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LOSS RATE FOR A GENERAL LEVY PROCESS WITH
DOWNWARD PERIODIC BARRIER
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Abstract

In this paper we consider a general Lévy process X reflected at a downward periodic
barrier A; and a constant upper barrier K, giving a process V,K =X;+ L,A - L,K. We
find the expression for a loss rate defined by /X = E L{( and identify its asymptotics as
K — 0o when X has light-tailed jumps and E X < 0.

Keywords: Loss rate; Lévy process; barrier; queueing process

2010 Mathematics Subject Classification: Primary 60K05; 60K25
Secondary 60K 10

1. Introduction

In this paper we consider a general Lévy process X reflected at a downward periodic barrier
A; = ¢(t + U) (for a periodic nonnegative function ¢(¢) with period length s and U having
uniform distribution on [0, s]) and at the constant upper barrier K, giving a process

vE=x,+L} - LK, (1.1)

which is the solution of the corresponding Skorokhod problem on each period where reflection
is within bounded and convex sets (see [5], [6], and [13]). In the above we have assumed that
@(t) € [0, a] for some a < K. Process X is defined on the filtered space (2, ¥, {#;}:>0, P),
with the natural filtration satisfying the usual assumptions of right continuity and completion.
From now on we will also assume that the jump measure v of X is nonlattice.

In this paper we find the expression for a loss rate defined by

K =g LK, (1.2)

where E denotes the expectation when the reflected process is stationary with stationary measure
g (thatis, E[-] = fooo E[- | VOK = x|k (dx)),andprovethath ~ De VK as K — 0o, where
y solves k (y) = 0 for a Laplace exponent « («) = log E exp{ae X (1)} (which is well defined in
some set ®) when X has light-tailed jumps and E X| < 0.

The motivation for this work comes from various queueing and telecommunication models
(see [1], [3], [4], [7], [8], [12], and [14]). Applications, where the reflected Lévy process
considered in this paper is natural, are models where in addition to the input and output
mechanisms modeled by a Lévy process there is a constant input given by adownward barrier A;.
This additional input is not available on a liquid basis, but can only be used after some maturity
date has been reached. We choose this time lag to be fixed and equal to the length s of the
period of ¢ (for an exponential time delay, see [9]). For example, in view of Internet networking
applications, we consider the combined behavior of two services (e.g. streaming video and some
other data). The first input behaves like a Lévy process. The other input grows deterministically
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and can be served only at some fixed time s. The combined workload now behaves like a Lévy
process reflected at a lower barrier A;.

Fluid models with finite buffers are useful to model systems where losses are of crucial
importance, as in inventory theory and telecommunications. Indeed, in recent years real-time
applications, such as video streaming and interactive games, have become increasingly popular
among users. These applications are generally delay sensitive and require some preferential
treatment in order to satisfy a desired level of quality of service. Traditionally, finite-capacity
buffer mechanisms have been employed in the network routers, in which arriving packets are
dropped when the workload reaches its maximum capacity. In this paper we analyze the
intensity of packet loss given by the so-called loss rate in (1.2).

There has been a great deal of work on overflow probabilities in various fluid and queueing
models, but there have been relatively few studies on the loss rate in finite-buffer systems. When
jumps of the Lévy process are heavy tailed, then there is hope of finding a relationship between
these two notions (see [3], [7], and [10] for more classical models). In our model we focus on
the light-tailed case and, therefore, we choose Kella—Whitt’s martingale approach [8]. In fact,
we follow the ideas included in the seminal paper of Asmussen and Pihlsgérd [2], where both
barriers are constant (see also [11] for the matrix analytic method). This case corresponds to the
assumption that A(¢) = 0. Denoting the loss rate by /X-0, as in [2], we of course immediately

obtain the bounds
ZK,O < lK < lea,O

from which, together with [2, Theorem 4.1], it follows that, e.g. (1/K) log!/ K — —y. In this
paper we focus on more precise exact asymptotics.

The paper is organized as follows. In Section 2 we give preliminary results, and in Section 3
we give the main results with proofs.

2. Preliminaries

Assume from now on that ¢ € C!(int J;) is invertible on some disjoint intervals J; satisfying
U= Jk = [0, s] with ¢’ (x) # 0 for x € int J.

