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Introduction

This paper is concerned with two main problems:
(a) the determination of the conjugacy classes in the finite-dimensional

unitary, symplectic and orthogonal groups over division rings or fields;
(b) the determination of the equivalence classes of non-degenerate sesquilinear

forms on finite-dimensional vector spaces.
To "solve" these problems means to reduce them to standard problems of

linear algebra such as the similarity of matrices and the equivalence of
Hermitian or quadratic forms.

The matrix formulation of (b) is as follows:
(b)' to find the conditions that two non-singular matrices A, B be "con-

gruent", i.e. that B = T* AT for some matrix T, where * is an operation of
the conjugate transpose type.
Now, if the characteristic of the coefficient domain is not 2, we may split
A, B into their "Hermitian" and "skew-Hermitian" components:

A ' = \{A + A * ) , A " = \{A - A * ) , B ' = ---;

and then the single equation B = T* AT is replaced by the pair of equations
B' = T*A'T, B" = T*A"T. Thus problem (b) is substantially equivalent
to the classification problem for non-singular pairs of forms (/, g), f Herm-
itian, g skew-Hermitian. For earlier work on problem (b) in this form, see
Trott ([10]), Ingraham and Wegner ([4]), Turnbull ([11]).

The decisive contributions to the present subject were made by J. William-
son, who solved the conjugacy problem over perfect fields of characteristic
not 2 ([17], [18]) and the equivalence problem over arbitrary fields of
characteristic not 2 ([14], [15], [19]). T. A. Springer ([9]) later determined
the conjugacy classes, and the centralizers of the elements, in symplectic
groups over arbitrary fields of characteristic not 2. See also Venkatachalien-
gar ([12]), Klingenberg ([7]), Zassenhaus ([20]) and a forthcoming paper by
V. Ennola ([21]). A general survey is given in Pickert's encyclopedia article
[8]-
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In the present paper, Williamson's work is coordinated and extended.
Firstly, I show that there is a quite simple reduction of the conjugacy
problem to the equivalence problem (§ 1). With each element of a classical
group is associated a non-degenerate sesquilinear form (§ 1.1) and two ele-
ments are conjugate if, and only if, their sesquilinear forms are equivalent
(thm. 1.3.1). This association of a sesquilinear form with a group element
generalizes the classical Cayley parametrization in orthogonal groups.

Secondly, I clarify and extend Williamson's matrix methods for the
equivalence problem by putting them in a structural setting (§ 2). Let D
be a division ring with an involutory anti-automorphism / , f(x, y) a non-
degenerate sesquilinear form over D. The multiplier of / is the non-singular
linear transformation P defined by f(y, x)J = f(x, yP). Let <€ denote the
ring of linear transformations which commute with P. The adjoint X^ of a
linear transformation X with respect to / is defined by f(xX, y) — f(x, yX^).
The adjoint mapping X-> X^ (X e <&) is an involutory anti-automorphism
of ^ . In the equivalence problem we may, without loss of generality, sup-
pose that all forms have the one fixed multiplier P. Let ft(x, y) = f(x, yQ{)
(i = 1, 2) be two such forms, represented with respect to the fixed standard
form / by the linear transformations Qt. Then Qx, Q2 are non-singular,
f-symmetric (<?< = Q\) elements of %> and fx, /2 are equivalent if, and only if,
Qx, Q2 are f-congruent in <€ (Q2 = XQtX^ for some I e ^ ) . This preliminary
reduction of the equivalence problem is perfectly elementary and depends
only on simple calculations with forms or matrices (§ 2.1).

Now let JV be the radical of eS. The factor ring ^f^V is a direct sum of
total matrix algebras over certain division rings. The canonical mapping
X -+X + JV carries the anti-automorphism f over to ^j^V and the problem
of f-congruence in ^[JT in fact reduces to the problem of congruence of
Hermitian matrices over division rings. In our formulation, Williamson's
central result is that the following Approximation theorem holds whenever D
is a field of characteristic not 2:

two non-singular, ^-symmetric elements of & are ^-congruent in *€ if, and
only if, their canonical images in 'gjjV are ̂ -congruent in ^{JT (thm. 2.2.1).
Clearly, when the Approximation theorem holds, the equivalence class of a
non-degenerate sesquilinear form is determined by the similarity class of its
multiplier and the equivalence classes of the Hermitian matrices which arise
from the f-congruence problem in Wf^V'.

The Approximation theorem certainly holds when either (a) the charac-
teristic of D is not 2 or (b) the restriction of / to the centre of D is not the
identity or (c) I — P is non-singular (lemma 2.2.1, corr.). Thus, e.g., the
essential features of Williamson's theory hold in the finite unitary groups
U(n, 22a), though not in the finite symplectic or orthogonal groups
Sp(2m, 2"),O(n,2a).
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In § 3,1 examine the exceptional case where D is a field of characteristic 2,
/ is the identity and P has characteristic polynomial (1 — t)k. A weak form
of the Approximation theorem (in which JT is replaced by a smaller ideal)
gives some reduction of the problem, though the resulting system of equations
is still formidable. A complete solution is obtained when D satisfies the
hypothesis:

every ternary quadratic form x2 + xy + Ay2 + /JLZ2 (A, ft e D) represents
zero non-trivially.
This hypothesis certainly holds when D is perfect or when every quadratic
extension of D is inseparable. Thus, e.g., the theory can be applied to the
symplectic and orthogonal groups over GF(2a).

