Metabolic studies in rats of [⁷⁵Se]selenomethionine and of ⁷⁵Se incorporated in vivo into rabbit kidney

BY CHRISTINE D. THOMSON, R. D. H. STEWART AND MARION F. ROBINSON

Department of Nutrition and Department of Medicine, University of Otago, Dunedin, New Zealand

(Received 18 February 1974 – Accepted 28 March 1974)

1. [7⁵Se]selenomethionine was administered to four rabbits and after 4 d their kidneys were removed and homogenized. The long-term fate in rats of an oral dose of this kidney homogenate (RK-⁷⁵Se) was compared with that of an oral dose of [7⁵Se]selenomethionine mixed with unlabelled rabbit kidney homogenate.

2. Urinary and faecal radioactivities were measured during the 1st week and whole-body radioactivity was determined for 10 weeks. Rats were killed at weekly intervals for 4 weeks for analysis of tissue distribution of 75 Se.

3. Intestinal absorption of RK-⁷⁵Se was 87%; that of [⁷⁵Se]selenomethionine was 91%. Urinary excretion of absorbed RK-⁷⁵Se was 13.3% and that of [⁷⁶Se]selenomethionine was 7.6%, in the 1st week.

4. Whole-body retention of ⁷⁵Se was greater for [⁷⁵Se]selenomethionine than for RK-⁷⁵Se but after the 1st week decreased at a similar rate in both groups. Tissue distribution of retained ⁷⁵Se was also similar in both groups.

5. The initial utilization of ⁷⁵Se in rabbit kidney is different from that of [⁷⁵Se]selenomethionine. However, after the 1st week ⁷⁵Se from these sources appears to be metabolized similarly, suggesting that Se from both is ultimately incorporated into the same metabolic pool.

Selenium is known to be associated with proteins in biological materials and is generally believed to be incorporated into proteins as seleno-amino acids. Peterson & Butler (1962) gave evidence for the incorporation of Se into plant proteins, chiefly in the form of selenomethionine and selenocystine. However, although the importance of Se for adequate nutrition and metabolic function in animals has been well established, comparatively little is known about the form in which it exists in animal tissues. Cummins & Martin (1967) and Jenkins (1968) presented evidence to suggest that Se is present in animal tissues in forms other than seleno-amino acids. Since animal products make up a high proportion of the total food intake of New Zealanders, this subject is relevant to the over-all study of Se nutrition and metabolism in the human population of this country.

Furthermore, metabolic studies with Se in animals have previously been concerned mainly with selenite, selenate and selenomethionine. Thus little is known about the metabolism of Se as it occurs in animal foods. A previous study (Thomson & Stewart, 1973) compared the metabolism of oral and intravenous doses of [⁷⁵Se]selenite and [⁷⁵Se]selenomethionine administered in solution to rats. The present investigation compares the fate in rats of an oral dose of ⁷⁵Se incorporated in vivo into rabbit kidney with that of an oral dose of [⁷⁵Se]selenomethionine mixed with unlabelled rabbit kidney homogenate.

1975

EXPERIMENTAL

Procedure

A dose of $150 \ \mu$ Ci [⁷⁵Se]selenomethionine (Radiochemical Centre, Amersham, Bucks.), containing not more than $15 \ \mu$ g Se, was given to each of four rabbits by injection into an ear vein. The rabbits were killed after 4 d; all eight kidneys were homogenized together in 5 ml de-ionized water.

Female Wistar rats bred from the same colony and initially weighing 90–120 g were used for the metabolic study. They were maintained on tap-water and a pelleted stock diet containing 0.025 mg Se and 180 g available protein/kg. Each of the seventeen rats in one group received orally, by intragastric intubation when anaesthetized with diethyl ether, 2 ml homogenized labelled rabbit kidney (RK-⁷⁵Se) containing a known amount of ⁷⁵Se (approximately 2 μ Ci); a second group of seventeen rats received in the same way an equivalent amount of [⁷⁵Se]selenomethionine mixed with homogenized unlabelled rabbit kidney. Each dose contained 1.8 g kidney tissue and included not more than 4 μ g Se.