Lemma 2.1. The process A; = @(t + U) has the invariant measure

n

1
£@y) = I yini s () b,
k=1

where hy is an inverse of ¢ on int Ji.

Proof. 1t is sufficient to check that, for ¢ € [0, s),

N

1 [s 1
P(A; <x) =Pt +U) <x) = ;f Lp(4uy<x) du = ;/ Lipw)<x) du,
0 0

where the last equality is a consequence of the periodicity of ¢. The second part of the theorem
follows from straightforward arguments concerning the distribution of a piecewise, strictly
monotone function of random variables.

Example 2.1. The mostinteresting case for applications is a saw-like lower boundary modeling
constant intensity input (with rate 1 for simplicity):

@(t) =t moda. (2.1)

Here 0 <a < K. Inthiscasen =1, J1 =[0,al, s = a, and £(dy) = (dy/a) 1{ye[0,a}-
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Example 2.2. A more complex situation will appear when ¢ is composed from a number of
lines with different slopes:

! fort € [0, 1),
p)y=41-20t—1) forrel,3),
3(r—3) fort € [3,3).

Inthiscasen =3, J; = [0, 1), b =[1,3), s =[3,3),s =
3 Lo () + 3 Lyus () dy.

[\S)LV)]

,and £(dy) = 2Ly )+

Using the arguments of Asmussen [1, pp. 393-394], we have the following representation
for the stationary distribution of V,K .
Lemma 2.2. The stationary distribution Volg of the two-sided reflected Lévy process is given by

a n

P(VE > x) = / Y P(X. = A7+ x) pr(z) £(da),

0 r=1

T (1)
where T =inf{t > 0: X, ¢ [x — K, A, °* + )}, A,%% = —p(hi(z) — 1) for z € p(Jy), and
I (@) 1y (2)
S @)@

Lemma 2.3. IfE |X;| < cothen EL! < 0o and E LK < oo for eacht > 0.

p(2) =PWU € Ji | o(U) =z2) =

Proof. Note that by (1.1) we have ELX < co if EL# < oo. The condition EL# < oo
follows from the Wald identity applied to the random walk whose increments are the corrections
of X between consecutive visits of the downward barrier (for details, see [2]).

We now need a further slight modification of the Lévy exponent « (o). We will treat large
and small jumps separately. Let L be a constant that satisfies L > max(K, 1). Then « («) can
be rewritten as

0'2052 00
Oro + 5 —i—/ [e* — 1 — ax Ly <ry]v(dx), o€, (2.2)

—00

where 6, = 0 + [ xv(dx) + /7 xv(dw).

For any process Y, we will denote its continuous part by {¥°} and the jumps by AY, =
Ys - Ys—~

We split ALf into ALF and ALF, corresponding to AX; € [0, L] and AX; € (L, 00),
respectively, and we split AL,A into AL{‘ and AL,A, corresponding to AX; € [—L,0] and
AX; € (—oo, —L), respectively. Let

K=Y atk, ¥ =g Y ALK

0<s<I 0<s<l
-A J—
IY=E Y AL}, and [} =E Y AL}
0<s<I 0<s<l1

K _ 1k | 7K A_ A |74 K _ 1K _ K A _ A _gA oo
Thenlj _Lj +1; andlj _éj + ;. Finally, let i =1 lj and [7 =] lj with
1" =EL.
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Theorem 2.1. Foro € O,

t t
M, =/<(oz)/(; ek ds+e“V°K _ oV +°‘/0 ooAs dL;“*°+ Z s (] _e—aALg‘)

O<s<t

— et KL pet® N7 (1 - enal) 2.3)

0<s<t
is a zero-mean martingale.