In §§ 2.6, 3.7, I determine the total number of conjugacy classes, and the
individual class orders, in the finite groups U(n,q2), Sp(2m,q), O(n,q).
This is a necessary first step in the more difficult problem of their matrix
representations.

0.1 Notation. D denotes a division ring with a fixed involutory anti-
automorphism J. Thus (a + fi)J = a.J + fiJ', (a/3)-7 = pJxJ, a"7' = a for all
a, /3 e D. We remark that if / is the identity D must be a field, for then
a/3 = (a/3)̂  = (3J<x.J = /3a whenever a, ft e D. The element a e D is called
symmetric if xJ = a, skew if aJ = — a. The elements of D are usually called
scalars and denoted by lower case Greek letters.

p (= 0 or a prime) is the characteristic of D. Z is the centre of D. D[t], Z[t]
denote the rings of polynomials in an indeterminate t over D, Z respectively.
<f>(t) e D[t] is called monic if the coefficient of the highest power of t is 1.

If <£(*)= 2 <M'« we define ^ ( 0 = 2 af'*•
All vector spaces considered are left vector spaces over D. Linear trans-

formations are regarded as right multipliers. Thus, if A is a scalar, v a vector
and T a linear transformation, we write ,^, vT. Composition of linear trans-
formations is defined by v(T1T2) = (vT^T^. If T is a linear transformation
and <f>(t) = '£xit

i e Z[t], then the linear transformation <f>(T) is defined,
as usual, by v<j>{T) = '£«.i(vTi). The commutator ring, ^(T), of T is the
ring formed by the linear transformations which commute with T.

Suppose that V is a vector space over D (of finite or infinite dimension).
A sesquilinear form on V (strictly: /-sesquilinear form on V) is a mapping
/ : F x V -> D such that f{u,v) is linear in u for each fixed v and anti-
linear in v for each fixed u, i.e.,

/(*!«! + A2w2, v) = Xxf{ux, v) + A2/(«2l v),
/(«, pxv + (j,2v) = f(u, vj/jf + f{u, v2)/4,

for all u, v, uit v{ e V and A,, nt e D. f is called non-degenerate ii f{u,v) = 0
for all v implies u = 0 and f(u, v) = 0 for all u implies v = 0; otherwise /
is degenerate. / is called Hermitian (strictly: /-Hermitian) if f(u, v) — f(v, u)J
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for all u, v, skew-Hermitian if f(u, v) = — f(v, u)J for all u, v. Let flf /2 be
sesquilinear forms on vector spaces Vl3 F2. Then flt f2 are said to be equi-
valent if there exists a linear isomorphism T : Fx -> F2 (i.e., 1 — 1 linear
mapping of Vx onto F2) such that f2{uT, vT) = ^(M, W) for all u, v e V.
If fx, /2 are equivalent, we write /x ^ /2 •

Let Si = (to,,) be a matrix over D. The transpose and conjugate transpose
of Si are denoted by SiT, Si* respectively: SiT = (a>jt), Si* = (<y£). If
square matrices fl1, 422 are similar we write Si1 ~ fi2; the same notation is
used for linear transformations. Two square matrices Silt Si2 are called
/-congruent if Si2 = TSix T* for some non-singular T.

Matrix notation is introduced as follows. Suppose that the vector space V
is finite-dimensional with basis elt • • •, en. Then x = 2^<e« « F is represented
by the row vector x = (fj), a linear transformation T on V by the square
matrix T = (TW), where e(T = 2 T « e * (* = 1. ' • • » ) , and a sesquilinear
form / on F by the square matrix ^ = (̂ >w), where <f>iS = f(e{, et) (i, j =
!,-••• n). With these conventions, xT is represented by xT, 7\T2 by 7\T2

and f(x, y) = x<Py*. Forms fx,f2 are equivalent if, and only if, their matrices
<&1(4>2 are /-congruent.

0.2. Direct decompositions. Let V be a vector space over D, T a. linear
transformation on V. Let

F = vx e • • • e vk

be a direct sum decomposition of V. If each Vi is invariant under T, we
write

(0.2.1) T=T1®---@Tk,

where 7\ is the restriction of T to F,- (i = 1, • • • &). (0.2.1) is called a direct
decomposition of T.

Suppose now that V is finite-dimensional. Let <f>(t) be a non-constant ele-
ment of Z[t]. Then there exists a unique Fitting decomposition

V^V.eV^ T = T0@Tlt

where <£(7\) is nilpotent and <j}(T0) non-singular. Fo, V1 are respectively the
image- and null-spaces of (f>(T)r for sufficiently large r.

