (2007) and Sasaki (2015) investigate causal interpretation of the
derivative of the CQF, which identifies a weighted average of heterogeneous
structural partial effects among the subpopulation of individuals at the conditional
quantile of interest.

A common identification strategy assumes that the structural function φ is
strictly increasing in the scalar unobservable e. Then, the CQF of Y given X
identifies the structural function φ up to a normalization on Qe(τ |X2),

Q(τ |X) = φ(X,Qe(τ |X)) = φ(X,Qe(τ |X2)). (4)

Therefore, the partial derivative of the CQF with respect to X1, ∂Q(τ |X)/∂X1,
identifies the structural derivative, ∂φ(X,Qe(τ |X2))/∂X1, which is the causal
effect of X1 while leaving the value of the unobserved variable e unchanged at
Qe(τ |X2).

Further assume quantile independence and normalization such that (4) yields
φ(X,Qe(τ )) = φ(X,τ ), which is the τ th quantile treatment response defined in
Chernozhukov and Hansen (2005). It follows that for a nonseparable single-index
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model Y = φ(X′β0,e), βW(τ ) identifies the index coefficient β0 up to scale, e.g.,
Chaudhuri et al. (1997) and a rank estimator in Khan (2001). Then, the structural
function φ can be further estimated by a nonparametric QR of Y on the estimated
index X′β̂W(τ ).1

The partially linear and single-index models relax restrictive parametric assump-
tions and ease the curse of dimension in nonparametric estimation. For a single-
index QR model, Y = φτ (X′βτ ) + eτ and Qeτ (τ |X) = 0. The weighted AQD
identifies the coefficient βτ up to scale, βW(τ ) = βτE[φ′

τ (X
′βτ )W(X)]. For exam-

ple, Wu, Yu, and Yu (2010) propose an iterative algorithm, and Kong and Xia
(2012) propose an adaptive estimation procedure.

The weighted AQD relates to the counterfactual distribution literature by the
choice of the weighting function W(X); see Chernozhukov et al. (2013) and the
references therein. For example, the policy maker may change the covariate distri-
bution exogenously to some probability density function f ∗(X), as in Rothe (2010),
and consider a simple counterfactual, “what would the AQD have been if individ-
uals’ attributes had been distributed by f ∗(X)?” By choosing W(X) = f ∗(X)/f (X),
the weighted AQD βW(τ ) = ∫ ∇QY(τ |x)f ∗(x)dx = E[∇QY(τ |X)f ∗(X)/f (X)] =
−E[QY(τ |X)∇f ∗(X)/f (X)] is the counterfactual AQD. Our estimator for βW is
directly applicable when W(X) is known. The limit theory for an estimated W(X)

can be modified using the general results in the Appendix.

3. ESTIMATION

The data consist of n observations (X′
i,Yi)

′,i = 1, . . . ,n, which is an independently
and identically distributed random sample from a distribution FXY(X,Y). The
τ th CQF of Y given X is Q(τ |X) ≡ inf{y : FY(y|X) ≥ τ }, where FY(y|X) is the
conditional cumulative distribution function (CDF) of Y given X.

We propose two-step estimators for three estimands: the weighted AQR βφ(τ)

in (3), the weighted AQD βW(τ ) in (2), and the density-weighted AQD

βf (τ ) = E[∇Q(τ |X)f (X)] = −2E [Q(τ |X)∇f (X)] . (5)

The first step is leave-one-out nonparametric estimation of the unknown functions.
The second step is the sample analog involving a stochastic trimming function
1
{
Xi ∈ Ŝ

}
:

β̂φ(τ ) = 1

n

n∑
i=1

Q̂(τ |Xi)φ(Xi)1
{
Xi ∈ Ŝ

}
, (6)

1This specification includes many models as special cases, for an example of a selection model where X1, X2, and
Y = X′

1β1 +e1 are observed only if the unobserved Z∗
2 = X′

2β2 +e2 > 0. Assuming (e1,e2) is independent of (X1,X2),
QY (τ |X1,X2,Z∗

2 > 0) = X′
1β1 + Qe1 (τ |Z∗

2 > 0). If X2 has no variables in common with X1, then the AQD identifies
the structural parameter β1 and the selection parameter β2 up to scale. If X′

1β1 and X′
2β2 are the same, then it is the

truncated Tobit model, as discussed in Stoker (1986).
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β̂W(τ ) = −1

n

n∑
i=1

Q̂(τ |Xi)

(
∇W(Xi)+ ∇ f̂ (Xi)

f̂ (Xi)
W(Xi)

)
1
{
Xi ∈ Ŝ

}
, (7)

β̂f (τ ) = −2

n

n∑
i=1

Q̂(τ |Xi)∇ f̂ (Xi)1
{
Xi ∈ Ŝ

}
, (8)

for a quantile level τ ∈ T = [ε,1 − ε] for ε ∈ (0,1/2). Following Powell et al.
(1989), a more interpretable rescaled density-weighted AQD is defined as βs ≡
βf /E[f (X)], with a normalized density weight W(X) = f (X)

/
E[f (X)]. The scaled

estimator is β̂s(τ ) = β̂f (τ )/
(
n−1∑n

i=1 f̂ (Xi)
)
.

Next, we describe each component in the estimators. The leave-one-out kernel
estimator for the density function of X at Xi is f̂ (Xi) = (|H1|(n−1))−1∑

j	=i K(H−1
1(

Xj −Xi)
)
, where K(u) = �d

s=1k(us) is a ν1th-order multivariate product kernel and
the bandwidth matrix H1 is the d × d identity matrix multiplied by h1, a positive
sequence of n. The covariates X can be normalized by the standard deviations, so
that the bandwidths are equal to the same h1 for all components of X for simplicity.

The CQF is estimated by inverting the estimated conditional CDF, Q̂(τ |X) ≡
inf{y : F̂Y(y|X) ≥ τ }, where

F̂Y(y|Xi) = 1

|H|(n−1)

1

f̂ (Xi)

∑
j	=i

G

(
y−Yj

h0

)
K(H−1 (Xj −Xi)

)
with a kernel of order ν and a bandwidth matrix H. The indicator function 1{Yj ≤ y}
for the dependent variable is smoothed by a cumulative kernel G(z) = ∫ z g(t)dt
with a second-order kernel g and bandwidth h0.

The CQF estimator by the generalized inverse is monotone in τ by construction.
However, the CDF estimator is not increasing in y when we use a bias-reducing
or higher-order kernel K. Chernozhukov, Fernández-Val, and Galichon (2010)
propose a generic rearrangement method to get a monotonized version of the
estimate F̃Y(y|Xi), which preserves the same asymptotics as F̂Y(y|Xi). Then, the
CQF can be estimated by Q̂(τ |Xi) ≡ infy{F̃Y(y|Xi) ≥ τ } in practice.2

The trimming function 1
{
Xi ∈ Ŝ

}
is defined by a small enough positive trim-

ming parameter δ, which can be a constant or a positive sequence converging
to zero, and S ≡ {x : fXY(x,Q(τ |x)) ≥ δ}. To estimate the AQR and the AQD

at a particular quantile level τ , let Ŝ ≡
{

x : f̂XY(x,Q̂(τ |x)) ≥ δ
}

. The trimming

parameter δ can be a constant that defines an interior support of X or a sequence δ =
δn converging to zero that defines a sequence of expanding sets converging to the

2Note that the weighted AQD βW (τ ) is a nonparametric object of interest, which is a summary statistic of the marginal
effect of X on the CQF. We do not assume that x′βW (τ ) is the CQF and is monotone in τ for all x. However, quantile
crossings occur in the single-index and partially linear models in Section 2, which is a fundamental problem for
(semi)parametric QR models. In particular, Phillips (2015) shows that quantile crossings are inevitably present with
positive probability in quantile predictive regressions.
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entire support X ⊆ Rd.3 The conditions on the tuning parameters h,h0,h1,ν,ν1,δ

are specified in Assumptions 3 and 4 in Section 4.
The derivative can only be calculated for the continuous covariates. When the

covariates contain discrete components, the same estimation works for each point
in a finite set of the realized values of the discrete components.

4. ASYMPTOTIC PROPERTIES

We provide a Bahadur-type representation for the CQF estimator uniformly in the
quantiles and the covariates in Section 4.1. We also show the weak convergence
of the conditional quantile process indexed by the quantile, for a given value of
the regressors. Section 4.2 presents the limit theories for our estimators of the
AQR βφ , the density-weighted AQD βf , and the weighted AQD βW . In Section 4.3,
we provide a consistent estimator of the asymptotic covariance matrix. In Section
4.4, we provide an optimal bandwidth choice. Limits are taken as n → ∞ unless
otherwise noted. We start with regularity assumptions. The joint density of (X′,Y)′,
denoted by fXY(X,Y), is with respect to the Lebesgue measure on X ×Y ⊆ Rd+1.
Denote the boundary of X by ∂X .

Assumption 1..

(i) X × Y is convex. f (x) is uniformly bounded above. limx→∂X
f (x) = 0. limx→∂X Q(τ |x) exists for all τ ∈ [ε,1− ε], for some small ε > 0.

(ii) For x ∈ X , y ∈ Y , and τ ∈ [0,1], the partial derivatives of FY(y|x) and Q(τ |x)
with respect to x of order px are uniformly continuous in x and bounded;
∂3FY(y|x)/∂y3 is uniformly continuous in y and bounded.

Assumption 2 (Kernel). (K) The kernel function k is Lipschitz continuous,
bounded, symmetric, with convex bounded support, and of order ν, i.e.,
κj ≡ ∫

xjk(x)dx = 0, for j < ν and κν ∈ (0,∞). The first derivative k′(x) is
bounded and integrable.

(G) The second-order kernel g is bounded and symmetric. When g has an
unbounded support and Y ⊂ R, there exist some positive constants C,L < ∞
and m > 4 such that |g(u)| ≤ C|u|−m, for |u| > L.

Assumption 2(K) imposes standard kernel conditions, e.g., Powell et al. (1989)
and Hansen (2008). Assumption 2(G) is used to characterize the first-order bias
from smoothing the indicator function with G

(
(y − Yj)/h0

)
. The commonly used

Gaussian kernel satisfies Assumption 2(G) that restricts the tail behavior of the
kernel function g with an unbounded support when Y does not have a full support
on R.

3For the denominator problem, Robinson (1988), Härdle and Stoker (1989), Lavergne and Vuong (1996), Ichimura
and Todd (2007), and Escanciano, Jacho-Chávez, and Lewbel (2014), among others, use a similar stochastic trimming
approach by bounding the density of X away from zero. Because we are dealing with an additional problem of
estimating the CQF and its uniform linear representation, trimming on f (X) is not sufficient. Similarly, for the series
estimator in Belloni et al. (2019), their AQD is defined by a fixed interior support where fXY (x,Q(τ |x)) is bounded
away from zero.
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4.1. Conditional Quantile Function

We give a condition on the trimming parameter δ in the trimming function 1{Xi ∈
Ŝ} via an expanding set Cn ≡ {x : ‖x‖ ≤ cn}, where a positive sequence cn → ∞
and ‖x‖ = |x′x|1/2. Then, we build on and extend the uniform convergence results
of kernel-based estimators on an expanding interior support in Hansen (2008)
and Cattaneo et al. (2013) to specify the condition on cn. Specifically, for any
positive sequence δ = δn → 0, define S = Sn ≡ {x : infτ∈T fXY(x,Q(τ |x)) ≥ δ} that
approachesX as n → ∞. There exists such an expanding set Cn equal to the convex
hull of S . We can show that δ = infτ∈T fXY(x̄,Q(τ |x̄)) with x̄ on the boundary of
Cn, i.e., ‖x̄‖ = cn. When X is convex, we can write δ = infx∈Cn,τ∈T fXY(x,Q(τ |x)).4

We remark that the convex support condition in Assumption 1(i) is used to
conveniently specify the condition on the trimming parameter δ and is for nota-
tional simplicity. Nonetheless, the convex support assumption is not uncommon
in the literature; for example, it can be implied by other smoothness conditions
on f (x), fY(y|x), or Q(τ |x) as in Guerre and Sabbah (2012) and Qu and Yoon
(2015), among others. We can allow a nonconvex support by letting Assumption
1 be local following Qu and Yoon (2015) in the sense that the restrictions are on
neighborhoods surrounding X ×Y rather than on the support of (X′,Y) by a slight
abuse of notation. Then, our results can be applied to the case when the support is
nonconvex and is a union of convex sets.

THEOREM 1 (Bahadur representation). Let Assumptions 1 and 2 hold

with px ≥ ν. Let δ−1
(√

logn/(nhd)+h2
0 +hν

)
→ 0. Let δ be a constant or

a sequence δ = δn = infτ∈T fXY(x̄,Q(τ |x̄)) → 0 with ‖x̄‖ = cn → ∞ and
limsupn→∞ log(cn)/ logn < ∞. Then,

sup
x∈S
τ∈T

∣∣∣Q̂(τ |x)−Q(τ |x)
∣∣∣= Op

(
1

δ

(√
logn

nhd
+h2

0 +hν

))
.