Proof. 1t is well known that, for an F;-adapted process ¥; = fot ars + Zossst AY; of
locally bounded variation, the process

K; —K(Ot)/ aZs ds +e%¥ —¢ aZ; +a/ aZs dYC—i— Z eozZY(] 7()[AYY)

0 0<s<t

is a local martingale whenever o € ®, where Z; = x + X; 4+ Y;. Taking ¥; = LZA — LtK and
using Lemma 2.3 to prove that Y has locally bounded variation, we find that

t
M, —K(C()/ eV dg @0 — e@Vi* +<xf eV dLAc + Z eaV‘K(l —C_QAL?)
0

0<s<t
K K
_Ol/ eOlV Lb{(,c'i_ Z e(XVS (1 _eaALs)
0

0<s<t

is a local martingale. Here M, equals (2.3) since VX = K just after a jump of L and

s
VK = A; just after a jump of L. To prove that {M,} is a true martingale, it is sufﬁc:lent to

show that E supg ., o, My < oo. ThlS follows from the following conditions: VX < K, E LA ¢
ELK ¢ < o0, E) gcy<r 11 = ALY | < oo,and E} o, [1— e—oALY | < oo (see also the
proof of [2, Proposition 3.1]).

Corollary 2.1. Let o € ©. Then IX satisfies the following equation:

2
(1 =YK = k(@) B + aEX) — ae® T 4ol + %E Y (aLky?
5 0<s<l
+%E Y AL} —e*KE Y (1 - B

0<s<l 0<s<l
_ 1
—E ) M- e—@ALYy _ 42 E/ AgdLAC
0<s<l1 0
—a’E Y ALY +o(@?). (2.4)
0<s<l
Proof. If we take t = 1 in M, and use the stationarity of VK we obtain

1
0=i(@Eet +aE/ A dLAC L E Y (1 — e @Al
0

ae’K K 1 e?KE 37 (1 - @b,

0<s<l1

0<s<l
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Moreover, we have

Z (1 _eaALf) _ Z (1— QALY )+ Z (1— o@ALE (2.5)

0<s<l 0<s<l1 0<s<l
Z eaAS(l _ C_QAL;L‘) — Z eotAs(l _ e—aéL;‘) + Z eD{AS(l _ e—C(KL&A). (26)
0<s<l 0<s<l 0<s<l
Applying the expansion

©@0)? (@) g,

2 6 '
to the first terms on the right- hand sides of (2.5) and (2.6), and applying the expansion e* =
14+ a+o(x)toa Ef e dL *“ completes the proof.

T=1+ax+ 0 e[-1,1],

We will also need the following observation.
Lemma 2.4. We have E fO‘ AgdL$ = E(Ag)lA, where E Ag = [ y&(dy).

Proof. Note that EL? = sEL{ = sI4, which is a consequence of the fact that L2 has
independent and stationary increments under the invariant starting position of A. The proof is
completed as follows:

1 a 1
E/ AgdLA =/ Ef AZdLAE(dz)
0 0 0
a 1
/(EA§L;‘|§)—E/ Lg‘dA§>s(dz)
0 0
a 1
/ <A§1A—/ szAdA§>g(dz)
0 0
a 1
/ (AizA—1A<sA§|})—/ Agds))s(dz)
0 0
a 1
=/ zA/ A% dsg(dz)
0 0
1 a
=1A/ f AZE(dz) ds
0o JO

=14E A.

Now, using Lemma 2.4, we can rewrite (2.4) as follows.

Lemma 2.5. As « | 0, we have

a1 —e*K 4+ aEAYIK = —k(@Ee*" +aEX; - ae®T} +al/

2 2
a Ky, ¢ A2
+5E D (AL + S E Y (ALY
0<s<1 0<s<1
_ eO(KE Z (1 _ eO(ZLAK) _ E Z eaAS(l _ e*O(KL:YA)
0<s<l 0<s<l

+e®EAGEX| +o’E Y AALL +o(e?). 2.7)

0<s<l
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3. Main results

The first main result gives the representation of /X in terms of the basic characteristics of
the process X and lower boundary A.

Theorem 3.1. Let {X;} be a Lévy process, and let 1K be the loss rate defined in (1.2). If
) K .
[77 yv(dy) = oo then IX = oo, otherwise

1
X 1 K E Ao o2
K =EXi{| ———— | xmk(dx)— +
K —EAg Jo (K —E Ag) 2(K —E Ag)

1 a K oo
3K —EAg) fo f f_ Ky, Dvy)TE (@0E(d),

where
—(x =22 —=2y(x—2) ify<-—-x-+z,

ok (x,v,2) = {2 if —x+z<y<K—x,

2y(K —x) — (K —x)? ify>K —x.