More generally, let 4>x(t), • • •, <f>s(t) be non-constant elements of Z[t]
such that ^((t), <f>j(t) are relatively prime whenever i ^ j . Then there is a
unique Fitting decomposition:

V = F o © • • • ®VS, T = TO@---®TS>

where, for i = 1, • • • s, ^ ^ r j is nilpotent and <k(r}.) (/ ^ t) non-singular.
Let S e f (I). Because of the uniqueness of the Fitting decomposition,

5 = So © • • • © Ss> where St e ̂ (TJ (* = 0, • • • s).
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0.3. Linear transformations of commutative type. Let V be a finite-dimen-
sional space over D, T a linear transformation on V. Let <f>(t) be an element
of Z[t] which is irreducible qua element of D[t] (e.g., <f>(t) = t — a, a e Z).
Then T is called <f>-rml if (f>(T) is nilpotent. The term <£-nul will only be used
when </>(t) satisfies the conditions above. T is said to be of commutative
type if it is <£-nul for some <j>.

For a <£-nul linear transformation T, the theory of elementary divisors
holds in its customary form. The matrix T of T with respect to a suitable
basis has coefficients in Z and the reduction of T to the direct sum of the
companion matrices of its elementary divisors gives rise to a splitting of T
into indecomposable parts (see Jacobson [6], Ch. 3, §§ 9—10). In view of the
Fitting decomposition, we may speak of the multiplicity of <f>' as elementary
divisor of an arbitrary linear transformation S on V.

Suppose now that T is indecomposable and c/>-nul, say with minimum
polynomial (ft'. Then there is a vector u such that u, uT, • • •, uTn~x form a
basis of V. If g(t) = 2 <M* e D\f\> w e m a y define the linear transformation
g(T) by

(0.3.1) (l^uT')g(T) = 2 l

(The definition of g(T) depends on the choice of u unless g(t) e Z[t].) The
g(T) form a subring D[T] of the commutator ring ^(T). On the other hand,
an element S of #(T) is uniquely determined by uS, which has the form
ug(T) for some g. Hence D[T] = <tf(T). It is easy to see that Z[T] is the
centre of V(T). We have <#{T) ~ D[t]l<f>(t)<D[t], Z[T] ~ Z[t]l<f>(tyZ[t].
The only ideals (left or right) of <tf[T) are the 2-sided ideals ^{T)(t>{T)*
(i = 0, 1, • • • e). The only subspaces of V invariant under T are the sub-
spaces V<f>{T)*(i = 0, 1, • • • e).

We remark that the division ring D[t]l<j>(t)D[t] can be identified with the
ring of polynomials over D in a quantity T which commutes with the elements
of D and satisfies <£(T) = 0. We say that this ring is obtained by adjoining a
root of <j)(t) to D.

1. Conjugacy

1.1 Parametrization. Let V be a left vector space over D, of finite or
infinite dimension, and F(x,y)=x-y a non-degenerate Hermitian or
skew-Hermitian form on V. Thus (y • x)J = e(x • y), where e = ± 1.

Let M,NCV. We say that M is F-perpendiculartoN (notation: M ±N)
if x • y = 0 whenever xeM.y eN. The subspace M x = {x\M ±x,xeV}
is the F'-perpendicular space of M. If W is a subspace of V, the subspace
WP = W n W± is called the radical of W.

Let W1, W2 be subspaces of V. A linear isomorphism X : W1 -> W2 is
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called an isometry of Wx onto W2 if

xX • yX = x • y for all x, y e Wx.

The isometries of V onto itself form the unitary group U(F) of F. This
formulation includes the symplectic and unitary groups as usually defined
and the orthogonal groups over fields of characteristic not 2. The orthogonal
groups over fields of characteristic 2 are treated separately in § 1.5. In this
section we obtain a parametrization for the elements of U(F) (cf. [13]).

Let X e U = U(F). Write X = 7 — T, where / is the identity mapping.
Then the subspace VT is called the space of X and denoted by Vx- The
dimension of X is defined to be the dimension of Vx- It is easily verified that
the finite-dimensional elements of U(F) form a normal subgroup U^(F).

In terms of T, the equation of invariance xX • yX = x • y becomes

(1.1.1) x-yT + xT-y = xT-yT.

(1.1.1) shows that the scalar x-yT is determined by the vectors xT, yT
alone; therefore the equation

(1.1.2) (xT,yT)=x-yT

uniquely defines a function (u, v) of the variables u, v in Vx- («, v) is called
the form of X and denoted by Fx- By (1.1.1),

(1.1.3) (u, V) + s(v, u)J — u • v.

Since X'1 = I + X~XT = I + TX'1, we have Vx-i = VX- Let [«, v]
denote the form of X~x. Then, by definition,

x • yT = - [xZ-1 T, yT], y xX'1 T = {yT, xX'1 T),

and, by (1.1.1),

- (x • yT) = xT-yX = xX^T • y = e(y • xX^Tf,
so that

(1.1.4) [«, v] = e{v, u)J.