Collection of urine and faeces

Ten rats from each group were placed in metabolism cages for the separate collection of urine and faeces. These collections were completed at 24 h intervals for 7 d. Radioactivity in measured portions of each sample was determined in an automatic sample counting system (Autogamma; Searle Analytic Inc., 2000 Nuclear Drive, Des Plaines, Illinois, USA) with a ⁷⁵Se standard and the total amount in each 24 h urine or faecal sample was expressed as a percentage of the administered dose.

Whole-body counting

Measurements of whole-body radioactivity were made with a large volume counter constructed in the Department of Medical Physics, Wakari Hospital, Dunedin. The rats were lightly anaesthetized with diethyl ether and placed in an open 2 l plastic container to be counted for 100 while rotating six times/min between two uncollimated 50 mm diameter sodium iodide scintillation crystals connected in series through a pulse-height analyser to an IDL scaler (Isotope Development Ltd, Bath Rd, Beenham, Reading, Berks.) and timer (Series No. 7000). The counting efficiency of this system is approximately $1\cdot 2\%$. Radioactivity in each rat was counted in this way shortly after administration of the dose and this initial count (day 0) was used as the 100% reference value for subsequent measurements of that animal. All wholebody radioactivity measurements were corrected for radioactive decay and for any variation in counting efficiency by reference to a ⁷⁵Se standard counted at the same time. The radioactivity in five rats in each group not housed in metabolism cages was counted on days 1, 2 and 4, and radioactivity in all surviving rats was counted on day 7 and then at weekly intervals for 10 weeks.

n, excretion and retention of ⁷⁵ Se (as a percentage of the dose) by rats during the 1st week after oral of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled rabbit kidney	loses	
n, excretion and retention of ¹⁵ Se (as a percentage of the dose) by rats during the 1st week after of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled rabbit kidney	oral	
n, excretion and retention of ⁷⁵ Se (as a percentage of the dose) by rats during the 1st week , of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled rabbit kidney	after	
n, excretion and retention of ⁷⁵ Se (as a percentage of the dose) by rats during the 1st s of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled rabbit kidney	week .	
n, excretion and retention of ⁷⁵ Se (as a percentage of the dose) by rats during the of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled rabbit kidney	157 8	
n, excretion and retention of ⁷⁵ Se (as a percentage of the dose) by rats during t of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled rabbit kidn	he	ley.
n, excretion and retention of ¹⁵ Se (as a percentage of the dose) by rats duri of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled rabbit	ng 1	kidn
n, excretion and retention of ⁷⁵ Se (as a percentage of the dose) by rats of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelled ral	duri	bit
n, excretion and retention of ⁷⁵ Se (as a percentage of the dose) by 3 of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlabelle.	rats	d ral
n, excretion and retention of ¹⁵ Se (as a percentage of the dose) of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with unlab	by	elle
n, excretion and retention of ⁷⁵ Se (as a percentage of the de of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed with u	(əsc	nlab
n, excretion and retention of ⁷⁵ Se (as a percentage of th of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed wit	e de	m y
n, excretion and retention of ⁷⁵ Se (as a percentage o of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mixed	f th	wit
n, excretion and retention of ⁷⁵ Se (as a percenta, of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine mi	ge o	xed
n, excretion and retention of ⁷⁵ Se (as a perce of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine	nta	m
n, excretion and retention of ⁷⁵ Se (as a p of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethio	erce	nine
n, excretion and retention of ⁷⁵ Se (as of RK- ⁷⁵ Se and [⁷⁵ Se]selenome	a þ	thio
n, excretion and retention of ⁷⁵ Se of RK- ⁷⁵ Se and [⁷⁵ Se]selence	(as	ıəmc
n, excretion and retention of ¹¹ of RK- ⁷⁵ Se and [⁷⁵ Se]se	Se	len
n, excretion and retention of RK- ⁷⁵ Se and [⁷⁵ S	of 71	se]se
n, excretion and retent of RK- ⁷⁵ Se and	ion	[75.5
n, excretion and ret of RK- ⁷⁵ Se c	enti	pui
n, excretion and of RK- ⁷⁵ .	l rel	Sec
n, excretion of RK	anc	5
n, excret of	ion	RK
n, ev	ccrei	of
5	1, e)	
btio	btion	
luoso	Luose	
. Al	Al	
е I.	е I.	
Tabl	Tabl	

