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Trigonometric Multipliers on H2π

J. E. Daly and S. Fridli

Abstract. In this paper we consider multipliers on the real Hardy space H2π . It is known that the

Marcinkiewicz and the Hörmander–Mihlin conditions are sufficient for the corresponding trigono-

metric multiplier to be bounded on L
p

2π , 1 < p < ∞. We show among others that the Hörmander–

Mihlin condition extends to H2π but the Marcinkiewicz condition does not.

1 Introduction

By H2π we will mean the real Hardy space of 2π periodic functions. H2π is equivalent

to the Hardy space H(T), which is the collection of those complex valued functions

defined on the torus that have zero Fourier coefficients for negative indices. This

equivalence will often be used in the proofs.

H2π is defined as the family of real 2π periodic integrable functions, the trigono-

metric conjugate of which is also integrable. The trigonometric conjugate, in other

words the periodic Hilbert transform, of an f ∈ L1
2π will be denoted by f̃ . The H2π

norm is given by ‖ f ‖H2π
= ‖ f ‖L1

2π
+ ‖ f̃ ‖L1

2π
.

Let ϕ = {ϕ(k)}∞k=−∞ be a sequence of complex numbers and let the transformed

Fourier series be defined by Sϕ f =
∑∞

k=−∞ ϕ(k) f̂ (k)ek ( f ∈ H2π), where ek(t) = eikt

and f̂ (k) =
1

2π

∫ 2π

0
f (t)e−ikt dt is the kth Fourier coefficient of f (k ∈ Z). Then ϕ is

called a bounded multiplier on H2π if the operator Tϕ defined by

T̂ϕ f (k) = ϕ(k) f̂ (k) (k ∈ Z, f ∈ H2π)

is bounded from H2π to itself. We note that f real implies f̂ (−k) = f̂ (k) (k ∈ N).

Consequently, for a multiplier ϕ to be bounded on H2π it is necessary that ϕ(−k) =

ϕ(k) (k ∈ N).

The atomic structure of H2π plays a fundamental role in the proofs. To facili-

tate the use of the atomic decomposition we will modify the concept of intervals on

[0, 2π). We will identify [0, 2π) with the unit circle. The sets corresponding to inter-

vals on the unit circle will be called intervals and their collection will be denoted by

I. By definition a function a : [0, 2π) 7→ R is an atom if it is the constant 1 or there

exists I ∈ I such that

(i) supp a ⊂ I,

(ii) ‖ a ‖L∞

2π
≤ |I|−1,

(iii)
∫ 2π

0
a = 0,
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where |A| stands for the Lebesgue measure of the measurable set A. Then f belongs

to H2π if and only if there exist αk real numbers with
∑∞

k=0 |αk| < ∞ and ak atoms

such that

(1.1) f =

∞∑

k=0

αk ak,

and the convergence in the decomposition is understood in the L1
2π norm. Moreover

‖ f ‖H2π
≈ inf

∞∑

k=0

|αk|

with taking the infimum over all decompositions of the form (1.1).

The difference sequence ∆ϕ is defined as ∆ϕ(k) = ϕ(k) − ϕ(k + 1) (k ≥ 0), and

∆ϕ(k) = ϕ(k) − ϕ(k − 1) (k < 0). Throughout the paper C will denote an absolute

positive constant not necessarily the same in different occurrences.

2 Results

Theorem 2.1 Suppose that ϕ = {ϕ(k)}∞−∞ is a bounded sequence and satisfies

ϕ(−k) = ϕ(k), k ∈ N. Let r > 1. If

(2.1) 2 j
( 2 j+1−1∑

k=2 j

|∆ϕ(k)|r

2 j

) 1/r

≤ C ( j ∈ N),

then ϕ is a bounded multiplier on H2π .

Remark 2.2 We note that a similar result holds for H(T). We also note that it fol-

lows from the duality relation between H2π and BMO2π that (2.1) is sufficient for a

multiplier to be bounded on BMO2π.