Furthermore, let δ−1
√

logn/(nhdh0) → 0. Then, for any τ ∈ T and x ∈ S ,

Q̂(τ |x)−Q(τ |x) = 1

n|H|

∑n
i=1 K

(
H−1(Xi − x)

)(
τ −G

(
Q(τ |x)−Yi

h0

))
fXY(x,Q(τ |x)) +Rn(τ,x),

(9)

4We can normalize X such that the support X is centered at zero without loss of generality. To see the relationship
between δ and cn, let T = {τ } be a singleton for simplicity. Since S is compact, x̄ on the boundary of the convex hull
of S is also on the boundary of S, and hence, fXY (x̄,Q(τ |x̄)) ≥ δ. Suppose to the contrary that the inequality is strict,
i.e., fXY (x̄,Q(τ |x̄)) = aδ > δ for a constant a > 1. By the assumption limx→∂X f (x) = 0, limx→∂X fXY (x,Q(τ |x)) = 0,
and hence, S is a strict subset of X , for any δ > 0. So X ∩Sc is not empty. By continuity, there exists η > 0 such that
for x ∈ {x ∈ X ∩Sc : ‖x − x̄‖ ≤ η}, |fXY (x,Q(τ |x))− fXY (x̄,Q(τ |x̄))| ≤ δ. So fXY (x,Q(τ |x)) ≥ fXY (x̄,Q(τ |x̄))− δ =
(a − 1)δ > δ that contradicts x ∈ X ∩Sc. Therefore, fXY (x̄,Q(τ |x̄)) = δ. When X is convex, S = Cn for n large
enough, and hence, δ = infx∈Cn fXY (x,Q(τ |x)) by construction.
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where the remainder term Rn(τ,x) satisfies

sup
x∈S
τ∈T

|Rn(τ,x)| = Op

(
logn

δ2nhd

(
1√
h0

+ 1

δ

))

+Op

(
hν +h2

0

δ2

(√
logn

nhdh0
+ hν +h2

0

δ

))
. (10)

The linear representation is useful for analyzing large sample properties of the
final plug-in estimators under different applications. The CQF estimator inherits
the uniform convergence rate of the conditional CDF estimator F̂Y(y|X). The
Bahadur representation allows for the optimal rate for estimating the CQF. In the
uniform convergence rate of the remainder term Rn, the second part in (10) is of
smaller order if the estimator is undersmoothed by assuming

√
nhd(h2

0 +hν) → 0.
Theorem 2 below shows the weak convergence of the empirical conditional

quantile process
{
x �→ Q̂(τ |x) : τ ∈ T

}
. When the interest is to conduct inference

on the CQF, Theorem 2 enables the inference method in Fan and Liu (2016), who
develop a new CI interval from any conditional quantile process estimator that
weakly converges to a Gaussian process.

THEOREM 2 (Weak convergence). Let the conditions in Theorem 1 hold. Fur-
thermore, let

√
nhd(h2

0 +hν) → 0. Then, for any x ∈ S ,
√

nhd
(
Q̂(·|x)−Q(·|x))�⇒

G(·|x) that is a zero-mean Gaussian process G(·|x) with covariance

Cov (G(τ1|x),G(τ2|x)) = τ1(1− τ2)

f (x) fY
(
Q(τ1|x)

∣∣x) fY
(
Q(τ2|x)

∣∣x)
(∫

k(v)2dv

)d

,

for any τ1 ≤ τ2 ∈ T .

4.2. Weighted Average Quantile Response

We first establish asymptotic linearity of the estimator for the weighted AQR with
a known weight φ(X), βφ(τ) = E

[
Q(τ |X)φ(X)

]
in (6). Theorem 3 also provides

the preliminary results to analyze β̂f and β̂W , where the weight is estimated. Let
∂ l

kg(x) denote the lth-order partial derivative of a generic function g(x) with respect
to the kth component of x and ∂kg(x) ≡ ∂1

k g(x).

THEOREM 3 (Weighted AQR). Let the conditions in Theorem 1 hold with px ≥
ν +1. For a measurable function φ : X �→Rq, assume the pxth-order derivative of
φ(x) to be uniformly continuous and bounded. Let the following conditions hold.

(i) E
[‖φ(X)‖2 (infτ∈T fXY(X,Q(τ |X)))−2]< ∞, nh2d → ∞, and

√
n(h2

0 +hν) →
C ∈ [0,∞).

(ii) supx∈S,τ∈T ‖φ(x)‖|Rn(τ,x)| = op
(
n−1/2

)
, where the bound of Rn is given in

Theorem 1.
(iii) E[||Q(τ |X)φ(X)||1{X /∈ S}] = o(n−1/2).
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Then, uniformly in τ ∈ T ,
√

n
(
β̂φ(τ )−βφ(τ)−Biasφ(τ ;h,h0)

)
= 1√

n

n∑
i=1

(
φ(Xi)

fY(Q(τ |Xi)|Xi)
(τ −1{Yi ≤ Q(τ |Xi)})+Q(τ |Xi)φ(Xi)−βφ(τ)

)
+op(1),where

Biasφ(τ ;h,h0) ≡ E

[−φ(X)

fY(y|X)

(
h2

0
κG2

2

∂fY(y|X)

∂y

+ hνκν

f (X)

ν∑
l=1

1

l!(ν − l)!

d∑
k=1

∂ l
kFY(y|X)∂ν−l

k f (X)

)∣∣∣∣
y=Q(τ |X)

]
(11)

and κG2 ≡ ∫
G′(z)z2dz.

The condition (i) in Theorem 3 is due to the U-process theory in Sherman (1994).
The bandwidths are large enough to achieve asymptotic linearity. The bandwidths
are small enough with possibly higher-order kernels to control the bias to vanish
at a rate no slower than

√
n. Consequently, the nonparametric estimations of the

density and CQF are undersmoothed, which is conventional in semiparametric
estimation.

Our asymptotic theorems apply to both cases using fixed trimming and van-
ishing trimming approaches. The asymptotic linear representation in Theorem 3
coincides with Chaudhuri et al. (1997), where the weight W serves as a trimming
function to define a compact interior of the support of X. We further characterize
the first-order bias from the CQF estimate, which vanishes at a faster rate under
the condition

√
n(h2

0 +hν) → 0.
The trimming parameter δ vanishes to zero at a rate specified by the conditions

(ii) and (iii) in Theorem 3. The condition (ii) ensures δ to be large enough to
control the sampling variation of estimating the CQF. The condition (iii) controls
the trimming bias that depends on the tail behavior of the distribution fXY and
ensures that δ is small enough for the estimator to approach the entire support. The
trimming parameter δ trades off the estimation variance and the trimming bias,5

while the bandwidths h and h0 trade off the variance and bias of the preliminary
estimators.

We use a standard approach to derive the limit theory by plugging a Bahadur-
type representation for the CQF estimator into the two-step estimator, which
becomes a U-statistic. The linear representation of Q̂(τ |X) given in Theorem 1
has the joint density fXY(x,Q(τ |x)) in the denominator. Heuristically, we control the
remainder terms in the linear representation of the final estimator to be of smaller

5Similar assumptions have been used in Lavergne and Vuong (1996), Ichimura and Todd (2007), and Khan and Tamer
(2010), for example.
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order based on 1/fXY(x,Q(τ |x)) < 1/δ. In a semiparametric problem that involves
the CQF, the conditional density fY(Q(τ |x)|x) is commonly assumed to be bounded
away from zero for identification or for technical simplification. Assumption 1
implies that there exist some constants δ and c such that {x : fXY(x,Q(τ |x)) >

δ} = {x : fY(Q(τ |x)|x) > c}. Therefore, using the conditional density, fY(Q(τ |x)|x)
is equivalent to using the joint density fXY(x,Q(τ |x)) in our asymptotic analysis.
Exploiting the assumption fY(Q(τ |x)|x) > c would not improve the large sample
properties by our approach.

Next, we present the asymptotic properties for the density-weighted AQD
with an estimated weight ∇ f̂ (X) in (8) β̂f (τ ) and the scaled AQD β̂s(τ ) =
β̂f (τ )/

(
n−1∑n

i=1 f̂ (Xi)
)
. Assumption 3 gives specific conditions for the tuning

parameters for β̂f and are sufficient for the conditions in Theorem 3. Let Bn ≡
{X : fXY(X,Q(τ |X)) < δ}. When uniformity over τ ∈ T is considered, let Bn ≡ {X :
supτ∈T fXY(X,Q(τ |X)) < δ}.

Assumption 3 (Bandwidth—β̂f ). The positive sequences h,h1,h0, δ satisfy√
n(h2

0 + hν + hν1
1 ) → C ∈ [0,∞), δ4nh2dh0 → ∞, δ6nh2d → ∞, nh2d+2

1 → ∞,
and δ2nhdhd+2

1 → ∞. The trimming parameter δ = δn satisfies
∫

Bn

∥∥Q(τ |X)∇f (X)
∥∥

f (X)dX = o(n−1/2).

THEOREM 4 (Density-weighted AQD). Let the conditions in Theorem 1 hold
with px ≥ max{ν +1,ν1 +2} and φ(X) = −2∇f (X). Let Assumption 3 hold. Define
the influence function

rf (Zi;τ) ≡ 2∇f (Xi)

fY(Q(τ |Xi)|Xi)

(
1{Yi ≤ Q(τ |Xi)}− τ

)
+2f (Xi)∇Q(τ |Xi)−2βf (τ ).

1. Then,
√

n
(
β̂f (τ )−βf (τ )−Biasf (τ ;h,h0,h1)

)
= n−1/2∑n

i=1 rf (Zi;τ) + op(1),

uniformly in τ ∈ T , where Biasf (τ ;h,h0,h1) ≡ −2hν1
1 κν1(ν1!)−1∑d

k=1
E
[
Q(τ |X)∂

ν1
k ∇f (X)

]+ Biasφ(τ ;h,h0) and Biasφ(τ ;h,h0) is defined in (11)
with φ(X) = −2∇f (X).

2. Let
√

n(h2
0 + hν + hν1

1 ) → 0 such that Biasf (τ ;h,h0,h1) = o(n−1/2). Then, the
empirical process indexed by τ ∈ T converges weakly to a zero-mean Gaussian
process

√
n
(
β̂f (·)−βf (·)

)�⇒ Gf (·) with covariance

Cov
(
Gf (τ1),Gf (τ2)

)
= 4τ1(1− τ2)E

[ ∇f (X)∇f (X)′

fY(Q(τ1|X)|X)fY(Q(τ2|X)|X)

]
+4E

[(
f (X)∇Q(τ1|X)−βf (τ1)

)(
f (X)∇Q(τ2|X)−βf (τ2)

)]
,

for any τ1 ≤ τ2 ∈ T . For the scaled density-weighted AQD,
√

n
(
β̂s(·)−βs(·)

)
=

n−1/2∑n
i=1

(
rf (Zi;·)/E[f (X)]−2

(
W(Xi)−1

)
β∗(·))+op(1) �⇒ G

∗(·) that is a
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zero-mean Gaussian process with covariance

Cov
(
G

∗(τ1),G
∗(τ2)

)= 4τ1(1− τ2)E

[ ∇W(X)∇W(X)′

fY(Q(τ1|X)|X)fY(Q(τ2|X)|X)

]
+4E

[(
W(X)∇Q(τ1|X)−β∗(τ1)+W(X)−1

)
× (

W(X)∇Q(τ2|X)−β∗(τ2)+W(X)−1
)]

,

for any τ1 ≤ τ2 ∈ T .

Now, we consider the general weighted AQD β̂W(τ ) in (7). Assumption 4 below
gives specific conditions for the tuning parameters for β̂W .

Assumption 4 (Bandwidth—β̂W ). The positive sequences h,h1,h0, δ satisfy√
n(h2

0 + hν + hν1
1 ) → C ∈ [0,∞), δ6nh2dh0 → ∞, δ8nh2d → ∞, nh2d+2

1 → ∞,
δ4nhdhd+2

1 → ∞, and δ6nhdhd
1 → ∞. The trimming parameter δ = δn satisfies∫

Bn

∥∥Q(τ |X)∇(W(X)f (X)
)∥∥dX = o(n−1/2).

THEOREM 5 (Weighted AQD). Let the conditions in Theorem 1 hold with
px ≥ max{ν+1,ν1 +2} and φ(X) = −∇ (W(X)f (X))/f (X). Let Assumption 4 hold.
Assume the (ν1 + 1)th-order derivative of W(X) to be uniformly continuous and
bounded. Assume E

[
W(X)2/f (X)2

]
< ∞ and E

[
W(X)2(∇f (X))2/f (X)4

]
< ∞.