s)
rat
ten
for
errors
rd
standa
eir
ţ
with
values
(Mean

					Excretion			Reter	tion
Chemical form of dose		Intestinal absorption of ⁷⁵ Se	Urine	Unabsorbed faecal ⁷⁵ Se	Endogenous faecal 75Se†	Total faecal ⁷⁵ Se	Total excretion of ⁷⁵ Se	From excretion by difference	By whole-body counting
RK- ⁷⁵ Se	Mean SE	87:3 1:7	9.11 9.0	12·8 1·7	10.8 0.3	23.6 1.4	35'2 1'5	64·8 1·5	1.2 63.5
⁷⁵ Se]selenomethionine with homogenized rabbit kidney RK- ³	Mean SE 75Se, kidne	91-3 1-1 sy homogenate 1	6·9* o·4 from rabbits i	8.6 I.I njected with a do	11.6 0.7 se of [78Se]selenot	20:2 1:3 nethionine (se	27·1* 1·3 e p. 46).	72.9* 1:3	6.0 9.24

* Values for group receiving RK-⁷⁵Se were significantly different from those receiving [⁷⁵Se]selenomethionine (P < 0.001). † Calculated as the difference between total faccal ⁷⁵Se and unabsorbed faccal ⁷⁵Se.

1975

Fig. 1. Urinary excretion of ⁷⁵Se in two groups, each of ten rats, given oral doses of an homogenate of either ⁷⁵Se incorporated in vivo into rabbit kidney (see p. 46) (\bullet) or [⁷⁵Se]selenomethionine mixed with unlabelled rabbit kidney (\bigcirc).

Tissue retention

Three rats from each group were bled to death from the aorta on days 7 and 14, and also two rats from each group on days 21 and 28. The heart, lungs, spleen, liver, kidneys, adrenals and ovaries and portions of thigh muscle and of the shaft of the femur were removed and weighed. Blood was allowed to clot and the serum was separated from the erythrocytes. Radioactivity in these tissues was measured in the automatic well counter with a ⁷⁵Se standard. Radioactivity in whole organs was expressed as a percentage of the whole-body ⁷⁵Se for that animal at death and radioactivity in the tissues was expressed as a percentage of whole-body ⁷⁵Se/g wet weight of tissue.

RESULTS

Se balance during the 1st week

The intestinal absorption of the ⁷⁵Se tracer was calculated by plotting cumulative faecal excretion of ⁷⁵Se v. time (Lutwak, 1969). The straight line joining the last three points on the curve was extrapolated back to the zero-time intercept and this point was taken to represent the fraction of tracer not absorbed (Thomson & Stewart, 1973). Mean absorption of RK-⁷⁵Se was $87\cdot3\%$ of the dose administered and that of [⁷⁵Se]selenomethionine was 91\cdot3\% (Table 1).

Fig. 2. Faecal excretion of ⁷⁵Se in two groups, each of ten rats, given oral doses of an homogenate of either ⁷⁵Se incorporated in vivo into rabbit kidney (see p. 46) (\bullet) or [⁷⁵Se]selenomethionine mixed with unlabelled rabbit kidney (\bigcirc).

Urinary excretion of ⁷⁵Se during the 1st week is shown in Fig. 1. The rats given RK-⁷⁵Se excreted 8.4% of the administered dose in urine during the 1st day whereas those given [⁷⁵Se]selenomethionine excreted only 3.9% (P < 0.001). During the 2nd day urinary loss of ⁷⁵Se decreased to 0.7-0.8% of the dose and on day 7 it was 0.4% dose for both groups. There was no significant difference between total urinary excretion of ⁷⁵Se for days 2–7 in rats given RK-⁷⁵Se (3.2% dose, SE 0·1) and in those given [⁷⁵Se]selenomethionine (3.0% dose, SE 0·1). Cumulative urinary excretion at the end of the 1st week was 11.6\% of the dose for rats given RK-⁷⁵Se and 6.9% of the dose for those given [⁷⁵Se]selenomethionine (P < 0.001). This accounted for 13.3\% and 7.6\% of the absorbed radioactivity, respectively.