In the case that r = 1, condition (2.1) is the well-known Marcinkiewicz condition

for L
p
2π (1 < p < ∞) multipliers. The following theorem, in particular, means that

the Marcinkiewicz condition does not extend to H2π . (See historical notes.)

Theorem 2.3 There exists a sequence ϕ with ϕ(−k) = ϕ(k) (k ∈ N) which is of

bounded variation, i.e.,
∑∞

k=−∞ |∆ϕ(k)| < ∞, but the corresponding multiplier oper-

ator Tϕ is not bounded from H2π to L1
2π .

Corollary 2.4 There exists a bounded ϕ with ϕ(−k) = ϕ(k) (k ∈ N) that satisfies the

Marcinkiewicz condition

(2.2)

2 j+1−1∑

k=2 j

|∆ϕ(k)| ≤ C ( j ∈ N),

but Tϕ is not bounded from H2π to L1
2π .
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3 Historical Comments

J. Marcinkiewicz [Ma] published the multiplier theorem that bears his name in 1939.

His argument proves directly that for a bounded sequence ϕ satisfying

sup
n≥0

∑

2n≤|k|<2n+1

|ϕ(k + 1) − ϕ(k)| <∞,

the corresponding multiplier operator is bounded on L
p
2π for 1 < p <∞, by showing

that certain weighted partial sums of the Fourier series of the function on dyadic

blocks that arise from partial summation have appropriate L
p
2π bounds. This is the

proof which most of us learned. It is the one found in Zygmund’s Trigonometric Series

[Z]. The estimates of Marcinkiewicz do not hold for L1
2π and no mention is made of

weak(1, 1) results nor for the Hardy space H2π. In their monograph, Edwards and

Gaudry [EG] studied the interrelationship between the Marcinkiewicz condition for

multipliers and Littlewood–Paley square function decompositions for Lp, 1 < p <
∞, for various groups. In particular, for the circle and the dyadic group, they show

that for 1 < p < ∞ the validity of the Marcinkiewicz Multiplier Theorem for Lp

is equivalent to the Littlewood–Paley square function decomposition of Lp. As the

square function decomposition extends to the Hardy space H2π, the natural question

to ask is whether the Marcinkiewicz Theorem extends to the Hardy space. If not, is

there then a variant that extends to the Hardy space? This is the prime motivation for

this work.

Our Corollary 2.4 gives a counter-example. In fact, the multiplier constructed

satisfies the stronger condition that it is of bounded variation. On the positive side,

our Theorem 2.1 gives an appropriate replacement: if ϕ is bounded and satisfies

sup
n≥0

2nε
∑

2n≤|k|<2n+1

|ϕ(k + 1) − ϕ(k)|1+ε <∞

for any ε > 0, then Tϕ is bounded on H2π. The authors [DF] considered these

questions initially in the context of the dyadic group and Walsh series and proved

results analagous to the ones contained here.

The only positive information concerning the Marcinkiewicz condition for H2π

was that found in a statement by S. V. Kislyakov [Ki]: for bounded ϕ, the condition

sup
n≥0

Rn
∑

Rn≤|k|<Rn+1

|ϕ(k + 1) − ϕ(k)|2 <∞

implies the multiplier operator Tϕ is bounded on H2π. He directs the reader to follow

the proof of Hörmander [H] for multliplier operators on Lp(R
n), 1 < p < ∞;

however, no proof is given. The Sidon type inequality in Lemma 4.2 plays an essential

role in our proof of Theorem 2.1. No mention of this inequality appears in Kislyakov

nor is one needed in the proof of Hörmander.
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4 Proofs

In the proofs we will often consider series with respect to the non-negative complex

trigonometric system {ek}
∞
k=0. The corresponding Dirichlet kernels Dk are defined by

(4.1) Dn =

n∑

j=0

ek =
en+1 − 1

e1 − 1
(n ≥ 1).

We will need the following Sidon type inequality. The full trigonometric version was

proved by Móricz in [Mó], and the Walsh version by Daly and Fridli in [DF].