1. Then,
√

n
(
β̂W(τ )−βW(τ )−Biasw(τ ;h,h0,h1)

)
= n−1/2∑n

i=1 rw(Zi) + op(1),

uniformly in τ ∈ T , where the influence function is

rw(Zi) ≡ ∇ (W(Xi)f (Xi))

fY(Q(τ |Xi)|Xi)f (Xi)

(
1{Yi ≤ Q(τ |Xi)}− τ

)
+W(Xi)∇Q(τ |Xi)−βW(τ )

and Biasw(τ ;h,h0,h1) ≡ Biasφ(τ ;h,h0)+hν1
1 κν1(ν1!)−1∑d

k=1E
[
Q(τ |X)W(X)/

f (X)2×(∇f (X)∂
ν1
k f (X) − f (X)∂

ν1
k ∇f (X)

)]
, where Biasφ(τ ;h,h0) is defined in

(11) with φ(X) = −∇(W(X)f (X)
)/

f (X).
2. Let

√
n(h2

0 + hν + hν1
1 ) → 0 such that Biasw(τ ;h,h0,h1) = o(n−1/2). Then, the

empirical process indexed by τ ∈ T converges weakly to a zero-mean Gaussian
process

√
n
(
β̂W(·)−βW(·))�⇒ Gw(·) with covariance

Cov (Gw(τ1),Gw(τ2))

= τ1(1− τ2)E

[ ∇ (W(X)f (X))∇ (W(X)f (X))′

fXY(X,Q(τ1|X))fXY(X,Q(τ2|X))

]
+E [(W(X)∇Q(τ1|X)−βW(τ1))(W(X)∇Q(τ2|X)−βW(τ2))],

for any τ1 ≤ τ2 ∈ T .

Our theorems show that the proposed estimators are asymptotically linear
and weakly converge to Gaussian processes. It is worth noting the difference in
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estimating the density-weighted AQDβf in Theorem 4 and the general weighted
AQD βW in Theorem 5. First, estimating the density weight contributes an
additional term f (X)∇Q(τ |X) − βf (τ ). Thus, the estimation error of the density
function is not ignorable to perform correct inference. Second, because the density
appears in the denominator in βW , the trimming bound δ vanishes at a slower
rate. Thus, β̂W trims more observations in finite samples than β̂f does. Third, the
smoothness conditions are weaker for β̂f than for β̂W .

Remark 1 (Efficiency). Since our estimands are explicit functions of the
distribution, Newey (1990) implies that these nonparametric estimators reach
the semiparametric efficiency bounds when the distribution is unrestricted. That
is, the influence function of any asymptotically linear and regular estimator for
our estimand is unique and hence efficient. It follows that our estimators reach
the efficiency bounds of the weighted AQR and the (density-)weighted AQD,
respectively. Other nonparametric estimations for the first-step unknown functions,
such as series or local polynomial, will give the same asymptotic distribution.6

Remark 2 (Choice of tuning parameters). Although the tail distribution
conditions are not testable, we provide an example that satisfies the condition
limsupn→∞ log(cn)/ logn < ∞ in Theorem 1. When the tail of the joint distribution
of (X,Y) decays at an exponential rate, we can choose cn ∝ (logn)q, for some q > 0,
and δ = δn ∝ n−b.7

An alternative set of sufficient conditions for the nonparametric tuning parame-
ters in Theorems 4 and 5 is to let the positive sequences vanish at a polynomial rate,
h ∝ n−a, h1 ∝ n−c, h0 ∝ n−η, and δ ∝ n−b, for some positive constants, a,b,c,η:

For β̂f , choose ν > 4d
3 , a ∈ [ 1

2ν
, 3

8d ), ν1 > max
{
d +1, d+2

2−2ad

}
, c ∈

[
1

2ν1
, min

{
1

2d+2,

1−ad
d+2

})
, η ∈ [

1
4,1−2ad

)
, and b < min

{
1
4 (1−2ad −η), 1

2 (1−ad − c(d +2)),
1
6 (1−2ad)

}
.

For β̂W , choose ν > 4d
3 , a ∈ [ 1

2ν
, 3

8d ), ν1>max
{
d +1, d+2

2−2ad

}
, c ∈

[
1

2ν1
, min

{
1

2d+2,

1−ad
d+2

})
, η ∈ [ 1

4,1 − 2ad), and b < min
{

1
6 (1−2ad −η), 1

4 (1−ad − c(d +2)),
1
6 (1−ad − cd), 1

8 (1−2ad)
}
.

These sufficient conditions suggest an upper bound of the convergence
rate of the tuning parameter δ ∝ n−b, i.e., δ cannot be too small, so that we
can control the first-step estimation error. On the other hand, the condition

6Specifically, Newey and Stoker (1993) calculate the efficiency bounds for the weighted average derivative for general
loss functions, including conditional mean and quantiles, where the weighting function is a known function. By
proceeding as in the proof of Theorem 3.1 in Newey and Stoker (1993), we can calculate the efficiency bounds for
the density-weighted average quantile/mean derivatives where the density weight is estimated. We can verify that the
estimators proposed in this paper and in Powell et al. (1989) are semiparametrically efficient, as implied by the result
in Newey (1990). Since the proof closely follows Theorem 3.1 in Newey and Stoker (1993), we do not repeat the
details to save space.
7Suppose the joint distribution of Z = (X′,Y)′ to be proportional to e−‖z‖p

, for some p > 0. The bandwidth assumption
requires the trimming parameter δ to be bounded above by inf‖x‖≤cn fXY (x,Q(τ |x)) ∝ e−(logn)qp

that is larger than n−b

by letting qp < 1. A smaller p results in a larger q, meaning that we could use more observations when fXY has a fatter
tail.
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Bn

‖Q(τ |X)∇f (X)‖f (X)dX = o(n−1/2) in Assumptions 3 and 4 suggests that δ

cannot be too big, so that the trimming bias is of smaller order. To see these
conditions are feasible in practice, we give a set of tuning parameters for β̂f in our
Monte Carlo simulations.

Remark 3 (Functionals of the weighted average quantile). Once the weak
convergence of the quantile process is established in the above theorems, we
can extend the results to the Hadamard-differentiable functionals of the quan-
tile process �(β), which can be nonlinear functionals of the distributions. The
functional delta method, e.g., Theorem 20.8 in van der Vaart (2000), implies the
limit distribution and uniform inference on functionals of the quantile process.
For example, the interquantile change �(β) = β(.75) − β(.25) or the Average
Response �(β) = ∫ τ2

τ1
β(τ)dτ , for 0 < τ1 < τ2 < 1.

We may estimate the weighted Aggregate Response
∫ 1

0 βφ(τ)dτ over the entire
quantile range [0,1] by trimming on the quantile levels such that [ε,1−ε] expands
to [0,1]. Specifically, it is sufficient to let ε = εn = o(n−1/2).8 This result may be
applicable to the first-price auctions in Marmer and Shneyerov (2012).

Remark 4 (Alternative small bandwidth asymptotics and bootstrap). There are
recently developed resampling methods for two-step semiparametric estimators.
Cattaneo and Jansson (2018) develop an alternative asymptotic theory to the
conventional empirical process theory that relies on the usual stochastic equicon-
tinuity condition and is used in this paper. They allow for low precision of the
first-step kernel-based estimators due to a small bandwidth and account for the
resulting undersmoothing bias. They show that some nonparametric bootstrap
methods automatically correct for such bias. In our simulation study, we examine
the robustness of the nonparametric bootstrap as well as our normal distributional
approximation, with respect to bandwidth choice.

4.3. Asymptotic Covariance Matrix

An asymptotically pivotal test statistic, a CI, or the corresponding hypothesis test
can be constructed by a studentized version of the estimator using Slusky’s theorem
with a consistent covariance matrix estimator. The covariance matrix could be
consistently estimated as the sample variance of uniformly consistent estimators of
the influence function. We provide a covariance matrix estimator that is composed
of preliminary estimators already used in the primary AQD estimator. So we do
not need additional estimation for the asymptotic covariance, such as estimating
the derivative of the CQF ∇Q(τ |Xi).

8Note that the minimum and maximum of the quantile levels ε and 1−ε do not enter the uniform convergence rate of
the remainder term in the Bahadur representation in (9). The condition for the convergence rate of ε only depends on
the tail distributions by

∫
[0,ε)∪[1−ε,1] E[Q(τ |X)φ(X)]dτ = op(n−1/2). Thus, assuming uniform bounded Q(τ |X)φ(X),

it suffices to let ε = εn = o(n−1/2).
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We utilize the projection structure of the U-statistic, following Härdle and Stoker
(1989) for the AMD. Define

r̂Ii(τ ) = φ̂(Xi)

f̂Y(Q̂(τ |Xi)|Xi)

(
1{Yi ≤ Q̂(τ |Xi)}− τ

)
1
{

Xi ∈ Ŝ
}
,

r̂IIi(τ ) = −1

n−1

∑
j	=i

1

hd+1
1

∇K
(
H−1(Xi −Xj)

)
×
(
ψ̂(Xi;τ)− ψ̂(Xj;τ)1

{
Xj ∈ Ŝ

})
1
{

Xi ∈ Ŝ
}
,

r̂IIIi(τ ) = −1

n−1

∑
j	=i

1

hd
1

K
(
H−1(Xi −Xj)

)
×
(
γ̂ (Xi;τ)+ γ̂ (Xj;τ)1

{
Xj ∈ Ŝ

})
1
{

Xi ∈ Ŝ
}
,

where φ̂(Xi), ψ̂(Xi;τ), and γ̂ (Xi;τ) are defined specifically for β̂f and β̂W as
follows.

We estimate the asymptotic covariance of β̂f by

Ĉov
(
Gf (τ1),Gf (τ2)

)= 1

n

n∑
i=1

r̂f (Zi;τ1)r̂f (Zi;τ2)
′ − r̄(τ1)r̄(τ2)

′,

for τ1 ≤ τ2 ∈ T , where r̂f (Zi;τ) = r̂Ii(τ )+ r̂IIi(τ )− β̂f (τ ), r̄(τ ) = n−1∑n
i=1 r̂f (Zi;τ),

and letting φ̂(X) = 2∇ f̂ (X) in r̂Ii(τ ) and ψ̂(X;τ) = 2Q̂(τ |X) in r̂IIi(τ ).
We estimate the asymptotic covariance of β̂w by

Ĉov (Gw(τ1),Gw(τ2)) = 1

n

n∑
i=1

r̂w(Zi;τ1)r̂w(Zi;τ2)
′ − r̄w(τ1)r̄

′
w(τ2),

where r̂w(Zi;τ) = r̂Ii(τ ) + r̂IIi(τ ) + r̂IIIi(τ ) − β̂w(τ ), r̄w(τ ) = n−1∑n
i=1 r̂w(Zi;τ),

and letting φ̂(X) = ∇(W(X)f̂ (X))/f̂ (X) in r̂Ii(τ ), ψ̂(X;τ) = Q̂(τ |X)W(X)/f̂ (X)

in r̂IIi(τ ), and γ̂ (X;τ) = Q̂(τ |X)W(X)∇ f̂ (X)/f̂ (X)2 in r̂IIIi(τ ). These preliminary
estimators of f (Xi),∇f (Xi), Q(τ |Xi), and fY(Q(τ |Xi)|Xi) are already used in the
primary estimators, so we do not need additional estimation.

THEOREM 6. Let Assumptions 1–4 hold. Then, for any τ1 ≤ τ2 ∈ T ,
Ĉov

(
Gf (τ1),Gf (τ2)

)
and Ĉov (Gw(τ1),Gw(τ2)) are consistent for Cov(Gf (τ1),

Gf (τ2)) and Cov(Gw(τ1),Gw(τ2)), respectively.

The influence function of the scaled AQD estimator β̂s ≡ β̂f /α̂ with α̂ =
n−1∑n

i=1 f̂ (Xi) can be estimated by r̂si(τ ) ≡ (
r̂f (Zi;τ) − 2

(
f̂ (Xi) − α̂

)
β̂s(τ )

)/
α̂.

Then, the asymptotic covariance matrix of the scaled AQD estimator can be
estimated by n−1∑n

i=1 r̂si(τ1)r̂′
si(τ2)− r̄s(τ1)r̄′

s(τ2), where r̄s(τ ) = n−1∑n
i=1 r̂si(τ ),

for any τ1 ≤ τ2 ∈ T .
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4.4. Optimal Bandwidth Choice

We consider a linear combination of the density-weighted AQD a′β̂f , where a ∈Rd

and a′a = 1. For example, when a = (1,0, . . . ,0)′, a′β̂f estimates the density-
weighted AQD with respect to the first component of Xi. We modify the estimator
proposed by Powell and Stoker (1996) for the optimal bandwidth h in K that
minimizes the leading terms of the asymptotic MSE of a′β̂f . We can apply this
approach for β̂φ and β̂W . We may also extend this approach to choose the trimming
parameter δ and h0.

The optimal bandwidth of a′β̂f is estimated by ĥopt =
(

dV̂
/(

νB̂
2))1/(2ν+d)

n−2/(2ν+d), where V̂ estimates the leading variance associated with the bandwidth
h and B̂ estimates the leading bias. As the first-order variance of β̂f is O(n−1/2),
by choosing this optimal bandwidth hopt, the bias is first-order asymptotically
negligible. In addition, the first-step estimators are undersmoothed.