LEMMA 1.1.1. Fx is a non-degenerate sesquilinear form.

PROOF. This means that
(a) the mappings w -> (u, v) and u ->- (v, u)J = e[u, v] of Vx into D are

linear for each veVx, and
(b) if («, v) = 0 for all u e Vx, or if (v, u) = e[u, v]J = 0 for all u e Vx,

then v = 0.
(a) is obvious from (1.1.2). (b) follows from (1.1.2) and the non-degeneracy

of F.

COROLLARY. VX is the null-s^ace of I — X.
This follows from the lemma and (1.1.2).
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LEMMA 1.1.2. X is uniquely determined by Vx and Fx-

PROOF. Suppose that X = I — T and Y = I — S both have the same
space W and form (u, v) Then

x • w = (xT, w) = (xS, w)

for all x € V, we W. Since (u, v) is non-degenerate, xT = xS for all x e V,
i.e. T = S. Hence X = Y, Q.E.D

We consider the families

L = {lv\veVx}, R={rv\veVx], K={kx\xeV),

where /„, rv, kx are the following linear functions on Vx'-

lv(u) = (u, v), rv(u) = [u, v], kx(u) = u • x.

LEMMA 1.1.3. L = R = K.

PROOF. The equation [v, xT] = v • x is an easy consequence of (1.1.2),
(1.1.4). Hence R = K and similarly L = K.

THEOREM 1.1.1. Let W be a subspace of V, (u,v)' a non-degenerate ses-
quilinear form on W satisfying

(1.1.3)' (w, v)' + e(v, u)'J = u • v

for allu.ve W. Suppose further that L' = R' = K', where

L'=*{l'.\v*W), R' = {r'v\veW}, K' = {k'x\x e V},
l'Aw) = (^. VY. r'vi™) = e("» ze')'</. Kiw) =w* (w « ^ ) -

TAe« FJC = W, Fx = («, v)' for a unique X e U(F).

PROOF. Since R' = K', and since F and (u, v)' are non-degenerate, there
is a unique linear mapping T :V ->V with VT = W such that

(xT,v)' = x-v for all a; e F , v e W.

Similarly, there is a unique linear mapping S :V ->V with VS = W such that

{u,yS)' = u-y for all ueW.yeV.

Let X — I — T, Y = I — S. We prove the theorem by showing that X and
Y are mutually inverse elements of U.

Using (1.1.3)', we get

-e{v, xT)'J = xX-v = e(v xX)J = e{v, xXS)'J.

Since (u, v)' is non-degenerate, it follows that — xT = xXS and so — T — XS.
Thus XY =1 and similarly YX = / . Putting u = xT,v = yT in (1.1.3)',
we get xX • yX = x • y so that X eU. This completes the proof.

Theorem 1.1.1 simplifies when the dimension of W is finite.
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THEOREM 1.1.2. Let W be a finite-dimensional subs-pace of V, (u, v)' a
non-degenerate sesquilinear form on W satisfying (1.1.3)'. Let Si — (a>{j) be
the matrix of (u, v)' with respect to a basis elt • • •, eT of W and let 0 = (di})
be the inverse of Si. Then the linear mapping

(1.1.5)

is an element of U such that Vx = W, Fx = (u, v)'.

PROOF. Since W is finite-dimensional and (u, v)' non-degenerate, each
of the families L', R', K' coincides with the dual space of W. Hence there is a
unique XeU such that Vx = W,FX = (u, v)'. Let X = I - T, xT = £ V*.
Then

x • e} = (xT, e,)' = £ h<°u (1 = 1> " " " r)
and so

h = 1 (* • «*)0« (7 = 1, ' • • r)
as required.

We note that the matrix formulation of (1.1.3)' is

(1.1.6) Si + eSi* = 4>,

where Si* is the conjugate transpose (<»^)r of Si and 0 the matrix of the
restriction of F to W.

EXAMPLE. Let U be the «-dimensional orthogonal group in the classical
Euclidean sense. Let W = V and let ex, • • • en be an orthonormal basis of V.
(1.1.6) becomes Si + SiT — I. The general non-singular solution is
Si = \{I + S), where S is skew-symmetric. By (1.1.5), the matrix of X
is X = (S — I) (S + I)-1. This is the Cayley paramatrization for the
"non-exceptional" elements of U.

1.2 Witt's theorem. This deals with the extension of isometries X : W1 ->
W2 to isometries Y :V -> F, i.e. to elements of U. The present account is
rather more general than that of Dieudonn6 ([2]).

If x e V then (x • x)J = s(x • x). We call x trace-valued if x • x = X + &J

for some X e D.

LEMMA 1.2.1. The trace-valued vectors form a subspace VT. If p ^ 2,

PROOF. Let x, y e Vr, so that x • x = A + sXJ, y • y = fi + efj,J. Then
(ax + 0y) • (ax + 0y) = p + epJ, where p = ala.J + P(ifiJ + <x(z • «/)/3J. Hence
VT is a subspace. If x e V and p # 2, then a; • a; = |(a; • x) + f(£(a; • a;))-7;
hence F = FT.