Lemma 4.1 Let δ > 0, 1 < q ≤ 2, and n ∈ N. Suppose that
∑n

k=1 ck = 0. Then

(4.2)

∫ 2π−δ

δ

∣∣∣
n∑

k=0

ckDk(x)
∣∣∣ dx ≤ C δ(1/q)−1

( n∑

k=0

|ck|
q
) 1/q

.

Proof Without loss of generality we may assume n > δ−1. It follows from (4.1) and

from the assumption
∑n

k=1 ck = 0 that

∫ 2π−δ

δ

∣∣∣
n∑

k=0

ckDk

∣∣∣ =

∫ 2π−δ

δ

1

|e1 − 1|

∣∣∣
n∑

k=0

ckek+1

∣∣∣ dx.

Using Hölder inequality we obtain that this integral can be dominated by:

∥∥∥ χ[δ,2π−δ]

e1 − 1

∥∥∥
q

∥∥∥
n∑

k=1

ckek+1

∥∥∥
p
,

where 1/q + 1/p = 1. Since |e1(x) − 1| = O(1/x) (δ ≤ x ≤ π) and |e1(x) − 1| =

|e1(2π − x) − 1|, we have that the first factor is of order δ1/q−1. Then the proof can

be finished by applying Hausdorff-Young inequality to the second factor.

Proof of Theorem 2.1

Using the conjugate function characterization or the natural identification of H2π

with H(T), we may restrict our attention to the nonnegative part of the Fourier se-

ries. More precisely, f ∈ H2π if and only if
∑∞

k=0 f̂ (k)ek represents an integrable

function g. Moreover, ‖ f ‖H2π
≈ ‖g‖L1

2π
.

The boundedness of ϕ implies that if h ∈ L2
2π then

∑∞
k=0 ϕ(k)ĥ(k)ek converges to

a function denoted by Tϕ+

h in L2
2π norm. This, in particular, is true for any atom.

Consequently, using the atomic structure of H2π and the previous comments we can

reduce the problem to showing that there exists a C > 0 for which

(4.3) ‖Tϕ+

a ‖1 ≤ C

holds for all atoms a.
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In the proof of (4.3) we may assume that supp a ⊂ [0, 2−N], ‖ a ‖∞ ≤ 2N+1, and∫ 2π

0
a = 0. To apply Lemma 4.1 and separate the lower frequency terms from the

higher, we define the sequence of trigonometric polynomials Un a (N ≤ n <∞) as

Un a =

2N+1∑

k=1

λ(k)ϕ(k)â(k)ek +

2n∑

k=2N

µ(k)ϕ(k)â(k)ek,

where

λ(k) =





1 if 0 ≤ k ≤ 2N ,

1 −
k − 2N

2N
if 2N < k ≤ 2N+1,

0 otherwise,

and

µ(k) =





k − 2N

2N
if 2N ≤ k ≤ 2N+1,

1 if 2N+1 < k ≤ 2n−1,

1 −
k − 2n−1

2n−1
if 2n−1 < k ≤ 2n,

0 otherwise.

Note that
∑2n

k=2N ∆µ(k) = 0 as µ(2N ) = µ(2n) = µ(2n + 1) = 0. So we may apply

our lemma to the sequence {∆µ(k)}. Also λ(k) + µ(k) = 1 for 2N ≤ k ≤ 2N+1 to

compensate for the linear increase in µ(k). Descriptively, we use two ramp functions.

By the Parseval equality, a simple comparison of the Fourier coefficients of Tϕ+

a

and Un a shows that the later converges to the first in L2
2π , and so in L1

2π as well. There-

fore, limn→∞ ‖T+
ϕ a−Un a ‖1 = 0. Consequently, (4.3) can be proved by showing

that

(4.4) ‖Un a ‖1 ≤ C (n ∈ N).

The usual L2 argument shows that

(4.5)

∫ 2−N+1

−2−N+1

|Un a | < C.

Indeed, it follows from supp a ⊂ [0, 2−N], and ‖ a ‖∞ ≤ 2N+1 that ‖ a ‖2 ≤ 2N/2+1.