Faecal loss of ⁷⁵Se during the 1st week is shown in Fig. 2. Maximum faecal excretion occurred on day 1 and was greater (P < 0.05) in rats given RK-⁷⁵Se (9.8%) than in those given [⁷⁵Se]selenomethionine (6.2%). For the remainder of the week faecal loss was similar in both groups. Cumulative faecal loss at the end of the week was slightly greater for RK-⁷⁵Se (23.6%) than for [⁷⁵Se]selenomethionine (20.2%) but this difference was not significant (Table 1). Endogenous faecal loss of ⁷⁵Se during the 1st week was determined as the difference between total faecal ⁷⁵Se and unabsorbed

Fig. 3. Whole-body ⁷⁵Se in groups of rats given oral doses of an homogenate of either ⁷⁵Se incorporated in vivo into rabbit kidney (see p. 46) (\bullet) or [⁷⁵Se]selenomethionine mixed with unlabelled rabbit kidney (\bigcirc). Each point represents the mean value for all surviving rats in that group.

⁷⁵Se. For the groups given RK-⁷⁵Se, this amounted to 10.8% of the dose or 12.4% of absorbed radioactivity; for those given [⁷⁵Se]selenomethionine it was 11.6% of the dose or 12.7% of absorbed ⁷⁵Se.

Whole-body retention and turnover

Combined urinary and faecal excretion of tracer at the end of the 1st week was $35 \cdot 2 \, \%$ of the dose of RK-⁷⁵Se but only $27 \cdot 1 \, \%$ of the [⁷⁵Se]selenomethionine (P < 0.001, Table 1). Whole-body retentions of ⁷⁵Se measured by whole-body counting on day 7 agreed closely with retentions calculated from urinary and faecal excretion. Retention of RK-⁷⁵Se calculated from excretion measurements was $64.8 \, \%$ of the dose; that estimated from whole-body counting was $63.5 \, \%$. Retention values for [⁷⁵Se]selenomethionine calculated by the two methods were 72.9 and $72.6 \, \%$ respectively. When expressed as a percentage of the dose absorbed, retention of RK-⁷⁵Se calculated from excretion measurements was $74.2 \, \%$ and from whole-body counting was $72.7 \, \%$, and retention of [⁷⁵Se]selenomethionine was $79.8 \, \text{and} \, 79.5 \, \%$ respectively. There was no evidence of respiratory loss of ⁷⁵Se in these animals, judging by the close agreement between values for whole-body retention of ⁷⁵Se at the end of the 1st week obtained by whole-body counting and those derived by measurement of urinary and faecal loss.

Fig. 3 shows the mean whole-body ⁷⁵Se in the two groups during the 10-week period. Whole-body retention of ⁷⁵Se on days 1, 2 and 4 was 74, 68 and 64 % of the dose respectively for five rats given RK-⁷⁵Se and 91, 86 and 82 % for five rats given [⁷⁵Se]selenomethionine. Retention of RK-⁷⁵Se was less than that of

tined ⁷⁵ Se in tissues of rats during 4 weeks following oral doses of RK- ⁷⁵ Se and [⁷⁵ Se]selenomethionine	mixed with unlabelled rabbit kidney
Table 2. Distribution of retain	