Define V̂ = hd
v(n(n−1))−1∑n

i=1

∑
j	=i p̂(Zi,Zj;λ)2, where

p̂(Zi,Zj;λ) ≡
(

Q̂(τ |Xj)− Q̂(τ |Xi)
)

a′∇K
(Xi −Xj

hv

)
h−(d+1)

v 1i

−K
(
H−1

v (Xi −Xj)
)
h−d

v 1i

×
(

a′∇ f̂ (Xi)

f̂XY(Xi,Q̂(τ |Xi))

(
τ −G

( Q̂(τ |Xi)−Yj

h0

))
+ a′∇ f̂ (Xj)

f̂XY(Xj,Q̂(τ |Xj))

(
τ −G

( Q̂(τ |Xj)−Yi

h0

)))
and the preliminary estimators Q̂(τ |X), ∇ f̂ (X), and f̂XY use a νth-order kernel with
bandwidth h = h1 = hv. We consider a fixed trimming function 1i with a constant
δ, to simplify the application of the results in Powell and Stoker (1996).

Consider estimating the leading bias of β̂f . For a positive constant u 	= 1 and
a preliminary bandwidth h = h1 = hb, let β̂f,hb and β̂f,uhb be the estimators using

the bandwidths hb and uhb, respectively. Let ν = ν1 for simplicity. Define B̂ =
a′(β̂f,uhb − β̂f,hb

)/(
(uhb)

ν −hν
b

)
.

COROLLARY 1. Let the conditions in Theorem 4 hold.

(i) Then, the bandwidth that minimizes the leading terms associated with h in

the asymptotic MSE of β̂f is hopt = (
dV
/(

νB2))1/(2ν+d)
n−2/(2ν+d), where

V = ∫
E
[
(∇Q(τ |X)u)2f (X)

]
(a′∇K(u))2du + 2τ(1 − τ)E

[
(a′∇f (X))2f (X)fXY

(X,Q(τ |X))−2
]×∫

K(u)2du with u ∈ Rd, and B ≡ 2κν

∑d
k=1 akE

[
∂kf (X)fXY

(X,Q(τ |X))−1∑ν
l=1(l!(ν − l)!)−1∂ l

kFY(Q(τ |X)|X)∂ν−l
k f (X) − (ν!)−1Q(τ |X)

∂ν
k ∇f (X)

]
.

(ii) Furthermore, let hv,hb → 0, nh3d
v → ∞, and nh2ν+d

b → ∞. Then, V̂ and B̂ are
consistent estimators of V and B, respectively, and ĥopt −hopt = op(n−2/(2ν+d)).
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We may consider a further bias correction using the above simple bias estimator,
i.e., β̂f − hνB̂. Such robust bias-corrected inference may allow for a wider range
of bandwidth choices h in practice, as discussed in Calonico, Cattaneo, and Farrell
(2018), and is left for future research.

5. MONTE CARLO SIMULATIONS

We compare the finite-sample performance of our scaled density-weighted AQD
estimator β̂s with the AMD in Powell et al. (1989), the conventional Koenker and
Bassett (1978) linear QR (labeled by KB), and the OLS. We consider partially
linear models with homogenous and heterogenous errors for the DGPs. Both AMD
and AQD identify the coefficient of interest in the partially linear model. The
linear OLS and KB estimators suffer from misspecification. We find that the scaled
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Figure 1. Partially linear model with N (0,1) error.
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density-weighted AQD estimator β̂s outperforms the AMD when the outcome
distribution has fat tails. The results are rather robust with a range of bandwidths.

We consider four DGPs that are modified from the experiments in Lee (2003).

1. Partially linear model with homoscedastic error (PL-homo):
Y = X1 +X2 +30exp(−X2

1)/
√

2π + e.
2. Partially linear model with heteroskedastic error (PL-hetero):

Y = X1 +X2 +30exp(−X2
1)/

√
2π +2exp((X1 +X2)/4)e.

We consider two error distributions: e ∼ N (0,1) and e ∼ t(2) for a fat-tailed
distribution. The regressors X1 and X2 are jointly normal with mean zero, variance
one, and covariance 0.5. Thus, the regressors have unbounded support. The
parameter of interest is the coefficient of X2, i.e., the true parameter is 1.
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Figure 2. Partially linear model with t(2) error.
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Table 1. (PL-hetero-N(0,1): n = 500, 500 bootstrap samples, 500 replications for
each experiment) The bandwidth h = Cσx500−0.15, where σx is the interquantile
range of X2. The first row reports the simulation bias relative to simulation standard
error. The second row reports the simulation MSE. The next four rows report
the coverage rates of the Normal, Symmetric, Percentile, and Efron 95% CIs,
respectively. The top panel is for the results of AQD, and the bottom panel is for
AMD

Bandwidth constant C 1.5 2 2.5 3 3.5 4

AQD BIAS/SE −0.220 −0.171 −0.180 −0.323 −0.606 −1.043

MSE 0.051 0.040 0.039 0.040 0.045 0.058

Normal 0.990 0.972 0.962 0.952 0.936 0.854

Symmetric 0.990 0.978 0.966 0.956 0.936 0.852

Percentile 0.986 0.974 0.960 0.950 0.920 0.842

Efron 0.980 0.966 0.952 0.950 0.938 0.852

AMD BIAS/SE 0.075 0.042 −0.020 −0.064 −0.173 −0.315

MSE 0.052 0.036 0.031 0.029 0.029 0.030

Normal 0.996 0.976 0.974 0.966 0.964 0.952

Symmetric 0.996 0.978 0.974 0.972 0.962 0.956

Percentile 0.994 0.978 0.970 0.968 0.956 0.956

Efron 0.984 0.968 0.964 0.962 0.960 0.948

We use the fourth-order Epanechnikov kernel. Under Assumption 3, we choose
the trimming bound δ ∝ n−0.02 and trim 5% of the sample at the tails. The
bandwidths are h1 = h = Cσxn−0.15 and h0 = Cσyn−0.3, where the powers satisfy
Assumption 3, and σx and σy are the interquantile range of X and Y, respectively
(Silverman, 1986). Figures 1 and 2 report the MSEs against a range of C. There are
1,000 replications in each experiment. We compute the optimal bandwidth hopt for
(0,1)β̂f proposed in Section 4.4 as a reference bandwidth. For the DGP PL-hetero-
N(0,1), the corresponding optimal constant C = 2.39 for n = 200 and C = 1.76 for
n = 500.9 The theoretical optimal bandwidth that minimizes the MSE appears to
agree with the simulation results in the lower panel of Figure 1.

For the normal error in Figure 1, AMD and AQD outperform the linear estima-
tors, OLS and KB. For the fat-tailed error in Figure 2, the QRs (AQD and KB)
outperform the mean regressions (AMD and OLS). The optimal bandwidth that
minimizes the MSE for the AQD is smaller than that of the AMD. This is
because AQD involves additional nonparametric estimation of the CQF, and the
nonparametric estimator is more undersmoothed. When the bandwidth is around

9Specifically, we numerically compute V̂ described in Section 4.4 with a preliminary bandwidth hv = 3.12σxn−0.15,
where 3.12 is from the Silverman rule-of-thumb bandwidth and n = 5,000. For B̂, we choose u = 0.5 and hb =
3.12σxn−0.07. The conditions in Corollary 1 hold.
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the MSE optimal bandwidth, the nonparametric estimators perform well in finite
samples. Overall, AQD outperforms the linear KB.

Table 1 reports the coverage rates of three bootstrap-based CIs, following the
definitions in Cattaneo and Jansson (2018). In standard notation, the superscript ∗
denotes the bootstrap analog computed under the bootstrap distribution conditional
on the data. Let q∗

n,α = inf
{
q ∈ R : P∗[β̂∗

s − β̂s ≤ q] ≤ α
}

and Q∗
n,α = inf

{
Q ∈ R :

P∗[|β̂∗
s − β̂s| ≤ Q] ≤ α

}
. Then, Efron CI = [

β̂s +q∗
n,α/2,β̂s +q∗

n,1−α/2

]
, Percentile CI

= [
β̂s −q∗

n,1−α/2,β̂s +q∗
n,α/2

]
, and Symmetric CI = [

β̂s −Q∗
n,1−α,β̂s +Q∗

n,1−α

]
. We

also consider Normal CI = [
β̂s − q̂n,1−α/2,β̂s + q̂n,α/2

]
, where q̂n,α = �−1(α)se,

� is the standard normal CDF, and we use the bootstrap standard error of
β̂s for se.

The simulation results are mostly in line with the theoretical findings in Cattaneo
and Jansson (2018) and this paper. For most cases, Symmetric CI has the largest
coverage rates, whereas the Efron CI has the smallest coverage rates, as predicted
by Cattaneo and Jansson (2018). Normal CI is comparable with the bootstrap-
based CIs, and all inference procedures perform reasonably. One possible explana-
tion of this result is that the small-bandwidth bias studied in Cattaneo and Jansson
(2018) is relatively small in this DGP.

6. CONCLUSION AND OUTLOOK

We estimate weighted AQDs via a weighted average CQF. We show that our
estimators are asymptotic linear uniformly over the quantile index and converge
weakly to Gaussian processes. We also characterize the leading bias. More
generally, this paper is concerned with one of the semiparametric estimation prob-
lems based on a preliminary nonparametric estimator and involving a stochastic
trimming function. We demonstrate a novel application of the uniform convergence
results of nonparametric kernel-based estimators on expanding interior supports
in Hansen (2008) and Cattaneo et al. (2013), so that our asymptotic analysis is
tractable to account for the stochastic trimming problem.

There are several important directions for future research. The criteria of
choosing the bandwidths and trimming parameter for finite samples are to be
investigated. For the AMD, Cattaneo et al. (2010, 2013, 2014a, 2014b) and
Cattaneo and Jansson (2018) develop several methods for robust inference in terms
of the bandwidth choice.10 There is recent development on the trimming parameter
for the inverse probability weighting estimator of treatment effects, e.g., Ma and
Wang (2019) and Sasaki and Ura (2021) propose inference methods that account
for the trimming bias. Since our estimands are more complex, estimating the

10For example, Cattaneo et al. (2013) propose a generalized Jackknife estimator for the unweighted AMD, where
the first-step estimator enters the m-estimator nonlinearly. They correct for the nonlinear bias and characterize a
quadratic expansion. Consequently, they assume weaker-than-usual conditions on moments, bandwidths, and kernel
order. Our first-step estimators f (X) and FY (y|X) enter the weighted AQD nonlinearly, and we characterize their
biases. However, the quadratic expansion is more complicated in our problem due to the CQF estimation.
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trimming bias and a data-driven trimming parameter are out of the scope of this
paper and left for future research. As with the rich literature of the AMD, more
theoretical and empirical research on the AQD could be expected.

APPENDIX

The Appendix is organized as follows. We first state the notations and assumptions.
Then, we present preliminary lemmas, whose proofs are in Appendix C. The asymptotic
theorems for the weighted AQD estimator β̂ are first derived for the infeasible estimator
β̃ ≡ −n−1∑n

i=1 Q̂(τ |Xi)φ̂(Xi)1{Xi ∈ S}, trimmed based on the true density. Then, Lemma

4 shows
√

n(β̃ − β̂) = op(1) uniformly over τ . Appendix A.1 presents the proofs of
Theorems 1 and 2. Appendix B presents the proofs of Theorems 3–6.

Notations. Let Z = (X′,Y)′. f ′
Y (y|X) denotes the derivative with respect to y that should

not be confusing with the transpose of a matrix A′. C denotes a generic constant. For an
m×n matrix A, we use Frobenius norm: ‖A‖ = trace(A′A)1/2. Let ‖ · ‖∞ be the sup-norm
for a function, i.e., ‖f‖∞ = supx∈X |f (x)|. s.o. denotes smaller-order terms. w.p.a.1 means
with probability approaching one. Denote the product of two functions A(X) and B(X) by

A(·)B(·)(X) ≡ (AB)(X) ≡ A(X)B(X). For simplicity, Qi ≡ Q(τ |Xi), Gij ≡ G
(Q(τ |Xi)−Yj

h0

)
,

Kij ≡ K
(
H−1(Xi −Xj)

)
, fi ≡ f (Xi), and 1i ≡ 1{Xi ∈ S}. For some notations in the following

proof, we omit τ and X for brevity without loss of clarity; for example, Q ≡ Q(τ |x) and
Q̄ ≡ Q̄(τ |x).

LEMMA 1 (Uniform convergence rate). Let Assumptions 1 and 2 hold with px ≥ ν.
Define Cn ≡ {x : ‖x‖ ≤ cn}, where cn satisfies limsupn→∞ log(cn)/ logn < ∞.

1. Define δ = δn ≡ infx∈Cn f (x). Let δ−1
(√

logn/(nhd)+h2
0 +hν

)
→ 0. Then,

sup
x∈Cn,y∈Y

∣∣∣F̂Y (y|x)−FY (y|x)
∣∣∣= Op

(
1

δ

(√
logn

nhd
+h2

0 +hν

))
.

2. DefineYn ≡ {‖y‖ ≤ cn} and δ=δn ≡ infx∈Cn,y∈Yn fXY (x,y). Let δ−1
(√

logn/(nhdh0)+
h2

0 +hν
)

→ 0. Then,

sup
x∈Cn,y∈Yn

∣∣∣∣ ∂

∂y
F̂Y (y|x)− fY (y|x)

∣∣∣∣= Op

(
1

δ

(√
logn

nhdh0
+h2

0 +hν

))
.

