A DETERMINANTAL INEQUALITY

FOR POSITIVE DEFINITE MATRICES

R.C. Thompson
(received December 28, 1960)
Let $H=\left(H_{i}, j\right)(1 \leqq i, j \leqq n)$ be an $n k \times n k$ matrix with complex coefficients, where each $H_{i, j}$ is itself a $k \times k$ matrix ($\mathrm{n}, \mathrm{k} \geqq 2$). Let $|\mathrm{H}|$ denote the determinant of H and let $\|H\|=\left|\left(\left|H_{i}, j\right|\right)\right|(1 \leqq i, j \leqq n)$. The purpose of this note is to prove the following theorem.

THEOREM. If H is positive definite Hermitian then $|\mathrm{H}| \leqq\|\mathrm{H}\|$. Moreover, $|\mathrm{H}|=\|\mathrm{H}\|$ if and only if $\mathrm{H}_{\mathrm{i}, \mathrm{j}}=0$ whenever $\mathrm{i} \neq \mathrm{j}$.

The case $n=2$ of this theorem is contained in [1].

Before proceeding to the proof, we introduce some notation. Suppose $2 \leqq p \leqq m$ and let $z_{i}=\left(z_{i}, 1, z_{i}, 2, \ldots, z_{i, m}\right)$ have complex coefficients for $1 \leqq i \leqq p$. Then define $\left(z_{1}, z_{2}\right)=\Sigma_{r=1}^{m} z_{1}, r \bar{z}_{2}, r$ and define $z_{1} \wedge z_{2} \wedge \ldots \wedge z_{p}$ to be a vector with ${ }_{m} C_{p}$ coordinates as follows: the coordinates of $z_{1} \wedge z_{2} \wedge \ldots \wedge z_{p}$ are the $p \times p$ minors of the matrix $Z=\left(z_{i, j}\right)$ ($1 \leqq \mathrm{i} \leqq \mathrm{p}, 1 \leqq \mathrm{j} \leqq \mathrm{m}$) where the ordering of the coordinates is lexicographic based upon the columns of Z. For example, if $p=2$ and $m=3$,

$$
z_{1} \wedge z_{2}=\left(\left|\begin{array}{ll}
z_{1,1} & z_{1,2} \\
z_{2,1} & z_{2,2}
\end{array}\right|,\left|\begin{array}{ll}
z_{1,1} & z_{1,3} \\
z_{2,1} & z_{2,3}
\end{array}\right|,\left|\begin{array}{ll}
z_{1,2} & z_{1,3} \\
z_{2,2} & z_{2,3}
\end{array}\right|\right) .
$$

The proof of our theorem rests on the known fact [2] that if also $y_{i}=\left(y_{i, 1}, y_{i, 2}, \ldots, y_{i, m}\right)$ for $1 \leqq i \leqq p$, then
$\left(z_{1} \wedge z_{2} \wedge \ldots \wedge z_{p}, y_{1} \wedge y_{2} \wedge \ldots \wedge y_{p}\right)=\left|\left(z_{i}, y_{j}\right)\right|, 1 \leqq i, j \leqq p$.

Canad. Math. Bull. vol. 4, no. 1, January 1961

We now turn to the proof of our theorem. If
$W=\operatorname{diag}\left(W_{1}, W_{2}, \ldots, W_{n}\right)$ is the direct sum of n non-singular $k \times k$ matrices $W_{1}, W_{2}, \ldots, W_{n}$ then $\left|W H W^{*}\right|=\left|W W^{*}\right||H|$, and $\left\|W^{*} W^{*}\right\|=\left|\left(\left|w_{i} H_{i}, j_{j}^{*}\right|\right)\right|=\|w\|\|H\|\left\|w^{*}\right\|=\left|w^{*}\right|\|H\|$ (W^{*} is the conjugate transpose of W.) Thus, if $\left|W^{*} W^{*}\right| \leq\left\|W^{*}\right\|$ then $|\mathrm{H}| \leqq\|\mathrm{H}\|$, and if $|\mathrm{H}|=\|\mathrm{H}\|$ then \mid WHW $^{*} \mid=\|$ WHW $^{*} \|$.