Also, since |λ(k)| ≤ 1, |µ(k)| ≤ 1 (k ∈ N), and ϕ is bounded we have ‖Un a ‖2 ≤

C‖ a ‖2. Thus
∫ 2−N+1

−2−N+1 |Un a | ≤
(

2−N+2
) 1/2

‖Un a ‖2 ≤ C by the Cauchy–Schwartz

inequality.

In order to show
∫ 2π−2−N+1

2−N+1 |Un a | < C , let R and Qn be the kernel functions that

correspond to the sequences {λ(k)} and {µ(k)}, respectively. More precisely, let

R =

2N+1∑

k=0

λ(k)ϕ(k)ek, Qn =

2n∑

k=2N

µ(k)ϕ(k)ek.
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Then by definition

Un a(x) =

∫ 2π

0

R(x − y) a(y) dy +

∫ 2π

0

Qn(x − y) a(y) dy.

Since
∫ 2π

0
a = 0, and supp a ⊂ [0, 2−N], we can write

Un a(x) =

∫ 2−N

0

(
R(x − y) − R(x)

)
a(y) dy +

∫ 2−N

0

Qn(x − y) a(y) dy.

Hence

(4.6)

∫ 2π−2−N+1

2−N+1

|Un a(x)| dx ≤

∫ 2−N

0

| a(y)|

∫ 2π−2−N+1

2−N+1

|Qn(x − y)| dx dy

+

∫ 2−N

0

| a(y)|

∫ 2π−2−N+1

2−N+1

|R(x − y) − R(x)| dx dy.

We will show that the integrals of the kernel functions R, and Qn in (4.6) are bounded.

Let us start with the integral for R. For a fixed y ∈ [0, 2−N] set

ψ(0) = 0, and ψ(k) = λ(k)ϕ(k)(ek(−y) − 1) (k ≥ 1).

Then R(x − y) − R(x) =
∑2N+1

k=0 ψ(k)ek(x). Summation by parts yields

R(x − y) − R(x) =

2N+1−1∑

k=0

∆ψ(k)Dk + ψ(2N+1)D2N+1 .

Since ψ(0) = ψ(2N+1) = 0 we have by Lemma 4.1 that

(4.7)

∫ 2π−2−N+1

2−N+1

|R(x − y) − R(x)| dx ≤ C
(

2N−1
) 1−1/r

( 2N+1−1∑

k=0

|∆ψ(k)|r
) 1/r

as long as r ≤ 2. Without loss of generality we may assume so. It is easy to check by

direct calculation that

∆ψ(k) = αk∆ϕ(k) + βkϕ(k + 1),

where

αk = λ(k)(ek(−y) − 1) (1 ≤ k < 2N+1),

and

βk =

{
ek(−y)(1 − e1(−y)) if 1 ≤ k < 2N ,

λ(k)(ek(−y) − 1) − λ(k + 1)(ek+1(−y) − 1) if 2N ≤ k ≤ 2N+1.

https://doi.org/10.4153/CMB-2005-034-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-034-5


376 J. E. Daly and S. Fridli

Since 0 ≤ λ(k) ≤ 1, and 0 ≤ y ≤ 2−N we have |αk| ≤ Ck2−N . Similarly, |βk| ≤
C2−N is obvious from 0 ≤ y ≤ 2−N if 1 ≤ k < 2N . For 2N ≤ k < 2N+1 let us rewrite

βk as

βk =

(
1 −

k − 2N

2N

)
ek(−y)(1 − e1(−y)) +

1

2N
(ek+1(−y) − 1).

Since both terms are of order 2−N we obtain |βk| ≤ C2−N for 2N ≤ k < 2N+1 as well.

Consequently,

( 2N+1−1∑

k=0

|∆ψ(k)|r
) 1/r

≤ |∆ψ(0)| + C

N∑

j=0

2 j+1

2N

( 2 j+1−1∑

k=2 j

|∆ϕ(k)|r
) 1/r

+ C
1

2N

( 2N+1−1∑

k=1

|ϕ(k)|r
) 1/r

.