LEMMA 2. Let Assumption 1 and 2 hold with px ≥ ν1 + 2. For a measurable function
ψ : X ×T �→ R, assume the (ν1 +1)th-order derivative of ψ(x;τ) with respect to x to be
uniformly continuous and bounded, for any x ∈S and τ ∈ T . Assume {X �→ ψ(X;τ) : τ ∈ T }
to be euclidean and E

[(
supτ∈T ψ(X;τ)

)2]
< ∞. Let nh2d+2

1 → ∞ and
√

nhν1
1 → c ∈

[0,∞). Then, uniformly in τ ∈ T ,

1√
n

n∑
i=1

(
ψ(Xi;τ)∇ f̂ (Xi)1{Xi ∈ S}−E

[
ψ(X;τ)∇f (X)

]−Biasψ(Xi;τ)
)
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= 1√
n

n∑
i=1

(
− f (Xi)∇ψ(Xi;τ)+E

[
f (X)∇ψ(X;τ)

])+op(1),where

Biasψ(X;τ) ≡ hν1
1 κν1

ν1!

d∑
k=1

E
[
ψ(X;τ)∂

ν1
k ∇f (X)

]
.

LEMMA 3. Let Assumptions 1 and 2 hold with px ≥ ν1 +1. For a measurable function
γ : X ×T �→ R, assume the (ν1 + 1)th-order derivative of γ (x;τ) with respect to x to be
uniformly continuous and bounded, for any x ∈S and τ ∈ T . Assume {X �→ γ (X;τ) : τ ∈ T }
to be euclidean and E

[(
supτ∈T γ (X;τ)

)2]
< ∞. Let nh2d

1 → ∞and
√

nhν1
1 → c ∈ [0,∞).

Then, uniformly in τ ∈ T ,

1√
n

n∑
i=1

(
γ (Xi;τ)(f̂ (Xi)− f (Xi))1{Xi ∈ S}−Biasγ (X;τ)

)

= 1√
n

n∑
i=1

(
γ (Xi;τ)f (Xi)−E[γ (X;τ)f (X)]

)
+op(1),where

Biasγ (X;τ) ≡ hν1
1 κν1

ν1!

d∑
k=1

E

[
γ (X;τ)∂

ν1
k f (X)

]
.

LEMMA 4 (Trimming). Let all assumptions in Theorem 3 hold. Let supx∈S,τ∈T |φ̂(x;τ)

−φ(x;τ)| = op(1). Then, n−1/2∑n
i=1 Q̂(τ |Xi)φ̂(Xi;τ)

(
1
{
Xi ∈ Ŝ

}− 1
{
Xi ∈ S

}) = op(1)

uniformly in τ ∈ T .

LEMMA 5. Let the conditions in Theorem 3 hold. Denote p(Zi,Zj;λ) ≡ φi1i
fifY (Qi|Xi)

1
|H| Kij

(τ −Gij). Then,

E

[
p(Zi,Zj;λ)

∣∣∣Zi

]
= −φi1i

fifY (Qi|Xi)

{
hνκν

ν∑
l=1

1

l!(ν − l)!

d∑
k=1

∂ l
kFY (Qi|Xi)∂

ν−l
k f (Xi)

+ h2
0

2
κG2f ′

Y (Qi|Xi)fi −hνh2
0RI(Xi)+O

(
hν+1 +h3

0
)}

,

where RI(Xi) ≡ κG2
2 κν

∑ν
l=0

1
l!(ν−l)!

∑d
k=1 ∂ l

kf ′
Y (Qi|Xi)∂

ν−l
k f (Xi). In addition,

E

⎡⎣ 1

n(n−1)

n∑
i=1

∑
j 	=i

p(Zi,Zj;λ)

⎤⎦
= −E

[
φi

fifY (Qi|Xi)

(
hνκν

ν∑
l=1

1

l!(ν − l)!

d∑
k=1

∂ l
kFY (Qi|Xi)∂

ν−l
k f (Xi)+ h2

0
2

κG2f ′
Y (Qi|Xi)fi

)
+hνh2

0RI(Xi)

]
+o

(
hν +h2

0
)
.
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A. Proofs of Theorems 1 and 2 in Section 4.1

Proof of Theorem 1. The proofs use the following preliminary results (i) and (ii).
Suppose that, for any x ∈S, there exists a compact convex setYx ≡ [Q(ε|x),Q(1−ε|x)] ⊂Y
such that infx∈S infy∈Yx fXY (x,y) ≥ δ.

(i) Q̂(τ |x) ∈ [Q(ε|x),Q(1− ε|x)] = Yx w.p.a.1, for any x ∈ S and τ ∈ T .

(ii) supx∈S,τ∈T
(
fXY (x,Q̂(τ |x)))−1 = Op(δ

−1).

To briefly discuss these results, Lemma 1 implies η ∈ (0, min{τ − ε,1 − ε − τ }) such
that supy∈Y,x∈Cn

|F̂Y (y|x) − FY (y|x)| < η, w.p.a.1. So supx∈S,τ∈T |F̂Y (Q̂(τ |x)|x) −
FY (Q̂(τ |x)|x)| < ηw.p.a.1. Since F̂Y (Q̂(τ |x)|x) = τ , we observe FY (Q(ε|x)|x) = ε <

τ − η < FY (Q̂(τ |x)|x) < τ + η < 1 − ε = FY (Q(1 − ε|x)|x). Monotonicity of FY (y|x)
in y implies (i). Then, infx∈S,τ∈T fXY (x,Q̂(τ |x)) ≥ δ, w.p.a.1 that implies (ii). When
Yx degenerates to a point, i.e., Q(τ |x) = Q(ε|x) = Q(1 − ε|x), for τ ∈ T , we modify (i)

Q̂(τ |x) p→ Q(ε|x). Then (ii) follows.
Uniform convergence rate. For any x ∈ S and τ ∈ T , a Taylor series expansion yields

FY
(
Q̂(τ |x)∣∣x) = FY

(
Q(τ |x)∣∣x)+ fY

(
Q̄(τ |x)∣∣x)(Q̂(τ |x) − Q(τ |x)), where Q̄(τ |x) is on the

line segment between Q(τ |x) and Q̂(τ |x). We claim

sup
τ∈T
x∈S

∣∣∣Q̂(τ |x)−Q(τ |x)
∣∣∣= sup

τ∈T
x∈S

∣∣∣∣∣
(
FY
(
Q̂(τ |x)∣∣x)− τ

)
f (x)

fXY
(
x,Q̄(τ |x))

∣∣∣∣∣
= Op

(
1

δ
sup
y∈R
x∈S

∣∣∣(FY
(
y
∣∣x)− F̂Y

(
y
∣∣x))f (x)∣∣∣)= Op

(
1

δ

(√
logn

nhd
+h2

0 +hν

))

by the following reasons: For the numerator, F̂Y (Q̂(τ |x)|x) = τ = FY (Q(τ |x)|x) by con-
struction. Then, use the result for � = FY (y|x)f (x) in Proof of Lemma 1(1). For the denom-

inator, the above results (i) and (ii) imply supx∈S,τ∈T
(
fXY (x,Q̄(τ |x)))−1 = Op(δ−1).

Bahadur representation. Since F̂Y (y|x) is smooth in y, we can expand F̂Y (Q̂(τ |x)|x)
around Q(τ |x) by a Taylor series expansion, for any x ∈ S and τ ∈ T :

τ = F̂Y
(
Q̂(τ |x)∣∣x)= F̂Y

(
Q(τ |x)∣∣x)+ f̂Y

(
Q(τ |x)∣∣x)(Q̂(τ |x)−Q(τ |x))

+ 1

2
f̂ ′
Y
(
Q̄(τ |x)∣∣x)(Q̂(τ |x)−Q(τ |x))2, (12)

where Q̄(τ |x) is on the line segment between Q(τ |x) and Q̂(τ |x). To simplify notations
without loss of clarity, we sometimes omit τ and x, e.g., Q ≡ Q(τ |x). From (12),

Q̂(τ |x)−Q(τ |x)

= τ − F̂Y (Q(τ |x)|x)
fY (Q(τ |x)|x) + (

τ − F̂Y (Q(τ |x)|x))( 1

f̂Y (Q(τ |x)|x) − 1

fY (Q(τ |x)|x)
)

− 1

2

f̂ ′
Y (Q̄(τ |x)|x)

f̂Y (Q(τ |x)|x) (Q̂(τ |x)−Q(τ |x))2

= Aτ (x)

fXY (x,Q)
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+ Aτ (x)

fXY (x,Q)

( f (x)− f̂ (x)

f̂ (x)

)
︸ ︷︷ ︸

≡ B(x)

+ Aτ (x)

fXY (x,Q)

( fY (Q(τ |x)|x)− f̂Y (Q(τ |x)|x)
f̂Y (Q(τ |x)|x)

)
︸ ︷︷ ︸

≡ Cτ (x)

(13)

+ Aτ (x)

fXY (x,Q)
B(x)Cτ (x)− 1

2

f̂ ′
Y (Q̄(τ |x)|x)

f̂Y (Q(τ |x)|x) (Q̂(τ |x)−Q(τ |x))2, (14)

where Aτ (x) ≡ n−1∑n
j=1 Kh(x − Xj)

(
τ − G

(Q(τ |x)−Yj
h0

))
. By Proof of Lemma 1(1),

Aτ (x) = τ
(

f̂ (x)− f (x)
)
−
(
�̂(Q(τ |x),x)−τ f (x)

)
. So supx∈S,τ∈T |Aτ (x)| = Op

(√
logn
nhd +

h2
0 +hν

)
.

Cτ (x) = fY (Q|x)− f̂Y (Q|x)
fY (Q|x) +

(
fY (Q|x)− f̂Y (Q|x)

)( 1

f̂Y (Q|x) − 1

fY (Q|x)
)
,

where the first leading term is

fXY (x,Q)− f̂XY (x,Q)

fXY (x,Q)
+ f̂XY (x,Q)

fXY (x,Q)

(
1− f (x)

f̂ (x)

)
= 1

fXY (x,Q)

(
fXY (x,Q)− f̂XY (x,Q)

)
−B(x)+

( f̂XY (x,Q)

fXY (x,Q)
−1

)(
1− f (x)

f̂ (x)

)
= Op

(
1

δ

(√
logn

nhdh0
+h2

0 +hν

))
−B(x)

+Op

(
1

δ2

(√
logn

nhdh0
+h2

0 +hν

)(√
logn

nhd
+hν

))

by Lemma 1(2). So the leading term of Aτ (x)
(
B(x)+Cτ (x)

)
/fXY (x,Q) in (13) is

Op

(
1

δ2

(√
logn

nhd
+hν +h2

0

)(√
logn

nhdh0
+hν +h2

0

))
. (15)

The last term in (14)

sup
x∈S,τ∈T

∣∣∣∣∣−1

2

f̂ ′
Y (Q̄(τ |x)|x)

f̂Y (Q(τ |x)|x) (Q̂(τ |x)−Q(τ |x))2

∣∣∣∣∣≤ Op

⎛⎝ 1

δ3

(√
logn

nhd
+h2

0 +hν

)2
⎞⎠

(16)

by the following reasons: First, the result (ii) and Assumption 1 imply f ′
Y (Q̄(τ |x)|x)

is uniformly bounded w.p.a.1. Second, for any ε > 0, there is a constant cf such that

|f̂XY (x,Q(τ |x)) − fXY (x,Q(τ |x))|1{x ∈ S,τ ∈ T } ≤ cf
(
(n1−εh0hd)−1/2 + h2

0 + hν
) ≡ c2n,

w.p.a.1. So infx∈S,τ∈T f̂XY (x,Q(τ |x)) ≥ δ − c2n, w.p.a.1. We obtain the bound of Rn in
(10) by collecting the remainder terms (15) and (16). �

Proof of Theorem 2. For all ω ∈ � and x ∈ S, the triangular array fni(ω,τ) ≡
(n|H|)−1/2K

(
H−1(Xi(ω) − x)

)(
τ − G

(Q(τ |x)−Yi(ω)
h0

))/
fXY (x,Q(τ |x)) are independent

https://doi.org/10.1017/S0266466621000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000232


522 YING-YING LEE

within rows. Define the n×1 vector fn(ω,τ) ≡ (
fn1(ω,τ),ldots,fnn(ω,τ)

)′ and the random
set Fnω ≡ {

fn(ω,τ) : τ ∈ T
}
. In the following, we check the conditions (i)–(v) for the

functional CLT, Theorem 10.6 in Pollard (1990).

(i) The triangular array processes {fni(ω,τ)} are manageable with respect to the
envelopes Fni(ω) ≡ δ−1(nhd)−1/2K

(
H−1(Xi(ω) − x)

)
. First, {X �→ fY (Q(τ |X)|X) :

τ ∈ T } and {(X,Y) �→ G((Q(τ |X)− Y)/h0) : τ ∈ T } are euclidean and manageable
by Lemma 2.13 and Example 2.10 in Pakes and Pollard (1989) and p. 221 in
Kosorok (2008). In addition, Fn(ω) ≡ (Fn1, . . . ,Fnn)

′ is an Rn-valued function on the
underlying probability space. Then (i) is proved by applying Lemma E1 in Andrews
and Shi (2013).