Proof. The first claim follows immediately if we note that, for | loo yv(dy) =oocand L > K,
we have

K e’} [ee)
sz/ nk(dx)/ (y—K+x>v(dy>z/ (v = K)v(dy) = co.
0 L L

The idea of the proof of the second part of the theorem is based on two steps.
Step 1: expand all the terms on the right-hand side of (2.7). For the first term on the right-
hand side of (2.7), we obtain

K 00
k(a) Be¥o' :/0 e‘”/ e 1yjy>1) v(dy)mk (dx)
—00

oo K o]
— / 1{y>2y v(dy) + a(@L — / x/ 1y=1 v(dy)nK(dx))
—00 0 —o0

s K o2 L 2
+a°| 6L xmg(dx) + > + ?v(dy)
0 —L

K x2 o0
—/0 7/ l{lyZL}V(dy)ﬂK(dx)) +o(@).

Similarly,
oo
aEX| =ab +a/ Y1y =y v(dy),
—0o0
()t2 Ko Ol2 K L )
—E D @ALH =—/ Tg(dx) | (= K +x)7v(dy),
2 O<s<l 2 Jo K—x
and

052 An aZ a K —x+z )
TE Y@L =7/0 f f_L (6 + v — 2Pv(dy)TE (@0E).

0<s<lI
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For x > 0, define v(x) = v((x, 00)) and, similarly, for x < 0, define v(x) = v((—o0, x)).
Then

A —L K a K
o = —a / () — / o (ov(—L) + a / / o ([dDEWDV(-L)
_ 0 0 z

o]

and
o0

_K o0
ae“Klj :a/ yv(dy)+a2K/ yv(dy)
L L

K
+ (@ + a2K>< / xmg (dx)V(L) — KU(L)> + o(a?).
0

We also obtain

22
aK oALK a”K7\ _
E 1— s)y=1{1 K L
e Z( e ) ( +ok +— )v( )

0<s<l

K o0
—/ e‘”/. e v(dy)g (dx) + o(a?)
0 L

and
E Y e(—e ) =E Y (1-e @) 4 o?E Y AALL +o(?),
0<s<l1 0<s<l1 0<s<lI
with
— K -L
E Z (1 —e 2Ly = y(—L) —/ e“”‘/ e*v(dy)mg (dx)
0<s<l1 0 -

a K —L
—i—/ az/ e‘“/ e v(dy)my, (dx)&(dz)
0 z —0

a K —L
- % / a?z? / e / e v(dy) s (dx)E(dz) + o(@?).
0 z —00

Step 2: let L — 00 and then let « |, 0. If we now rearrange all the terms of (2.7) using the
above identities and let L — oo (note that 8; — E X| as L — 00), we obtain

o’a?

K
a(l —e*® + aEAg)IX = —EXlozz/ Xk (dx) —
0

O[2 a K K—x
- 2u(dy)ms (dx)E(dz)
2 0 z —x+z Y V( Y K

2 pa pK poo
" a?fo f /K (v = K + 2y (x = K))v(dy)m () (dz)

Ot2 a K —X+z
+ 5 fo f / ((x — 2)* +2y(x — 2))v(dy)my (dx)E(dz)
+a?E AE X + o(a?).

The proof is completed by dividing both sides of the above equation by a(1 — e*X + « E Ag)
and sending « to 0.
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Assume now that there exists a y > 0 (y € ©) such that x(y) = 0, and define the new

probability measure
dp¥

— CVX’,
dP |,

for which we have EV X1 = «/(y) > 0 since, on P?, the process X is a Lévy process with
Laplace exponent k), () = «(a + y). We also need two passage times:

tzA(x) =inf{r > 0: X; > At_z + x}, t_, =inf{t > 0: X; < —z}.

Furthermore, let 7/ (x) = inf{r > 0: X, > A; + x}, where A; = [° A, &(dy), and let
BA(x) = X;4(y) — x. The second main result concerns the asymptotics of IX as K — oo.