By the construction, |∆ψ(0)| = |ψ(1)| ≤ C2−N . Let us use (2.1) for the first sum to

obtain

N∑

j=0

2 j+1

2N

( 2 j+1−1∑

k=2 j

|∆ϕ(k)|r
) 1/r

≤ C

N∑

j=0

2 j+1

2N
(2 j)−1+1/r ≤ C(2N )−1+1/r.

The same estimate holds for the second sum since ϕ is bounded. Consequently,(∑2N+1−1

k=0 |∆ψ(k)r |
) 1/r

≤ C(2N )−1+1/r, which by (4.7) implies

(4.8)

∫ 2π−2−N+1

2−N+1

|R(x − y) − R(x)| dx ≤ C.

The integral for Qn in (4.6) can be estimated in basically the same manner. Since

0 ≤ y ≤ 2−N we have that

(4.9)

∫ 2π−2−N+1

2−N+1

|Qn(x − y)| dx ≤

∫ 2π−2−N+1

2−N

|Qn(x)| dx.

Set

ψ(k) = µ(k)ϕ(k).

Then ψ(2N ) = ψ(2n) = 0. Hence
∑2n

k=2N ∆ψ(k) = 0. Summation by parts yields

Qn(x) =
∑2n−1

k=2N ∆ψ(k)Dk. Consequently, by Lemma 4.1 we have

(4.10)

∫ 2π−2−N+1

2−N

|Qn(x)| dx ≤ C(2N )1−1/r
( 2n−1∑

k=2N

|∆ψ(k)|r
) 1/r

.

Similarly to the previous case, ∆ψ(k) can be decomposed as ∆ψ(k) = αk∆ϕ(k) +

βkϕ(k + 1), with

αk = µ(k), and βk =

{
−2−N if 2N ≤ k < 2N+1,

2−n+1 if 2n−1 ≤ k < 2n.
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Then

( 2n−1∑

k=2N

|∆ψ(k)|r
) 1/r

≤
( n−1∑

j=N

2 j+1−1∑

k=2 j

|µ(k)∆ϕ(k)|r
) 1/r

+ 2−N
( 2N+1∑

k=2N +1

|ϕ(k)|r
) 1/r

+ 2−n+1
( 2n∑

k=2n−1+1

|ϕ(k)|r
) 1/r

.

Since |µ(k)| ≤ 1 we have from the conditions upon ϕ that

( n−1∑

j=N

2 j+1−1∑

k=2 j

|µ(k)∆ϕ(k)|r
) 1/r

≤ C
( n−1∑

j=N

(2 j)1−r
) 1/r

≤ C(2N )−1+1/r,

and

2−ℓ
( 2ℓ+1−1∑

k=2ℓ

|ϕ(k)|r
) 1/r

≤ C2−ℓ(2ℓ)1/r ≤ C(2N )−1+1/r (ℓ = N, n).

Consequently, it follows from (4.9) and (4.10) that

(4.11)

∫ 2π−2−N+1

2−N+1

|Qn(x − y)| dx ≤ C.

Then (4.8) and (4.11) together imply that we can continue the estimate in (4.6) as

follows: ∫ 2π−2−N+1

2−N+1

|Un a(x)| dx ≤ C

∫ 2−N

0

| a(y)| dy.

Since a is an atom supported on [0, 2−N] we have that
∫ 2π−2−N+1

2−N+1 |Un a(x)| dx ≤ C .

This, along with (4.5), means that (4.4) holds.

Proof of Theorem 2.3 We will use the correspondence between H(T) and H2π de-

scribed in the beginning of the proof of Theorem 2.1. Namely, we will construct a

function f ∈ H(T), and a multiplier ϕ = {ϕ}∞k=0 that is of bounded variation but

no integrable function exists whose Fourier series is Sϕ f . We start with the following

elementary inequalities that are needed in our construction:

(4.12) (i)

∫ b

a

|Dn(x)| dx ≤ π ln
b

a
(0 < a < b ≤ π),

(ii)

∫ b

a

|Dn(x)| dx ≤ n(b − a) (0 ≤ a < b ≤ 2π),

(iii)

∫ b

a

|Dn(x)| dx ≥
2

π
ln

b

a + π
n+1

(0 ≤ a < b < 2π).
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The first two follow easily from |Dn(x)| ≤ n (0 ≤ x ≤ 2π), and

|Dn(x)| =

∣∣∣ ei(n+1)x − 1

eix − 1

∣∣∣ ≤
2

2 sin x
2

≤
π

x
(0 < x ≤ π).