We first calculate the following results. As h0 → 0,

E

[
G
(Q(τ |Xi)−Yj

h0

)∣∣∣∣Xi,Xj

]
= G

(Qi − ȳ

h0

)
+
∫
V

g(v)FY (Qi −h0v|Xj)dv

= G
(Qi − ȳ

h0

)
+
∫ ∞
−∞

g(v)
(

FY (Qi|Vj)−h0vfY (Qi|Xj)+ h2
0

2
v2f ′

Y (Qi|Xj)+ h3
0

3!
v3f ′′

Y (Q̄i|Xj)
)

dv

−
∫

v/∈V
g(v)

(
FY (Qi|Xj)−h0vfY (Qi|Xj)+ h2

0
2

v2f ′
Y (Qi|Xj)+ h3

0
3!

v3f ′′
Y (Q̄i|Xj)

)
dv (17)

= FY (Qi|Xj)+ h2
0

2
f ′
Y (Qi|Xj)κG2 +O(h3

0), (18)

where V ≡
[

Qi−ȳ
h0

,
Qi−y

h0

]
. The second equality is a Taylor series expansion around Qi, and

Q̄i is on the line segment between Qi and Qi −h0v. When g has a bounded support, G(z/h0)

is zero for a small enough h0 and for any negative z. Thus, when g has a bounded support
or when the support of Y is R, i.e., V = R, the term (17) is zero for a small enough h0.
When ȳ or y is bounded and g has an unbounded support, Assumption 2(G) implies that

G(z/h0) = o(h3
0), for any z < 0. Thus, the first term of (17) is −FY (Qi|Xj)

(
1−G

(Qi−y
h0

)
+

G
(

Qi−ȳ
h0

))
= o(h3

0). Similarly, the second and third terms are o(h3
0) by integration by parts.

The last term of (17) is o(h3
0) by the uniform continuity of f ′

Y (y|X) in y and the dominated
convergence theorem.

By a similar argument, for q1 ≤ q2,

E

[
G

(
q1 −Y

h0

)
G

(
q2 −Y

h0

)∣∣∣X]
=
∫ ȳ

y

(
1

h0
g

(
q1 − y

h0

)
G

(
q2 − y

h0

)
+ 1

h0
g

(
q2 − y

h0

)
G

(
q1 − y

h0

))
FY (y|X)dy

+G

(
q1 − y

h0

)
G

(
q2 − y

h0

)
FY (y|X)

∣∣∣ȳ
y
= FY (q1|X)+O(h2

0). (19)
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(ii) Define Zn(τ ) = ∑n
i=1

(
fni(τ ) − Efni(τ )

)
. The covariance kernel of the limiting

Gaussian process is limn→∞E
[
Zn(τ1)Zn(τ2)

] = limn→∞ nE[fn(ω,τ1)fn(ω,τ2)] −
nE[fn(ω,τ1] ×E[fn(ω,τ2)] = f (x)τ1(1− τ2)

∫
K2(v)dv.

(iii)
∑n

i=1E
[
F2

ni

]= f (x)
∫

K(v)2dv.
(iv) For any ε > 0,

∑n
i=1E

[
F2

ni 1
{
Fni > ε

}]→ 0. This is because 1
{
Fni > ε

}= 0 for n

large enough, by assuming K is bounded and
√

nhd → ∞.

(v) nE
[∣∣fni(τ1) − fni(τ2)

∣∣2] → ρ(τ1,τ2)
2 ≡ f (x)(τ2 − τ1)(1 + τ1 − τ2)

∫
K(v)2dv, uni-

formly in τ1,τ2. Therefore, uniformly in τ1,τ2, ρn(τ1,τ2) ≡ (∑n
i=1E

[∣∣fni(τ1) −
fni(τ2)

∣∣2])1/2 → ρ(τ1,τ2).

�

B. Proofs of Theorems 3–6 in Section 4.2

We use the U-process theorems in Sherman (1994) to prove Lemma 2, Lemma 3, and
Theorem 3. Then, the proofs of Theorems 4 and 5 build on these results. We start with
an overview of the proof of the U-process theorems.

Denote λ ≡ (τ,h,h0,δ) ∈ � ≡ T ×R+ ×R+ ×R+. Let (Zi,Zj) ∈ Z2 ≡ Z ⊗Z from

the product measure P
2 ≡ P⊗P. Let F ≡ {(Zi,Zj) �→ p(Zi,Zj;λ) : λ ∈ �} be a class of

measurable functions onZ2. The collection
{
Unp : p ∈F

}
is a U-process of order 2 indexed

by F where, for each p ∈ F ,

Unp ≡ 1

n(n−1)

n∑
i=1

∑
j 	=i

p(Zi,Zj;λ)

= 1

n

n∑
i=1

E[p(Zi,Z;λ)|Zi]+ 1

n

n∑
j=1

E[p(Z,Zj;λ)|Zj]−P
2[p(Zi,Zj;λ)]+U2

n,

U2
n ≡ 1

n(n−1)

n∑
i=1

∑
j 	=i

r(Zi,Zj;λ),

and r(Zi,Zj;λ) ≡ p(Zi,Zj;λ) −E[p(Zi,Z;λ)|Zi] −E[p(Z,Zj;λ)|Zj] + P
2[p(Zi,Zj;λ)]. The

proof involves the following steps.
Step 1. We show supF |U2

n | = op(n−1/2) by Corollary 4 in Sherman (1994).
Step 2 [Projection]. Calculate the projection rni(τ )≡E[p(Zi,Z;λ)|Zi]+E[p(Z,Zi;λ)|Zi].

Find the influence function ri(τ ) such that n−1/2∑n
i=1 rni(τ ) = n−1/2∑n

i=1 ri(τ )+op(1),
uniformly in τ ∈ T .

Step 3 [Bias]. Calculate E[Unp] = P
2p, uniformly in τ ∈ T . For the weak convergence

result, let the asymptotic bias converge to zero at a rate faster than root-n.
Step 4 [Weak convergence]. By van der Vaart (2000), (i) monotonic and smooth function

classes are Donsker and (ii) the Cartesian product of two Donsker classes of functions is
also a Donsker class. By Donsker’s theorem, we complete the proof.

Proof of Theorem 3. By Theorem 1,

1

n

n∑
i=1

(Q̂i −Qi)φi1i = Unp+ 1

n

n∑
i=1

φi1iRn(τ,Xi), (20)

https://doi.org/10.1017/S0266466621000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000232


524 YING-YING LEE

where the second-order U-statistic

Unp ≡ 1

n(n−1)

n∑
i=1

∑
j 	=i

φ(Xi)K
(
H−1(Xi −Xj)

)
f (Xi)fY (Q(τ |Xi)|Xi)|H|

(
τ −G

(Q(τ |Xi)−Yj

h0

))
1i︸ ︷︷ ︸

≡ p(Zi,Zj;τ,h,h0,δ)

and the second term in (20) is Op
(
n−1/2∑n

i=1 ‖φi‖1i|Rn(τ,Xi)|
) = Op

(√
nsupX∈S,τ∈T

‖φ(X)‖ |Rn(X)|)= op(1) by the condition (ii).
Step 1. We claim F1 ≡ {(Zi,Zj) �→ hdp(Zi,Zj;λ) : λ ∈ �} is euclidean for the enve-

lope F1(Zi,Zj) = Cφ(Xi)/(infτ∈T fXY (Xi,Q(τ |Xi))) that satisfies P
2F2 = CE[‖φ(Xi)‖2/

(infτ∈T fXY (Xi,Q(τ |Xi)))
2] < ∞. The classes {X �→ Q(τ |X) : τ ∈ T }, {X �→ K((X−x)/h) :

h > 0}, {(X,Y) �→ G((Q(τ |X)− Y)/h0) : τ ∈ T ,h0 > 0} and {1{infτ∈T fXY (X,Q(τ |X)) ≥
δ} : δ > 0} are euclidean by Lemma 2.13 and Example 2.10 in Pakes and Pollard (1989)
and p. 221 in Kosorok (2008). Then, Lemma 2.14 in Pakes and Pollard (1989) implies F1
is euclidean.

Thus, we can apply Corollary 4 in Sherman (1994). Lemma 6 in Sherman (1994) implies
the class ofP-degenerate functions of order 2 {(Zi,Zj) �→ hdr(Zi,Zj;λ) : λ ∈ �} is euclidean.

Step 2 [Projection]. We show that uniformly in τ ∈ T ,

1√
n

n∑
i=1

rni = 1√
n

n∑
i=1

(r1ni + r2ni)
(i)= 1√

n

n∑
i=1

r2ni +op(1)

(ii)= 1√
n

n∑
i=1

r3ni +op(1)
(iii)= 1√

n

n∑
i=1

r3i +op(1),

where r1ni ≡ E[p(Zi,Z;λ)|Zi], r2ni ≡ E[p(Z,Zi;τ)|Zi],

r3ni ≡ φ(Xi)

fY
(
Q(τ |Xi)|Xi

)(τ −G
(Q(τ |Xi)−Yi

h0

))
,

r3i ≡ A(Xi)
(
τ −1{Yi ≤ Q(τ |Xi)}

)
, and A(Xi) ≡ φ(Xi)/fY (Q(τ |Xi)|Xi). We prove equalities

(i), (ii), and (iii) in the above equation in the following.

(i) We claim supτ∈T n−1/2∑n
i=1 r1ni = op(1). We calculate r1ni ≡ E[p(Zi,Z;λ)|Zi] in

Lemma 5. Furthermore, by the conditionE[‖φ(Xi)‖2/(infτ∈T fXY (Xi,Q(τ |Xi)))
2] <

∞, one can show E[‖r1ni‖2] = O
(
(h2

0 +hν)2
) = o(1). Chebyshev’s inequality

implies the claim.
(ii) We claim supτ∈T n−1/2∑n

i=1(r2ni − r3ni) = op(1).

r2ni ≡ E[p(Z,Zi;τ)|Zi]

= E

[ φ(Xj)1Xj

f (Xj)fY (Qj|Xj)

1

|H|Kji(τ −Gji)

∣∣∣Zi

]
=
∫
S

φ(Xj)

fY (Qj|Xj)

1

|H|Kji

(
τ −G

(Qj −Yi

h0

))
dXj

=
∫

φ(Xi +uh)K(u)

fY
(
Q(τ |Xi +uh)|Xi +uh

)(τ −G
(Q(τ |Xi +uh)−Yi

h0

))
1{Xi +uh ∈ S}du

= r3ni +O(hν).
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By the argument for equality (i), it suffices that E[‖r2ni − r3ni‖2] = O(h2ν)

= o(1).
(iii) We claim Tn ≡ n−1/2∑n

i=1

(
r3ni − r3i −E[r3ni − r3i]

)= op(1), uniformly in τ ∈ T .

E

[
‖r3ni − r3i‖2

]
= E

[
‖A(Xi)‖2

(
G
(Q(τ |Xi)−Yi

h0

)
−1{Yi ≤ Q(τ |Xi)}

)2
]

= O(h0)

by (19) and∫ Qi

y
G
(Qi −Yi

h0

)
fY|X(y|Xi)dy

= G
(Qi −Yi

h0

)
FY|X(y|Xi)

∣∣Qi
y +

∫ Qi

y

1

h0
g
(Qi −Yi

h0

)
FY|X(y|Xi)dy

= G(0)τ + τ/2+ fY (Qi|Xi)O(h0).

Furthermore, using (18), E[r3ni − r3i] = O(h2
0). Thus, E

[‖Tn‖2
]= o(1). The claim

follows the argument for equality (i).
For the stochastic trimming function, by Proof of Lemma 4, n−1∑n

i=1 Q̂iφi

1{Xi ∈ S}−n−1∑n
i=1 Q̂iφi1{Xi ∈ Ŝ} = op(n−1/2).

Step 3 [Bias]. The bias E[Unp] = O
(
hν +h2

0

)
by Lemma 5. �

Proof of Theorem 4. Density-weighted AQD.

β̃f −βf = −2

n

n∑
i=1

Q̂(τ |Xi)∇ f̂i1i −βf

= −2

n

n∑
i=1

(Q̂i −Qi)∇fi1i︸ ︷︷ ︸
≡(I)

−2

n

n∑
i=1

(
Qi∇ f̂i1i −E[Qi∇fi]

)
︸ ︷︷ ︸

≡(II)

−2

n

n∑
i=1

(
Q̂i −Qi

)(∇ f̂i −∇fi
)
1i︸ ︷︷ ︸

≡s.o.

.

Decompose (I) = n−1∑n
i=1

(− 2Q̂i∇fi1i − βf
)+ (

2Qi∇fi1i + βf
)
, where the influence

function for the first part is given in Theorem 3 with φ(X) = −2∇f (X). The influence
function for (II) is given in Lemma 2 with ψ(X;τ) = −2Q(τ |X). For the third term s.o.,

sup
Xi∈S

∥∥∥−2
(
Q̂i −Qi

)(∇ f̂i −∇fi
)∥∥∥= Op

(1

δ

( logn

nhd

)1/2( logn

nhd+2
1

)1/2)= op(n−1/2)

by Lemma 1, Theorem 6 in Hansen (2008), and Assumption 3.
Combining the results and

√
n(β̃f − β̂f ) = op(1) in Lemma 4, we obtain rf (Zi;τ).