LEMMA 1.2.2. / / X e U, Vx C F ' .
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This follows from (1.1.3).

COROLLARY. If X eU, X leaves the spaces VjVr and (FT)X pointwise
invariant.

This follows from the lemma and lemma 1.1.1, cor.

THEOREM 1.2.1. (Witt). Let Wlt W2 be finite-dimensional subspaces ofVT

such that Wt n (FT)X = W% n (FT)X = {0}. Then every isometry X of Wx

onto W% can be extended to an element of U^(F).

PROOF. The theorem is trivial when the dimension, r, of Wx, W2 is 0.
Suppose that r > 0 and that the theorem holds for lower dimensions. Let
elt ••• er form a basis of Wx. Then f1, ••*,/,, where /,• = etX, form a basis of
W2. By the induction hypothesis, and since each element of U leaves VT

and (FT)X invariant, we may assume that et — ft for * = 1, • • •, r — 1.
Then, since X is an isometry, we have

(1.2.1) e - c + e(e- c)J — c - c, e t - c = 0 (i = 1, • • -, r — 1)

where
e = er, c = eT — fr.

We may of course assume that c =£ 0. Since Wx n (FT)X = W2 n (FT)X =
{0}, each of the sets elt • • • eT_x, e and ex, • • •, eT_1, e — c is linearly inde-
pendent modulo (VT)X.

If e • c # 0, the 1-dimensional element

xY = x — (x • c)(e • c)~xc

of U extends X.
Suppose next that e • c = 0. We seek a 2-dimensional element Z of U

which extends X. Choose a vector d e VT such that

(1.2.2) e t ' d = 0 { i = l , - - - , r — l ) , e - d = l , c - d ^ l .

Since elt • • • er_lt e and c (= e — fT) are in VT by hypothesis, such a choice
is possible when ex, • • • eT_1, e, c axe linearly independent modulo (FT)X.
In the contrary case, since elt' • • er_x, e and elt • • • er_x, e — c are linearly
independent sets modulo (FT)X, we have a relation

where A ^ 1. Then, choosing deVT such that the first r equations in (1.2.2)
hold, we have c • d = X ^ 1 as required.

Since d e VT, d • d = a + exJ for some a e D. Since e • c = 0 and e • d •— 1,
c and d are linearly independent. Let W be the subspace with basis c, d.
Then it is easily verified that the following conditions define an element
Z of U which extends X:
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F z = W,
Fz(c, c) = 0, Fz(c, d) = 1,
Fz{d,c) = e((c-d)J- 1), Fz{d,d) = ot.

This proves the theorem.

DEFINITION. F is called trace-valued if VT = V.

COROLLARY. If F is trace-valued, every isometry of finite-dimensional
subs-paces of V can he extended to an element of U<l,(F).

It is easily seen that F is trace-valued if, and only if, its matrix has the
form Si + eSi* for some matrix Si. If p ^ 2, every F is trace-valued by
lemma 1.2.1. If p = 2 and / is the identity, F is trace-valued if, and only if,
it is an alternate form, i.e. x • x = 0 for all x.

1.3 Conjugacy.
LEMMA 1.3.1. Let X, Y be conjugate elements of U(F) ; Y = Z^XZ,

where Z eU{F). Then VY = VXZ and FY(uZ, vZ) = Fx(u, v) for all u,

PROOF. Let X = / - T. Then Y = / - Z'1 TZ and so Vy = VZ^ TZ =

VXZ. Also

FY{xTZ, yTZ) = xZ • yTZ = x • yT = Fx{xT, yT),

which gives the second part of the lemma.

COROLLARY 1. Conjugate elements of U have equivalent forms.

COROLLARY 2. Let X, Z eU. Then XZ = ZX if, and only if, Z leaves
Vx and Fx invariant. In particular, XZ = ZX if Vx, Vz are F-perpendi-
cular.

The following theorem reduces the conjugacy problem in finite-dimensio-
nal, trace-valued classical groups to the equivalence problem for finite-
dimensional, non-degenerate sesquilinear forms.

THEOREM 1.3.1. Let X, YeU^F) and suppose that Vx n {V^ =
VY n (F'-)J-= {0}. Then X, Y are conjugate in U^F) (or U(F)) if {and
only if) Fx, Fy are equivalent forms.

PROOF. By hypothesis, there is a linear isomorphism Z of Vx onto Vy
such that Fy(uZ, vZ) = Fx{u, v) for all u, v e Vx- By (1.1.3), Z is an iso-
metry. Hence, by Witt's theorem, Z can be extended to an element Z of
Uj. Then Y, Z~XXZ have the same space and form, so that Y = Z~XXZ.
This proves the theorem.

COROLLARY. Let F be trace-valued. Then two elements of U$ are conjugate in
Uf (or U) if, and only if, their forms are equivalent.