Time after dose (weeks) I	-KK-	75Se		[75	se]selenomethion	ine + rabbit kidn	ey
Liver 8.4	6	3	4	I	10	3	4
Liver 8.5		% Whol	e-body ⁷⁵ Se/organ				
	6.5	6.5	5.3	8.4	5.9	6.4	5-6
Kidney 8.7	7.4	5.6	6.5	7.5	6.5	9.4	7-8
Heart 0.55	0.60	0.63	0.65	0.46	0.52	0.29	o.6o
Lung I'I	7. I	1.2	1.2	0.1	1.1	1.2	1.2
Spleen I.3	0.1	0.I	1.2	6.0	0.1	0.1	6.0
Adrenals o.22	0.35	0.43	64.0	61.0	0.28	0.41	0.52
Ovaries o·16	0.18	o.18	£z.o	6110	0.18	12.0	12.0
		% Whole-b	ody ⁷⁵ Se/g wet tissue	a.			
Erythrocytes o.74	0.72	0.76	06.0	69.0	0.70	<i>LL.</i> 0	00. I
Thigh muscle 0.37	0.34	0.33	0.33	0.44	0.46	0.46	0.48
Bone (shaft of the femur) I 100	0-81	19.0	0.57	0.83	0.74	04.0	0.62
Serum I.2	£.1	1.2	1.1	1:4	£.1	1.1	1.2

Vol. 33

⁷⁵Selenium metabolism in rats

CHRISTINE D. THOMSON AND OTHERS

[⁷⁵Se]selenomethionine at the end of the 1st week and this difference was maintained throughout the rest of the trial. Retentions of [⁷⁵Se]selenomethionine at the end of each week were greater (P < 0.001) than those of RK-⁷⁵Se. The whole-body retention curve for each experimental group was calculated from the observed whole-body radioactivity by fitting the sum of the two exponents using the method of least squares. The first of these exponential components which represented urinary and faecal loss during an initial equilibration period of 3 weeks, accounts for approximately 43 % of the dose in rats given RK-⁷⁵Se and it has a half-time of 5 d. For those given [⁷⁵Se]selenomethionine this exponent accounts for approximately 31% of the dose and has a half-time of 7 d. The half-times for the second exponential component, representing metabolism of retained Se were 55 d and 54 d for the two groups respectively. There was no significant difference between the slope-constants of this second exponent for each of the two groups.

Tissue distribution

⁷⁵Se concentrations were consistently higher in tissues of rats given [⁷⁵Se]selenomethionine than in those given RK-⁷⁵Se when expressed as a percentage of the administered dose, but as shown in Table 2, there was no consistent difference when tissue radioactivity was expressed as a percentage of ⁷⁵Se retained in the whole body.

Liver and kidney contained the greatest amount of radioactivity (Table 2). However, the highest concentrations of ⁷⁵Se were found in kidney (6·1 and 6·2% wholebody ⁷⁵Se/g on day 7 for RK-⁷⁵Se and [⁷⁵Se]selenomethionine respectively) and adrenals (4·5 and 5·0% whole-body ⁷⁵Se/g), whereas in liver the values were 1·1 and 1·3% whole-body ⁷⁵Se/g. Although the concentration of ⁷⁵Se in skeletal muscle was low (0·4% whole-body ⁷⁵Se/g on day 7), because this tissue comprises 43% of the total body-weight (Donaldson, 1924), approximately 25% of the retained ⁷⁵Se was contained within this tissue.

DISCUSSION

Kidney tissue was chosen for this study of the metabolism of dietary Se as derived from animal foods because the highest concentration of radioactivity was found in the kidney 4 d after administration of ⁷⁵Se to rats (Thomson & Stewart, 1973). Furthermore, Millar (1972) had shown by gel filtration that although the distribution of ⁷⁵Se in soluble kidney proteins changed during the first 3 d, after this time most of the radioactivity was associated with a single main protein peak.

The initial utilization of RK-⁷⁵Se by the rats differed from that of [⁷⁵Se]selenomethionine in two significant respects. First, ⁷⁵Se derived from RK-⁷⁵Se was less well absorbed from the intestine than that from [⁷⁵Se]selenomethionine. It appears that the kidney homogenate itself might have impeded the absorption of ⁷⁵Se, as in the present study absorption of [⁷⁵Se]selenomethionine given with homogenized kidney (91 %) was less than the absorption of [⁷⁵Se]selenomethionine given alone (95 %) under the same conditions in an earlier study (Thomson & Stewart, 1973). However, as the same amount of kidney tissue was given to all rats in the present study, this factor could not in itself account for the observed difference between the two groups