Combining the bias terms in Theorem 3 and Lemma 2, we obtain Biasf (τ ;h,h0,h1).
As argued in Step 4, we obtain the weak convergence, with the covariance Cov(G(τ1),

G(τ2)) = E
[
rf (Z;τ1)rf (Z;τ2)′

]
.

Scaled AQD. By Theorem 4 with γ (Xi;τ) = 1, α̂ −α ≡ n−1∑n
i=1 rα(Xi)+op(n−1/2),

where the influence function rα(Xi) = 2
(
f (Xi) −Ef (X)

)
, as shown in Powell and Stoker
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(1996). Then,
√

n
(
β̂s −βs

)
=

√
n

α̂α

(
β̂f α −βf α̂

)
=

√
n

α̂α

(
(β̂f −βf )α −βf (α̂ −α)

)
= 1√

n

n∑
i=1

(
rf (Zi)− rα(Xi)βs

)
/α̂ +op(1).

As argued in Step 4, we obtain the second part of Theorem 4. �

Proof of Theorem 5.

β̂W −βW = −1

n

n∑
i=1

(
Q̂i −Qi

)∇(Wifi)

fi
1i︸ ︷︷ ︸

(I)

−1

n

n∑
i=1

Qi
∇(Wif̂i)

f̂i
1i −βW + s.o.1, (21)

where s.o.1 = 1
n
∑n

i=1
(
Q̂i −Qi

)(∇(Wif̂i)
f̂i

− ∇(Wifi)
fi

)
1i = 1

n
∑n

i=1
(
Q̂i −Qi

)
Wi

(∇ f̂i−∇fi
f̂i

+
∇fi

( 1
f̂i

− 1
fi

))
1i. So by Assumption 4,

√
n‖s.o.1‖ = Op

(√
n‖Q̂− Q̂‖∞δ−1(‖∇ f̂ −∇f‖∞ + δ−1‖f̂ − f‖∞

))
= Op

⎛⎝ logn

δ2
√

nhd
1hd

(
h−1

1 + δ−1)⎞⎠= op(1).

The influence function of (I) is implied by Theorem 3 with φ(X) = −∇(W(X)f (X))/f (X)

by assuming δ6nh2dh0 → ∞, δ8nh2d → ∞, and uniformly bounded functions.
The second term in (21) is further decomposed

−1

n

n∑
i=1

Qi
∇(Wif̂i)

f̂i
1i =− 1

n

n∑
i=1

Qi∇Wi1i

−1

n

n∑
i=1

Qi
Wi

fi
∇ f̂i1i︸ ︷︷ ︸

(II)

+1

n

n∑
i=1

Qi
Wi∇fi

f 2
i

(
f̂i − fi

)
1i︸ ︷︷ ︸

(III)

+s.o.2,

where s.o.2 = 1
n
∑n

i=1
Qi
fi

(
f̂i − fi

)(∇(Wif̂i)
f̂i

− ∇(Wifi)
fi

)
1i. So ‖s.o.2‖ = op(‖s.o.1‖).

The influence function of (II) is given by Lemma 2 with ψ(X;τ) = −Q(τ |X)W(X)/f (X),

√
n

(
(II)+E

[
∇f

QW

f

])
= 1√

n

n∑
i=1

(
fi∇

(
QiWi

fi

)
−E

[
fi∇

(
QiWi

fi

)])
+op(1).

The influence function for (III) is given by Lemma 3 with γ (X;τ) = Q(τ |X)W(X)
∇f (X)

f (X)2 ,

√
n(III) = 1√

n

n∑
i=1

(
QiWi

fi
∇fi −E

[
QiWi

fi
∇fi

])
+op(1).

https://doi.org/10.1017/S0266466621000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000232


NONPARAMETRIC WEIGHTED AVERAGE QUANTILE DERIVATIVE 527

Therefore,

−1

n

n∑
i=1

Qi1i
∇(Wif̂i)

f̂i
= 1√

n

n∑
i=1

∇QiWi +op(1).

As argued in Step 4, Donsker’s theorem implies the weak convergence. Combining the bias
terms in Theorem 3 and Lemmas 2 and 3, we obtain Biasw(τ ;h,h0,h1). �

Proof of Theorem 6. We follow Härdle and Stoker (1989) using the projection structure
of the U-statistic. For rIIi in Appendix C, let ξnij = p(Xi,Xj;λ)+ p(Xj,Xi;λ). The limit of
rn(Xi;λ) = E[ξnij|Zi], denoted by ri ≡ r(Xi;τ), is estimated by the sample analog, r̂i ≡
(n − 1)−1∑

j 	=i ξ̂nij, where ξ̂nij is obtained by a first-step nonparametric estimation of the
unknown functions.

By a similar argument for trimming in Appendix C, it suffices to show consistency of
n−1∑ r̂ir̂

′
i1i for E[rr′] and n−1∑ r̂i1i for E[r]. First, we show supi |r̂i − ri|1i = op(1).

sup
i

|r̂i − ri|1i ≤sup
i

∣∣∣ 1

n−1

∑
j 	=i

(ξ̂nij − ξnij)
∣∣∣1i + sup

i

∣∣∣ 1

n−1

∑
j 	=i

ξnij −E[ξnij|Zi]
∣∣∣1i

+ sup
i

∣∣∣rn(Xi;λ)− r(Xi;τ)

∣∣∣1i = op(1)

by the uniform convergence of the nonparametric estimation, the law of large numbers, and
the proof of Lemma 2.

By similar arguments, we obtain supi |r̂βi − rβi|1i = op(1). Let rfi ≡ rf (Zi;τ). Since the
variance of rfi exists and Pr(f (X) ≤ δ) = o(1),

n−1
n∑

i=1

r̂fir̂
′
fi1i −E[rfir

′
fi]

= n−1
n∑

i=1

(r̂fi − rfi)(r̂fi − rfi)
′1i +n−1

n∑
i=1

rfi(r̂fi − rfi)
′1i +n−1

n∑
i=1

(r̂fi − rfi)r̂
′
fi1i

−n−1
n∑

i=1

r̂fir̂
′
fi(1−1i)+n−1

n∑
i=1

rfir
′
fi −E[rfir

′
fi] = op(1).

The same arguments prove Ĉov(Gw(τ1),Gw(τ2)) is consistent. �

Proof of Corollary 1. The results are implied by Propositions 4.1 and 4.2 in Powell
and Stoker (1996), so we verify their conditions, note the additional complication due to
estimating the CQF and density derivative, and do not repeat the proofs.

(i) Bhν includes the leading terms associated with h in Biasf in Theorem 4. The
derivation of Biasf implies Assumption 1 in Powell and Stoker (1996).

Consider the variance. Following the proof of Theorem 4, (20) in Theorem 3 and
(24) in Lemma 2 imply

p(Zi,Zj;λ) ≡ −2a′∇f (Xi)K
(
H−1(Xi −Xj)

)
f (Xi)fY (Q(τ |Xi)|Xi)|H|

(
τ −G

(Q(τ |Xi)−Yj

h0

))
1i

−2Q(τ |Xi)1ia
′∇K

(Xi −Xj

h

) 1

hd+1 . (22)
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So a′β̂f,h = (n(n − 1))−1∑n
i=1

∑
j	=i p(Zi,Zj;λ) + s.o. for some smaller-order

term s.o = op(n−1/2) due to Q̂(τ |Xi) and ∇ f̂ (Xi). The standard formulation of
U-statistic implies that the terms associated with h in the variance of β̂f,h are
dominated by 2n−2

E
[
p̃(Zi,Zj;λ)2

]
for a symmetric p̃(Zi,Zj;λ) = (p(Zi,Zj;λ) +

p(Zj,Zi;λ))/2.p̂(Zi,Zj;λ) is a plug-in estimator of p̃(Zi,Zj;λ). By (18) and (19),
some algebra yields E

[
p̃(Zi,Zj;λ)2

] = Vh−d + o(h−d). Thus, Assumption 2 in
Powell and Stoker (1996) holds. Their Proposition 4.1 implies the result.

(ii) Consider the consistency of V̂. The proof of Theorem 4, Theorem 1, and nh3d
v →

∞implies s.o. = op(n−1/2). It is straightforward to show that E[p(Zi,Zj;λ)4] =
Op(h−3d

v ) (i.e., η = d and γ = d in the notations and equation (4.39) of Powell and
Stoker (1996)). Then, Proposition 4.2 of Powell and Stoker (1996) implies the result.

�

C. Proof of Lemmas

Proof of Lemma 1. This proof modifies the proofs of Theorems 2 and 6 in Hansen
(2008) and Lemma B(1) in Cattaneo et al. (2013) that amends a truncation argument in the
proof of Theorem 2 in Hansen (2008).

1. F̂Y (y|x) ≡ �̂(y,x)/f̂ (x) = �̂(y,x)/f (x)
f̂ (x)/f (x)

, where �̂(y,x) ≡ (nhd)−1∑n
i=1 K(H−1(Xi −

x))G
(

y−Yi
h0

)
, for x ∈ Cn and y ∈ Y .Consider the uniformity over Y × Cn. Con-

struct a grid using regions of the form Bj = {y : |y − yj| ≤ anh} × {x : |x − xj| ≤
anh}. Since we have a bounded dependent variable G

(
y−Yi

h0

)
∈ (0,1), the argu-

ment for uniform bound is the same, for example, in (A.8) of Hansen (2008)∣∣K(x2)G
(

y2−Y
h0

)
−K(x1)G

(
y1−Y

h0

)∣∣≤ ζK∗(x1), for all ‖(y1,x1)− (y2,x2)‖ ≤ ζ ≤ L.

Therefore, Hansen’s proof of Theorem 2 gives supx∈Cn,y∈Yn
|�̂(y,x)−E[�̂(y,x)]| =

Op

((
logn/

(
nhd

))1/2
)

. By change of variables, the smoothness assumptions, and the

dominated convergence theorem, for any y ∈ Yn and x ∈ Cn,

E
[
�̂(y,x)

]= 1

hd
E

[
K(H−1(X − x))E

[
G

(
y−Y

h0

)∣∣∣∣x]]
= 1

hd
E

[
K(H−1(X − x))

(
FY (y|X)+ h2

0

2
κG2f ′

Y (y|X)+o(h2
0)
)]

= FY (y|x)f (x)+O(hν +h2
0).

Thus, supx∈Cn,y∈Y |�̂(y,x)−�(y,x)| = Op(a†), where a† ≡ ( logn
nhd

)1/2 +h2
0 +hν and

�(y,x) ≡ FY (y|x)f (x). Theorem 6 in Hansen (2008) gives

sup
x∈Cn

|f̂ (x)− f (x)| = Op(a
∗), where a∗ ≡

( logn

nhd

)1/2 +hν . (23)

Therefore, uniformly in y ∈Y and x ∈ Cn, F̂Y (y|x) = �̂(y,x)/f (x)
f̂ (x)/f (x)

= FY (y|x)+Op(a†δ−1)

1+Op(a∗δ−1)
=

FY (y|x)+Op(a†δ−1).
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2. Similarly, ∂
∂y F̂Y (y|x) ≡ f̂Y (y|x) ≡ �̂(y,x)/f̂ (x), where �̂(y,x) ≡ (nhdh0)

−1∑n
i=1

g(
y−Yi

h0
) K(H−1(Xi −x)). Theorem 6 in Hansen (2008) implies supx∈Cn,y∈Y

∣∣�̂(y,x)−
E
[
�̂(y,x)

]∣∣ = Op

(( logn
nhdh0

)1/2
)

. A similar calculation yields Biasφ(�̂(y,x)) =
O(hν +h2

0).

�

Proof of Lemma 2. We suppress the subscript in h1 and ν1 for notational simplicity.
Denote λ ≡ (τ,h) ∈ T ×R+.

Un ≡ 1

n

n∑
i=1

ψ(Xi;τ)∇ f̂i1i = 1

n(n−1)

n∑
i=1

n∑
j=1,j 	=i

p(Xi,Xj;λ), where

p(Xi,Xj;λ) ≡ ψ(Xi;τ)1i∇K
(Xi −Xj

h

) 1

hd+1
. (24)

The proof follows the procedure outlined at the beginning of Appendix B.
Step 1. Using the same arguments in Proof of Theorem 3, we show F1 ≡ {(Zi,Zj) �→

hd+1p(Zi,Zj;λ) : λ ∈ �} is euclidean for the envelope F1(Zi,Zj) = supτ∈T ψ(Xi;τ)

satisfying P
2F2

1 < ∞. Assume nh2d+2 → ∞ and apply Corollary 4 in Sherman (1994).
Then, Lemma 6 in Sherman (1994) implies the class of P-degenerate functions of order 2
{(Zi,Zj) �→ hd+1r(Zi,Zj;λ) : λ ∈ �} is euclidean.