1.4 Direct Sums and Products. We consider the direct and semi-direct
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decompositions of Fx and their relation to the group-theoretical properties
of X. We write V x = W, Fx = / and assume throughout that the dimen-
sion, m, of W is finite.

Let M, N C W. We say that M is f-perpendicular to N (notation: McoN)
if (x, y) = 0 whenever x e M, y eN. The relation MouN is in general not
symmetric. The subspaces

Ma = {x\Ma>x, x e W), aM = {x\xcoM, x e W),

are called the right and left f-perpendicular spaces of M respectively.
Let

(1.4.1) W = Wx ® • • • 0 Wk

be a direct decomposition of the vector space W. If WjwWf whenever
1 5S i < i' ^ k, we write

(1.4-2) / = /i + /, + • • • + / * ,

where /{ is the restriction fw. of / to Wt. We call (1.4.2) a semi-direct sum
and say that each /,• is a semi-direct summand of /. Notice that the addition
in (1.4.2) is not in general commutative. If Wi<nWj whenever * =£ j , we write

(i.4.3) / = /i e /, + ••• e /*.

We call (1.4.3) a direct sum and say that each ft is a direct summand of /.
In this case

W^ = "Wi = W1®'-'® Wt_x 0 Wi+l ©•••®Wlc

for each i, and it follows from (1.1.3) that (1.4.1) is an F-ferpendicular
decomposition, i.e. Wt J_ Wt whenever i =fi j .

Choose a basis of W adapted to the direct decomposition (1.4.1). If
(1.4.2) or (1.4.3) holds, the matrix of / has the form

'flu flu • • fl»\ / ^ n 0 •••
0 ii22 •• • Qn\ o r I 0 flM •••

0 0 • • • QkJ \ 0 0 • • •

and conversely. Clearly, iii( is the matrix of ft and ft is non-degenerate.

LEMMA 1.4.1. Let M be a subspace of W. Then fM (the restriction of f to M)
is a semi-direct summand of f if (and only if) it is non-degenerate.

PROOF. Since fM is non-degenerate, M n mM = {0} and therefore
W = M ® »M. Hence f = fM + U«M), Q-E.D.

In order to have an analogous criterion for direct summands, we introduce
the multiplier of /. This is defined to be the (non-singular) linear transforma-
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tion P on W such that

(1.4.4) (y, x)J = (x, yP) for all x, y e W.

In terms of the matrices Si, P of /, P:

(1.4.4)' P = iiii*-1.

We shall also refer to P as the multiplier of X and write P = Px-
It follows easily from (1.4.4) that

(1.4.5) (x<f>(P),y) = (x,y<l>J(P^))

when 4>{t) e Z[t] (Z the centre of D).

LEMMA 1.4.2. Let M be a subspace of W. Then aM = Ma if, and only if,
M is invariant under P.

PROOF. By (1.4.5), M<0 = a(MP). On the other hand, since M is a sub-
space the relation UM = a(MP) is equivalent to the relation M = MP.

LEMMA 1.4.3. Let M be a subspace of W. Then fM is a direct summand of f if,
and only if, fM is non-degenerate and M is invariant under P.

PROOF. If fM is a direct summand it is a semi-direct summand and
aM = M". By the previous lemmas, fM is non-degenerate and M is invariant
under P. Conversely, if these conditions hold then aM = Mm by lemma
1.4.2, so that the sum / = fM + f^u) m lemma 1.4.1 is direct.

THEOREM 1.4.1. Let (1.4.1), (1.4.2) hold. Then

(1-4.6) X = XtX2 •••Xk,

where Xf is the element of U such that VXi = Wit Fx{ = /< (»' = 1, • • • A).
(1.4.3) holds if, and only if, XiXj = X,Xt for all i, j .

PROOF. The first statement was proved in [13]. The second follows imme-
diately from the fact that (1.4.3) holds if, and only if, / = /t i H + fik

for every permutation i1, • • • ik of 1, • • • k.
We call (1.4.6) a semi-direct factorization. If (1.4.3) holds, we call it a

direct factorization, We mention, without proof, the

COROLLARY *. If Fx is not an alternate form, the m-dimensional element
X is a product of m 1-dimensional elements.

There is a simple direct relation between X and its multiplier P.

LEMMA 1.4.4. The restriction of X to Vx is — eP"1.

PROOF. Let u.veW. By (1.1.3) and (1.4.5),

u • v = (u(I + eP+1), v)

* The well known theorem that every orthogonal transformation is a product of symmetries
follows almost at once from this corollary.
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and by (1.1.2),
« • « = («(/ — X), v).

Comparing these formulae we get the lemma.

COROLLARY. W is the null-space of I + eP-1.
This follows from the lemma and lemma 1.1.1, cor.

It is clear that a direct decomposition of / gives rise to one of P. We now
consider two cases where the converse holds.