Vol. 33 ⁷⁵Selenium metabolism in rats

and the results suggest the effect of some chemical difference in the administered ⁷⁵Se doses. Thus, for example, if the radioactivity of RK-⁷⁵Se were present as selenomethionine taking the place of methionine in the tissue proteins, incomplete digestion of these proteins could have caused the lesser absorption of ⁷⁵Se. Alternatively the observed difference could have resulted if the digestion of RK-⁷⁵Se released not [⁷⁵Se]selenomethionine but another radioactive compound such as [⁷⁵Se]selenite. In this respect it is noteworthy that in a previous study the intestinal absorption of [⁷⁵Se]selenite was also 4 % less than that of [⁷⁵Se]selenomethionine (Thomson & Stewart, 1973).

Secondly, urinary loss of absorbed ⁷⁵Se derived from RK-⁷⁵Se was greater than that from [⁷⁵Se]selenomethionine. In this respect also the early metabolism of RK-⁷⁵Se by the rats resembled that of [⁷⁵Se]selenite rather than that of [⁷⁵Se]selenomethionine. Whole-body retention of absorbed RK-⁷⁵Se at 7 d was 73-74% and in the previous study retention of absorbed [⁷⁵Se]selenite was 72-73% (Thomson & Stewart, 1973). On the other hand, whole-body retention of absorbed [⁷⁵Se]selenomethionine given with kidney homogenate was 80% compared with a retention of 80-84% [⁷⁵Se]selenomethionine administered alone in the earlier study.

However, after the initial period of equilibration, the metabolism of 75 Se was similar in both groups of rats studied. Thus on days 6 and 7, urinary loss of radioactivity was the same for both groups as was both endogenous faecal 75 Se in the 1st week and the distribution after 7 d of retained 75 Se between the various tissues studied. Moreover the long-term, whole-body turnover of 75 Se was the same in both groups with half-times of 54–55 d, and this compared with half-times of 50– 59 d previously found for oral or intravenous administration of [75 Se]selenite or [75 Se]selenomethionine (Thomson & Stewart, 1973).

It appears that Se from inorganic sources is not, as thought earlier, incorporated into animal tissue proteins as the Se analogues of sulphur amino acids but might be bound between the S atoms of disulphide bonds to form -S-Se-S- bonds (Jenkins, 1968). Se released from such bonding by alkaline dialysis was present as selenite (Cummins & Martin, 1967) or selenite and elemental Se (Jenkins, 1968). The evidence from our study that the initial metabolism by rats of RK-⁷⁵Se differs from that of [⁷⁵Se]selenomethionine suggests that Se from organic sources, also, may not be incorporated in rabbit kidney protein as the Se analogue of S amino acids. Our results would be consistent with the release by digestion of [⁷⁵Se]selenite from the labelled kidney homogenate in the gastrointestinal tract of the rats. However after 7 d, ⁷⁵Se from both RK-⁷⁵Se and [⁷⁵Se]selenomethionine is metabolized similarly, suggesting that Se from both sources is ultimately incorporated into the same metabolic pool.

This work was supported by the Medical Research Council of New Zealand and by the Golden Kiwi Medical Research Distribution Committee of New Zealand.

REFERENCES

Cummins, L. M. & Martin, J. L. (1967). Biochemistry, Easton 6, 3162.

- Donaldson, H. H. (1924). The Rat: Data and Reference Tables 2nd ed., p. 185. Philadelphia: The Wistar Institute of Anatomy and Biology.
- Jenkins, K. J. (1968). Can. J. Biochem. 46, 1417.

- Jutwak, I. (1969). Am. J. clin. Nutr. 22, 771.
 Millar, K. R. (1972). N.Z. Jl agric. Res. 15, 547.
 Peterson, P. J. & Butler, G. W. (1962). Aust. J. biol. Sci., 15, 126.
 Thomson, C. D. & Stewart, R. D. H. (1973). Br. J. Nutr. 30, 139.

1975

Printed in Great Britain