For the proof of the third one we use the lower estimate

|Dn(x)| ≥
| sin(n + 1)x|

2 sin x
2

≥
| sin(n + 1)x|

x
(0 < x ≤ 2π).

After a change of variable we obtain

∫ b

a

|Dn(x)| dx ≥

∫ (n+1)b

(n+1)a

| sin x|

x
dx.

We may suppose that (n + 1)a + π < (n + 1)b. Let α, β be real with β − α > π, and

let ℓ denote the greatest integer for which α + ℓπ ≤ β holds. Then

∫ β

α

| sin x|

x
dx ≥

ℓ∑

j=1

1

α + jπ

∫ α+ jπ

α+( j−1)π

| sin x| dx = 2

ℓ∑

j=1

1

α + jπ

≥
2

π

∫ α+(ℓ+1)π

α+π

1

x
dx

≥
2

π
ln

β

α + π
.

Then (4.12)(iii) follows by choosing α = (n + 1)a, β = (n + 1)b.

Now we continue with the construction of f ∈ H(T). Let us define the trigono-

metric polynomial fk as

(4.13) fk =

2nk∑

j=0

c(k)
j e2nk + j (k ∈ N),

where nk = 25k, and

c(k)
j =

{
j2−nk+1 if 0 ≤ j ≤ 2nk−1,

2 − j2−nk+1 if 2nk−1 < j ≤ 2nk .

Then f will be of the form
∑∞

k=1 αk fk. We show, under a simple condition on αk’s,

that f will belong to H(T). For this purpose we use summation by parts in (4.13).

Since c(k)
0 = c(k)

2nk = 0, we have

fk = e2nk

2nk∑

j=0

c(k)
j e j = e2nk

2nk−1∑

j=0

∆c(k)
j D j .

https://doi.org/10.4153/CMB-2005-034-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-034-5


Trigonometric Multipliers on H2π 379

Clearly

2nk−1∑

j=0

∆c(k)
j = 0, and ∆c(k)

j =

{
−2−nk+1 if 0 ≤ j < 2nk−1,

2−nk+1 if 2nk−1 ≤ j < 2nk .

At this point we can use the following Sidon type inequality (see Schipp [Sch]):

∫ 2π

0

∣∣∣
n∑

j=0

a jD j(x)
∣∣∣ dx ≤ C(n + 1) max

0≤ j≤n
|a j |

provided
∑n

j=0 a j = 0. Hence
∫ 2π

0
| fk(x)| dx ≤ C2nk 2−nk−1 ≤ C (k ∈ N). Conse-

quently, if
∑∞

k=0 |αk| <∞ then f =
∑∞

k=1 αk fk ∈ H2π .

Let us define the multiplier ϕ as follows:

ϕ(ℓ) =





βk

c(k)
ℓ−2nk

if 2nk + 2nk−2 ≤ ℓ ≤ 2nk + 3 · 2nk−2,

0 otherwise,

where βk > 0 with
∑∞

k=1 βk < ∞. We will specify βk later. By definition c(k)
j is

increasing in j from 0 to 2nk−1 and decreasing from 2nk−1 to 2nk . Therefore,
2nk+1−1∑

ℓ=2nk

|∆ϕ(ℓ)| =ϕ(2nk + 2nk−2) + |ϕ(2nk + 2nk−2) − ϕ(2nk + 2nk−1)|

+ |ϕ(2nk + 2nk−1) − ϕ(2nk + 3 · 2nk−2)| + ϕ(2nk + 3 · 2nk−2)

=βk(2 + |2 − 1| + |1 − 2| + 2)

=6βk.

On the other hand,
∑2 j+1−1

ℓ=2 j |∆ϕ(ℓ)| = 0 if j is not one of the nk’s. Consequently, ϕ
is of bounded variation.