Notation: ii (j>(t) = a.o + a.^ + ••• + tT is a m o n k e l e m e n t of Z[t] s u c h
that <£(0) = a0 ^ 0, we define the monic polynomial

(otfyrpit-*) = (ao-y + • • • + (a^Vr-i + r.
(1) Suppose now that

(a) <j>1, • • •, <f>k are monic elements of Z[t], none of which is

divisible by t;
( 1 A 7 ) (b) & = «£,. (i=l,...,k);

(c) <l>i,<f>j are relatively prime whenever i^j.

Let

(1.4.8) W=W0@---®Wh, P = P0®---®Pk

be the corresponding Fitting decomposition of P, so that
(i) faiPf) i s nilpotent (* = 1, • • •, k);
(ii) faiPj) is non-singular (i = 1, • • • k; j = 0 , • • • k; i ^ j).

LEMMA 1.4.5. The decomposition (1.4.8) of P gives rise to a direct decom-
position / = /o © ' • • © / * of f.

PROOF. By lemma 1.4.2, it is sufficient to prove that WjwWi whenever
* < /. Let a; e Wt, y e Wt. By (i), there is a power <f> of <£,- such that x<f>(P) — 0.
By (ii) and (1.4.7) (b), there is a zeWt such that y = z<t>J{P~1). Then, by
(1.4.5), (x, y) = (*. ^ ( P - 1 ) ) = (xt(P). y) = (0, y) = 0, so that Wj(oWt

as required.
We now apply the lemma to the element X, taking (for convenience of

exposition) ^(t) = t -\- s. Let ult • • •, ur be a basis of W and choose
»!, • • •, vr e (Wo 0 W2 © • • • © Wj,)1- so that ut • v, = 8(j{i, j = 1, • • -, r).
Then V = W + {vt, • • •, vr} is a finite-dimensional subspace of V and we
have corresponding direct decompositions

V = V © V", F = F' © F", X = X' © X",

where V" = (F')-1-, X" is the identity on V" and X' the element of
with the same form and space as X. We define

V'1 = W1 + {vl,---,vr},

V't = Wt (2^i< k),

V'o =(¥[ + ••• + V'^ n V
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Then it is easy to check that

v = v'o © F; e • • • e K
is an F-perpendicular direct decomposition which gives rise to the Fitting
decomposition — eX'^1 © • • • of — eX'-1 corresponding to (1.4.7). Notice
that X't — — ePj1 when i ^ 2, and that — eP^1 is the restriction of X[ to
Wt = V'^I — X'j). These considerations yield the following immeidate
corollaries.

COROLLARY 1. The Fitting decomposition of — eX~l corresponding to
(1.4.7) exists and is F-perpendicular (even when the dimension of V is infinite).

COROLLARY 2. / / n\, v{ denote the multiplicities of (t—l)', (t-\-e)' as
elementary divisors of X', P respectively, then

H1. = v._x(i = 2, 3, • • •), 2 > J = dim F ' — dim W.
xSl

/ / the dimension of V is finite and (it denotes the multiplicity of (t — 1)* as
elementary divisor of X, then

fi{ = Vi_x(i = 2, 3, • • •), 2 ^ = dim V — dim W.
•si

COROLLARY 3. Two elements of U^(F) are similar if, and only if, their
multipliers are similar.

(2) The second type of decomposition of P which gives rise to a decom-
position of / is more special. It applies when P is <£-nul (cf. § 0.3). We remark
that in this case </> = $, by (1.4.5). Let the elementary divisors of P by
<f>'i, • • •, (^''(^ > e2 > • • • > eT> 0) with respective multiplicities vlt • • • vr.
Then there is at least one decomposition

(1.4.9) W =WX®--- ®Wr, P = P1@"-®Pr,

where Pt has the single elementary divisor <f>'' with multiplicity vi(i=l,'mmr).
Let f( denote the restriction of / t o W{. Then we have

LEMMA 1.4.6. f1 is a direct summand of f.

PROOF. By lemma 1.4.3, it is sufficient to prove that f1 is non-degenerate.
Suppose fx is degenerate. Then W1 contains a non-zero vector u such that
ua>W1. Since W1 n UWX is invariant under P (by lemma 1.4.2), we may
suppose that u<f>(P) = 0. From the theory of elementary divisors it follows
that u = v<f>(P)ei-1, where v eWx. Now let weWit where i> 1. Then
(u, w) = (v, w<f>J(P-1)'!-1) = (v, 0) = 0, since 4> = <f> and ex > et. Hence u
is /-perpendicular to W± + W2 + • • • + WT = W, contrary to the non-
degeneracy of /. This contradiction proves the lemma.

COROLLARY. At least one decomposition (1.4.9) gives rise to a direct decom-
position of f.
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PROOF. By the lemma, there exist corresponding direct decompositions
/ = fx 0 / ' , P = P1 © P'. The corollary now follows easily by induction.

1.5 Orthogonal groups for ft = 2. Let D be a field of characteristic 2 and /
the identity. Let Q(x) = \x\ be a non-degenerate quadratic form on V with
polar form F(x,y) = x • y. Thus

(1.5.1) \ho + fiy\ = )?\x\ + p*\y] + X)x{x • y) (A, fieD,x,yeV)

and

(1.5.2) \x + y\ = 0 (all y e V) implies that x = 0.