Since H is positive definite, $H=V^{*}$ for some triangular V. We write $V=\left(V_{i, j}\right)(1 \leqq i, j \leqq n)$ where each $V_{i, j}$ is $k \times k$. and $\mathrm{V}_{\mathrm{i}, \mathrm{j}}=0$ if $\mathrm{i}>\mathrm{j}$. Let $\mathrm{w}_{\mathrm{i}}=\left(\mathrm{V}_{\mathrm{i}, \mathrm{i}}\right)^{-1}$ for $1 \leqq \mathrm{i} \leqq \mathrm{n}$. Then $\mathrm{WHW}^{*}=(\mathrm{WV})(\mathrm{WV})^{*}=\mathrm{XX}^{*}$ where

Here each $X_{i, j}$ is $k \times k$ and I_{k} denotes the $k \times k$ identity matrix. Since $\left|X X^{*}\right|=1$, to prove that $|H| \leqq\|H\|$ it suffices to prove that $\left\|X X^{*}\right\| \geqq 1$. Moreover, if $|H|=\|H\|$, then $\left\|X X^{*}\right\|=1$. If we can show that this implies that $X=I_{n k}$ then $V=W-1$ and hence $H=V V^{*}$ satisfies $H_{i, j}=0$ for all $i \neq j$.

Let $x_{1}, x_{2}, \ldots, x_{n k}$ be the row vectors of the matrix X. Then
$\left(x_{(i-1) k+1} \wedge x_{(i-1) k+2} \wedge \ldots \wedge x_{i k}, x_{(j-1) k+1} \wedge x_{(j-1) k+2} \wedge \ldots \wedge x_{j k}\right)$ $=\left|\left(x_{(i-1) k+s}, x_{(j-1) k+t}\right)\right|$, $1 \leqq s, t \leq k$,

$$
\begin{aligned}
&\left\|X X^{*}\right\|=\left\|\left(x_{i}, x_{j}\right)\right\|, 1 \leqq i, j \leqq n k \\
&= \|\left(x_{(i-1) k+1} \wedge \ldots \wedge x_{i k}, x_{(j-1) k+1} \wedge \cdots \wedge x_{j k}\right) \mid \\
& 1 \leqq i, j \leqq n
\end{aligned}
$$

$$
=(x, x)
$$

where

$$
\begin{aligned}
x= & \left(x_{1} \wedge x_{2} \wedge \ldots \wedge x_{k}\right) \wedge\left(x_{k+1} \wedge x_{k+2} \wedge \ldots \wedge x_{2 k}\right) \\
& \wedge \ldots \wedge\left(x_{(n-1) k+1} \wedge \ldots \wedge x_{n k}\right) .
\end{aligned}
$$

Then $\left\|X X^{*}\right\|$ is of the form $\Sigma\left|u_{i}\right|^{2}$ where the u_{i} are the coordinates of the vector x and are polynomials in the elements of the matrix X. We complete the proof by showing that among the u_{i} we find 1 and all of the non-zero off-diagonal coefficients of X. Let $X=\left(x_{i}, j\right)$.

The first coordinate of $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{k}$ is 1 , and the first coordinate of $x_{(j-1) k+1} \wedge \cdots \wedge x_{j k}$ is zero for $2 \leqq j \leqq n$ since each such coordinate is the determinant of a matrix of zeros. Similarly, the coordinate of $x_{(i-1) k+1} \wedge \cdots \wedge x_{i k}$ constructed from columns (i-1)k+1, $(i-1) k+2, \ldots$, $i k$ of the matrix

$$
A_{i}=\left(\begin{array}{l}
x_{(i-1) k+1} \\
x_{(i-1) k}+2 \\
\cdots \\
x_{i k}
\end{array}\right)
$$

whose rows are the vectors $x_{(i-1) k+1}, x_{(i-1) k+2}, \ldots, x_{i k}$, is 1 ; and for all $j>i$ this coordinate in $x_{(j-1) k+1} \wedge \ldots \wedge x_{j k}$ is the determinant of the zero matrix. This means that if we form the matrix A whose rows are the vectors $x_{(i-1) k+1} \wedge \ldots \wedge x_{i k}$ for $1 \leqq i \leqq n$, then

is one of the minors of A. (Here, the asterisk indicates elements whose precise values do not matter.) Thus one u_{i} is 1.