Let us apply the multiplier ϕ to the Fourier series of f =
∑∞

k=1 αk fk. For the

Fourier partial sums we obtain

S
ϕ
j f =

j∑

ℓ=0

ϕ(ℓ) f̂ (ℓ)eℓ =

k∑

i=1

αiβi

2ni +3·2ni−2∑

j=2ni +2ni−2

e j =

k∑

i=1

e2ni +2ni−2αiβiD2ni−1

=

k∑

i=1

gi (2nk+1 ≤ j ≤ 2nk+1−1, k ∈ N).

If Sϕ f was the Fourier series of an integrable function, then the de la Vallée Poussin

means of the partial sums would converge to that function in norm. We will show

that the sequence of these means is not bounded in L1
2π . Then we can conclude that

the multiplier ϕ is not bounded from H2π to L1
2π .

https://doi.org/10.4153/CMB-2005-034-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-034-5


380 J. E. Daly and S. Fridli

By definition, the nth de la Vallée Poussin mean VnSϕ f of Sϕ f is

VnSϕ f =
1

n

2n−1∑

j=n

S
ϕ
j f .

Then it follows from the construction that

V2nk+1 Sϕ f =

k∑

j=1

g j .

We will show that
∫ 2π

0

∣∣ ∑k
j=1 g j(x)

∣∣ dx → ∞ as k → ∞. To accomplish this, write

∫ 2π

0

∣∣∣
k∑

j=1

g j(x)
∣∣∣ dx ≥

k∑

ℓ=1

∫ 2
−nℓ−1

2−nℓ

∣∣∣
k∑

j=1

g j(x)
∣∣∣ dx

≥
k∑

ℓ=1

( ∫ 2
−nℓ−1

2−nℓ

|gℓ(x)| dx −
ℓ−1∑

j=1

∫ 2
−nℓ−1

2−nℓ

|g j(x)| dx

−

k∑

j=ℓ+1

∫ 2
−nℓ−1

2−nℓ

|g j(x)| dx

)
.

By (4.12) we have

(4.14) Aℓ =

∫ 2
−nℓ−1

2−nℓ

|gℓ(x)| dx ≥
2

π
|αℓβℓ| ln

2nℓ

(2π + 1)2nℓ−1

≥
2

π
|αℓβℓ| ln 2nℓ−nℓ−1−3,

Bℓ =

ℓ−1∑

j=1

∫ 2
−nℓ−1

2−nℓ

|g j(x)| dx ≤ 2−nℓ−1

ℓ−1∑

j=1

|α jβ j |2
n j−1,

Cℓ =

k∑

j=ℓ+1

∫ 2
−nℓ−1

2−nℓ

|g j(x)| dx ≤ π
k∑

j=ℓ+1

|α jβ j | ln 2nℓ−nℓ−1 .

Set α j = β j = n
−1/2

j = 2−5 j/2, 1 ≤ j < ∞. Substituting these values into (4.14) we

obtain

Aℓ ≥
2 ln 2

π

(
1 −

nℓ−1 + 3

nℓ

)
≥

7 ln 2

4π
>

7

8π
> 0.25,

Bℓ < 2−nℓ−1α1β12nℓ−1 =
1

32
,

Cℓ < π ln 2 nℓ

k∑

j=ℓ+1

1

n j

< 2π ln 2
nℓ

nℓ+1

=
π ln 2

16
<

π

16
< 0.2.
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Consequently, Aℓ − Bℓ −Cℓ ≥ 0.01. This implies

∫ 2π

0

∣∣V
225k+1 Sϕ f (x)

∣∣ dx ≥

k∑

ℓ=1

(Aℓ − Bℓ −Cℓ) > 0.01 k (k > 1).

We conclude that there is no integrable function whose Fourier series is Sϕ f .

References

[DF] J. Daly and S. Fridli, Walsh multipliers for dyadic Hardy spaces. Appl. Anal. 82(2003), 689–700.
[EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory. Ergebnisse der Mathematik

und ihrer Grenzgebiete, Band 90. Springer-Verlag, Berlin, 1977.
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