Step 2.

rn(Xi;λ) ≡ E[p(Xi,Xj;λ)|Xi]+E[p(Xj,Xi;λ)|Xi]

=
∫
X

1

hd+1
∇Kijf (Xj)dXjψi1i +

∫
X

1

hd+1
∇Kjiψjf (Xj)1jdXj

= ψi1i

(−1

hd
Kijf (Xj)

∣∣∣X + 1

hd

∫
X

Kij∇f (Xj)dXj

)
+ 1

hd

(
Kijf (Xj)ψj

∣∣∣X −
∫
X

Kji∇(fjψj)dXj

)
= ψi1i

∫
K(V)∇f (Xi +HV)dV −

∫
K(V)∇(fψ)(Xi +HV)1{Xi +HV ∈ S}dV

= r(Xi;τ)+Op(hν).

Let r(Xi;τ) ≡ ψ(Xi;τ)∇fi − ∇(ψ(Xi;τ)fi) = −fi∇ψ(Xi;τ). The conditions imply

E‖rn(X;λ) − r(Xi;τ)‖2 = E[ψ(X;τ)2]O(h2ν1
1 ) = o(1), so n−1/2∑n

i=1(rn(Xi;λ) −
r(Xi;τ)) = op(1).

Let r(Xi;τ) = 2γ (Xi;τ)f (Xi). By similar arguments in Proof of Theorem 3,E‖rn(X;λ)−
r(Xi;τ)‖2 = O

(
h2ν1

1

)
= o(1), so n−1/2∑n

i=1 (rn(Xi;λ)− r(Xi;τ)) = op(1).

Step 3 [Bias]. Assuming px > ν +2,

P
2p(Xi,Xj;λ) = E

[
ψ(X;τ)1{X ∈ S}

∫
K(u)∇f (X +uh)du

]

= E
[
ψ(X;τ)∇f (X)

]+ hνκν

ν!

d∑
k=1

E
[
ψ(X;τ)∂ν

k ∇f (X)
]+Op(hν+1).
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Thus, n−1∑n
i=1 ψ(Xi;τ)∇ f̂i1i = n−1∑n

i=1 −fi∇ψi −E[ψ∇f ]. By integration by parts,
−E[ψ∇f ] = E[∇(ψ f )] = E[∇ψ f ]+E[ψ∇f )]. Thus, −2E[ψ∇f ] = E[∇ψ f ]. �

Proof of Lemma 3. By the same steps as in the proof of Lemma 2, define p(Xi,Xj;λ) ≡
Kh(Xi −Xj)γ (Xi;τ)1i. We only note the difference without repeating each step.

Step 2.

rn(Xi;λ) ≡ E[p(Xi,X;λ)|Xi]+E[p(X,Xi;λ)|Xi]

=
∫
X

1

hd
Kijf (Xj)dXjγi1i +

∫
X

1

hd
Kijγjfj1jdXj

= γi1i

∫
K(V)f (Xi +HV)dV +

∫
K(V)

(
γ f
)
(Xi +HV)1{Xi +HV ∈ S}dV .

Let r(Xi;τ) = 2γ (Xi;τ)f (Xi). The conditions imply E‖rn(X;λ)− r(Xi;τ)‖2 = O
(

h2ν1
1

)
=

o(1), so n−1/2∑n
i=1 (rn(Xi;λ)− r(Xi;τ)) = op(1). Then, n−1∑n

i=1 γ (Xi;τ)f̂ (Xi)1i −
E[γ (X;τ) f (X)] = n−1∑n

i=1 2γ (Xi;τ)f (Xi)−2E[γ (X;τ)f (X)]+op(n−1/2).
Step 3 [Bias]. Assuming px ≥ ν +1,

E[rn(X;λ)] = E

[
γ (X;τ)

∫
K(u)f (X +uh)du

]

= E [γ (X;τ)f (X)]+ hνκν

ν!
E

⎡⎣γ (X;τ)

d∑
k=1

∂ν
k f (X)

⎤⎦+Op(hν+1).

�

Proof of Lemma 4. Following Lavergne and Vuong (1996), choose εn such that
ε−1

n supX∈S,τ∈T |f̂XY (X,Q̂(τ |X))− fXY (X,Q(τ |X))| = op(1) and εn/δ = o(1), which exists
because

sup
X∈S,τ∈T

|f̂XY (X,Q̂(τ |X))− fXY (X,Q(τ |X))|

≤ sup
X∈S,τ∈T

|f̂XY (X,Q̂(τ |X))− fXY (X,Q̂(τ |X))|

+ sup
X∈S,τ∈T

|fXY (X,Q̂(τ |X))− fXY (X,Q(τ |X))|

= Op((logn/(nhd))1/2(h−1/2
0 + δ−1)).

Since εn/δ = o(1), we can work with the bound δ + εn instead of δ. Define Sc ≡ {x :
infτ∈T fXY (x,Q(τ |x)) ≥ δ + εn} and Sc− ≡ {x : infτ∈T fXY (x,Q(τ |x)) ≥ δ − εn}.
√

n(β̃ − β̂) = 1√
n

n∑
i=1

Q̂iφ̂i

(
1{Xi ∈ Sc}−1{Xi ∈ Ŝ}

)

= 1√
n

n∑
i=1

Q̂iφ̂i

(
1{Xi ∈ Sc,Xi /∈ Ŝ}−1{Xi /∈ Sc,Xi ∈ Ŝ}

)
.

For any x ∈ X and τ ∈ T , the event
{
x ∈ Sc,x /∈ Ŝ

} ⊆ {|f̂XY (x,Q̂) − fXY (x,Q)| > εn,x ∈
Sc
}⊆ {

supx∈X ,τ∈T |f̂XY (x,Q̂)− fXY (x,Q)|1{x ∈ S} > εn
}
has asymptotic probability zero.
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Hence, 1{Xi ∈ Sc,Xi /∈ Ŝ} = 0w.p.a.1, for all i. So we need to consider the second term only.
Define Ini ≡ 1{Xi /∈ Sc,Xi ∈ Ŝ}.

sup
τ∈T

∥∥∥∥∥∥ 1√
n

n∑
i=1

Q̂iφ̂iIni

∥∥∥∥∥∥
≤ sup

τ∈T

∥∥∥∥∥∥n−1/2
n∑

i=1

(Q̂i −Qi)φiIni

∥∥∥∥∥∥+ sup
τ∈T

∥∥∥∥∥∥n−1/2
n∑

i=1

Qi(φ̂i −φi)Ini

∥∥∥∥∥∥
+ sup

τ∈T

∥∥∥∥∥∥n−1/2
n∑

i=1

(Q̂i −Qi)(φ̂i −φi)Ini

∥∥∥∥∥∥+ sup
τ∈T

∥∥∥∥∥∥n−1/2
n∑

i=1

QiφiIni

∥∥∥∥∥∥ . (25)

For the last term in (25),

E

[∥∥∥n−1/2
n∑

i=1

QiφiIni

∥∥∥2]

≤ n−1
E

[( n∑
i=1

∥∥Qiφi
∥∥1{Xi /∈ Sc}

)2]
= E

[∥∥Qiφi
∥∥21{Xi /∈ Sc}

]
+ (n−1)

(
E

[∥∥Qiφi
∥∥1{Xi /∈ Sc}

])2 = o(1),

where the first term is o(1) by Lebesgue dominated convergence theorem with E‖Qiφi‖2 ≤
∞ and δ + εn → 0. For the second term,

∫
Bεn

‖Qiφi‖fidXi = o(n−1/2) in Assumption 3 or
4, where Bεn ≡ {X : supτ∈T fXY (X,Q(τ |X)) < δ + εn}.

Now, consider the first term of (25). The event
{
x /∈ Sc,x ∈ Ŝ,|f̂XY (x,Q̂)− fXY (x,Q)| >

εn
} ⊆ {|f̂XY (x,Q̂) − fXY (x,Q)| > εn

}
has asymptotic probability zero. Observe that {x /∈

Sc,x ∈ Ŝ,|f̂XY (x,Q̂)− fXY (x,Q)| ≤ εn} ⊆ {x ∈ Sc−}.

sup
τ∈T

∥∥∥n−1/2
n∑

i=1

φi(Q̂i −Qi)Ini

∥∥∥
≤ sup

τ∈T
n−1/2

n∑
i=1

∥∥∥φi(Q̂i −Qi)
∥∥∥Ini

≤ sup
τ∈T ,x∈S

{∣∣∣Q̂(τ |x)−Q(τ |x)
∣∣∣1{x ∈ Sc−}

}
n−1/2

n∑
i=1

‖φi‖Ini

= Op(δ−1(nhd)−1/2)Op(1) = op(1),

where n−1/2∑n
i=1 ‖φi‖Ini = Op(1) by the central limiting theorem by E‖φi‖2 < ∞, and

the uniform convergence of Q̂i is implied by Theorem 1 and Assumption 3 or 4. By the
similar arguments, the remaining terms of (25) vanish in probability. �
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Proof of Lemma 5. Define the operator �ν on a function f : V →R, where V is an open
and convex subset of Rd by

�ν f (X +HV) ≡ �ν f (X̄) = h
d∑

k=1

∂kf (X)Vk + h2

2

d∑
k1=1

d∑
k2=1

[
∂k1∂k2 f (X)

]
Vk1 Vk2 +. . .

+ hν−1

(ν −1)!

d∑
k1=1

· · ·
d∑

kν−1=1

[
∂k1 · · ·∂kν−1 f (X)

]
Vk1 · · ·Vkν−1

+ hν

ν!

d∑
k1=1

· · ·
d∑

kν=1

[
∂k1 · · ·∂kν

f (X̄)
]
Vk1 · · ·Vkν

,

where Vk is the kth component of the vector V and X̄ is on the line segment of X and X+HV .
Hence, Taylor’s theorem expands f (X +HV) = f (X)+�ν f (X +HV) for small H. By (18),
for all Xi,

E

[
1

|H|Kij(Gij − τ)

∣∣∣xi

]
=
∫
X

1

|H|Kij

(
−τ +FY (Qi|Xj)+ h2

0
2

f ′
Y (Qi|Xj)κG2 +O(h3

0)

)
f (Xj)dXj

=
∫
V

K(V)

(
−τ +FY (Qi|Xi +HV)+ h2

0
2

f ′
Y (Qi|Xi +HV)κG2 +O(h3

0)

)
f (Xi +HV)dV

=
∫
V

K(V)
(

− τ +FY (Qi|Xi)+�νFY (Qi|X̄i)

+ h2
0

2
κG2

(
f ′
Y (Qi|Xi)+�ν f ′

Y (Qi|X̄i)
)

+O(h3
0)
)

(
f (Xi)+�ν f (X̄i)

)
dV

=
∫

K(V)
(
�νFY (Qi|X̄i)fi +�νFY (Qi|X̄i)�ν f (X̄i)+ h2

0
2

κG2f ′
Y (Qi|Xi)�ν f (X̄i)

+ h2
0

2
κG2�ν f ′

Y (Qi|X̄i)fi +
h2

0
2

κG2�ν f ′
Y (Qi|X̄i)�ν f (X̄i)

)
dV + h2

0
2

κG2f ′
Y (Qi|Xi)fi +O(h3

0)

= h2
0

2
κG2f ′

Y (Qi|Xi)fi + hν

ν!
κν

d∑
k=1

∂ν
k FY (Qi|Xi)fi +

∫
K(V)�νFY (Qi|X̄i)�ν f (X̄i)dV

+ h2
0

2
κG2f ′

Y (Qi|Xi)
hν

ν!
κν

d∑
k=1

∂ν
k fi +

h2
0

2
κG2fi

hν

ν!
κν

d∑
k=1

∂ν
k f ′

Y (Qi|Xi)

+ h2
0

2
κG2

∫
K(V)�ν f ′

Y (Qi|X̄i)�ν f (X̄i)dV +O(hν+1 +h3
0)

= h2
0κG2

2
f ′
Y (Qi|Xi)fi + hνκν

ν!

d∑
k=1

∂ν
k FY (Qi|Xi)fi

+
ν−1∑
l=1

hνκν

l!(ν − l)!

d∑
k=1

∂ l
kFY (Qi|Xi)∂

ν−l
k f (Xi)+hνh2

0RI(Xi)+O(h3
0 +hν+1),
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where X̄i is on the line segment between Xi and Xi + HV , by the dominated convergence
theorem and the uniform continuity of ∂k1 · · ·∂kν

f (X) and ∂k1 · · ·∂kν
f ′
Y (y|X) for k1, . . . ,kν ∈

{1, . . . ,d} in X.
Since 1{Xi /∈ S} = o(1) by δ → 0 and the moments exist, by the dominated convergence

theorem,

E[Unp] = −E

[
φi

fifY (Qi|Xi)

{
h2

0
2

κG2f ′
Y (Qi|Xi)fi

+hνκν

ν∑
l=1

1

l!(ν − l)!

d∑
k=1

∂ l
kFY (Qi|Xi)∂

ν−l
k f (Xi)

+hνh2
0RI(Xi)

}]
+o(hν +h2

0) = O(hν +h2
0).

�
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