Theorem 3.2. Assume that there existsay > 0 (y € ®) such that k(y) = 0 and k' (y) < .
Then there exists a random variable B2 (00) such that

lim EY e VB0 — gy ¢=7B"(00), (3.1)
X—> 00

Furthermore, there exists a finite constant D such that
K~ De 7K as K — oo,

where we write f(K) ~ g(K) when limg .~ f(K)/g(K) =1, and

D=-EX|C, +E e_VBA(OO)/
0

0
+ / O +y 1 —e))vy)

o o0
e’ PV (1-, = oo)/ (1 — e’ ™) u(dy)dx
X

00 anx —x+z
+ / / Pz (x) < o0) / (1 — e’ "=y (dy)g(dz) dx
0 0 —00

with
C, =Ee’.

Proof. The proof is based on the observation that

K 1 erKy~l y! C,EX,

eV
X = I I —
1+eVK—Cy2+ +eVK—Cy4 K _C,

1 s 3.2
L g—es (3.2)

3
K

4 c,
where

K o0
I = / (v — K + 0)v(dy)rg (dv),
0 K—x

a K —x+z
I = /0 0 (r + v — Dv(dy)d (doEdD),
K o0
L= / (1 — O KTy (dy)mk (dx),
0 K—x
a K —x+z
L= / = e”(xﬂ’*Z))v(dy)nIZ((dx)é(dz).
0 0 —00
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Indeed, note that from (2.2), taking « = y, we obtain

0=yCyld —ye’KiK 1 C,E Y (1 —e 72 1 erKE Y (1 - er2E),

0<s<I 0<s<I

where we have used the fact that E fol e?AsdL? = CyIA. Lete > 0. Wesplit ALK into A®LK
and K‘SLIK , corresponding to AX € [0, ¢] and AX; € (g, 00), respectively, and we split AL;‘1
into A°LA and A° LA, corresponding to AX, € [—¢, 0] and AX, € (—00, —¢), respectively.
Now we have

2
e’KE 3 (1 e = eVK<_y(zj’.< —15) - %E > (ASLSK)2> +o(e%),

0<s<1 0<s<l1

2
—yASLAY _ A FA 14 AN2 2
E § (I—e"25) =y _lj)_jE E (A°L)" +o(e7).

0<s<l 0=<s=<I

Thus,
0=yCld =y’ 1K+ C,E Y (1—e 78 M) 1 orKE Y (1 - D H
0<s<I 0<s<l
A _FA y? e7 A\2 vK. gk 7K y? er K\2
+yCy U =1) = S CE 3 (ALY —erKyaf —Tj) = T E 3 (AL
0<s<l 0<s<l

+ 0(82).
Using the fact that [4 = [X — E X, we have

(G = =y X1+ —y T~ T -t

0<s<l1
yK ngLK )/2 ey A2
—e’ E Y (1-e s)—i-?CyEZ(éLS)
0<s<l 0<s<l

2
14 2 2
+ 7E E (A°LEY? 1+ 0(e?).

0<s<l
If we send ¢ — 0, we obtain
lK(CV —e’Kyy = yC,EX|1 —yCyh — yerKn — Cyly — e’ K.

Now (3.2) follows by dividing by (C), — e’ K)y.

Note that /1 and I3 are the same as those in [2, Theorem 3.2], and that I; and I4 have only
an additional integral over & (dz), for which we should take x — z instead of x under the integral
signs. Thus, using the same arguments as in the proof of [2, Theorem 4.1] completes the proof,
once we prove weak convergence (3.1). To prove (3.1), we can use classical renewal arguments
applied to the process {X a(,y,), n € N} (by considering ladder height lines A, starting from
an invariant measure shifted by a from the previous position of the ladder process).

Example 3.1. For a stable M/M/1 queue, that is, for X; = ZlNz’l o; — t with {0;}{;>1) being
independent and identically exponentially distributed random variables with intensity p, and
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N; being a Poisson process with intensity A < w, we have v(dx) = pre ™  dx and P¥ (zZ, =

00) = 1 —e V¥, where y = u — A, since considering X on P? is equivalent to exchanging the
intensities of arrival and service processes. Moreover, choosing the saw-like lower boundary
given in (2.1) by the lack of memory of exponential distributions on P¥ we have B4 (oc0) =
e; — Y, where Y has uniform distribution £(dx) = dx/a (x € [0, a]) and e; is an exponential
random variable with intensity A. This gives

D= l(ea(;hk) _ 1)“__)”5.
a noow
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