For fixed $\mathrm{i}(1 \leqq \mathrm{i} \leqq \mathrm{n}-1$) let s , t be integers such that $1 \leqq s \leqq k$ and $i k \leqq t \leqq n k$. The minor of the matrix A_{i} constructed from columns (i-1)k+1, ..., (i-1)k+s-1, $(i-1) k+s+1, \ldots, i k, t$ has value $\pm x_{(i-1) k}+s, t$ Hence one of the coordinates of $x_{(i-1) k+1 \wedge \cdots \wedge x_{i k} \text { is }, ~}^{\text {i }}$ $\pm x_{(i-1) k+s, t}$. In $x_{(j-1) k+1} \wedge \ldots \wedge x_{j k}$ for $j>i$ this same coordinate is a determinant with at least $k-1$ columns of zeros and hence is zero. Consequently, one of the minors of A is (after, possibly, a permutation of its columns)

Thus it follows that $\pm x_{(i-1) k}+s, t$ is one of the coordinates of x.

It is now clear that

$$
\left\|x x^{*}\right\|=1+\Sigma_{i, s, t}\left|x_{(i-1) k}+s, t\right|^{2}+\Sigma\left|u_{i}\right|^{2}
$$

where the last sum is over the remaining u_{i}. Hence $\left\|X X^{*}\right\| \geqq 1$ and $\left\|X X^{*}\right\|=1$ implies that all $X_{(i-1) k+s, t}$ vanish so that $X=I_{n k}$.

The proof of the theorem is now complete.

Everitt's proof of the case $n=2$ depended on the fact that if A and B are positive definite $k \times k$ Hermitian matrices then $|A+B|>|A|+|B|$. We are now able to reverse the logic and deduce this inequality from our theorem. For let

$$
C=\left(\begin{array}{cc}
A+B & A^{\frac{1}{2}} \\
A^{\frac{1}{2}} & I_{k}
\end{array}\right)
$$

where $A^{\frac{1}{2}}$ is Hermitian and satisfies $\left(A^{\frac{1}{2}}\right)^{2}=A$. Let

$$
T=\left(\begin{array}{cc}
I_{k} & -A^{\frac{1}{2}} \\
0 & I_{k}
\end{array}\right)
$$

Then $\operatorname{TCT}^{*}=\operatorname{diag}\left(B, I_{k}\right)$ is positive definite so that C is also. Moreover, $|C|=|B|$. Applying our theorem to C, we find $|C| \leqq|A+B|-|A|$ or $|A+B| \geqq|A|+|B|$. We cannot have equality here since $A^{\frac{1}{2}} \neq 0$.

As another application of the case $n=2$ we deduce an inequality due to Fischer [3]. Let

$$
H=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

be an $(m+n) \times(m+n)$ positive definite Hermitian matrix where A is $m \times m$ and D is $n \times n$. Suppose $m \geqq n$ and let $H_{1}=\operatorname{diag}\left(H, I_{m-n}\right) . \quad\left(H_{1}=H\right.$ if $m=n$. $)$ Write $H_{1}=\left(H_{i, j}\right)$ for $1 \leqq i, j \leqq 2$ where $H_{1,1}=A$ and $H_{2,2}=\operatorname{diag}\left(D, I_{m}-n\right)$. Applying our theorem we find that

$$
|\mathrm{H}|=\left|\mathrm{H}_{1}\right| \leqq\left|\mathrm{H}_{1,1}\right|\left|\mathrm{H}_{2,2}\right|-\left|\mathrm{H}_{1,2}\right|\left|\mathrm{H}_{2,1}\right| \leqq|\mathrm{A}||\mathrm{D}|
$$

with equality if and only if $B=0$.

Since Fischer's inequality implies Hadamard's inequality, it follows that the case $n=2$ of our theorem also implies Hadamard's inequality.

By a standard continuity argument, we may extend our result to non-negative Hermitian matrices.

COROLLARY. If H is non-negative Hermitian then $|\mathrm{H}| \leqq\|\mathrm{H}\|$.

REFERENCES

1. W.N. Everitt, A note on positive definite matrices, Proc. Glasgow Math. Assoc. 3 (1958), 173-175.
2. J.H. M. Wedderburn, Lectures on Matrices, Amer. Math. Soc. Colloquium Publications XVII (1934), 16-19 and 63.
3. L. Mirsky, An Introduction to Linear Algebra, (Oxford, 1955), 420.

University of British Columbia