(1.5.1) shows that F is alternate (x • x = 0 for all xeV), Q is called
defective or non-defective according as F is degenerate or non-degenerate.

The symbol _|_ refers to F-perpendicularity. If W is a subspace of V,
the F-perpendicular space Wx and radical W = W n W1- are defined as
before. The singular radical W is defined as the set of x e W such that
\x + y\ = \y\ for all y e W. By (1.5.1), WCW?. The restriction of Q to W
is non-degenerate if, and only if, W = {0}, non-defective if, and only if,
W = {0}.

Let W1, W2 be subspaces of V. A linear isomorphism X : Wx -> W2 is
called an isometry of W1 onto W2 if

(1.5.3) \xX\ = \x\ for all xeW^

By (1.5.1), this implies that

(1.5.4) xX-yX = x-y for all a, t/eWV

The isometries of F onto itself form the orthogonal group O(Q) of Q. By
(1.5.4), O(Q) is a subgroup of the unitary (= symplectic) group U(F) of F.

The space, Vx, and form, .F^-, of an element X = I — T oi 0 = O(Q)
are defined as before. In place of (1.1.1), the equation of invariance
\xX\ = \x\ yields the stronger relation

(1.5.5) x • xT = \xT\ for all x e V.

This implies that

(1.5.6) (u,u) = \u\ for all ueVx.

LEMMA 1.5.1. Vx n F x = {0}.

PROOF. Let a;re Fx n F x . By (1.5.5), \xT\ = 0 and so xTeV. Since
F" = {0} (by the non-degeneracy of Q), we have xT = 0 as required.

With the help of this lemma, it is easy to show that lemmas 1.1.1 to 1.1.3
and corollary are still valid. Theorems 1.1.1 and 1.1.2 are valid if we replace
(1.1.3)' by

(1.5.6)' (u, u)' = \u\ for all ueW.
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Trace-valued vectors are defined as before with reference to F. But since
F is alternate, every x is trace-valued and so Vr = V. Witt's theorem
becomes

THEOREM 1.5.1. Let Wlt W2 be finite-dimensional subspaces of V such
that Wx n F x = W2 nVx = {0}. Then every isometry of Wx onto W2 can be
extended to an element of O^(Q).

From theorem 1.5.1 and lemma 1.5.1, we now deduce

THEOREM 1.5.2. Two elements of 0$ are conjugate in 0$ (or 0) if, and only
if, their forms are equivalent.

The results of § 1.4 carry over with the obvious minor alterations.
We add one simple result about the singular radical of the space of X.

LEMMA 1.5.2. Let W be the space, P the mulitplier, of an element X of
O(Q). Then W n W(I + P) C Wa.

PROOF. Let v = w{I + P) e W, where w eW; we have to prove that
\v\ = 0. By (1.5.6), \wP\ = (wP, wP) = (w, w) = \w\. On the other hand,
\v\ = \w\ + \wP\ since v e W. Hence \v\ = 0 as required.

2. Equivalence

2.1 Preliminary transformation of problem. Let W be a left vector space over
D of finite dimension m. Let f^x, y) = (x, y)1 and fz(x, y) = (x, y)2 be non-
degenerate sesquilinear forms on W. Our problem is to determine the con-
ditions that /i ^ /a.

LEMMA 2.1.1. Equivalent forms have similar multipliers.

PROOF. Let /x <̂  /2, so that (a;, y)2 = (xY, yY)x for some non-singular
linear transformation Y. Let Pt, P2 be the multipliers of flt /a. Then
(y, x)i= (yY, xY)i= (xY, yYP,), = (x, yYPjY^),, so that P2 = YP.Y'K

By lemma 2.1.1, we may confine attention to forms with the one fixed
multiplier P. We choose one such form f(x, y) == (x, y) as a fixed reference
form and write

(2.1.1) {x,y)i={x,yQi) (* = l,2).

Qt is called the representative of ft with respect to f.
Let Y be a linear transformation on W. The f-adjoint Yt of Y is defined

by (xY, y) = (x, yY^). We say that Y is ^-symmetric (or /-symmetric) if
Yt = Y. Since

(y, xYP)J = (xY, y) = (x, yYt) = (yYt, XP)J = (y, asPYtt),

we have

(2.1.2) Ytt = P-i
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Also, since

(y, x)J = (*, yP) = (x, yP)jt = (yP, xP)J = (y, x

we have

(2.1.3) Pt = P-K

Finally, since

(y, x)t = (y, xQy = {xQit yP) = (x, yPQ\) = (x,

we have

(2.1.4) P<

where Pt is the multiplier of ft.
Let # = "^(P) denote the commutator ring of P. The next two lemmas

follow immediately from (2.1.2)—(2.1.4).

LEMMA 2.1.2. The mapping Y -> Yt induces an involutory antiauto-
morphism of c€. Every ^-symmetric linear transformation lies in <€.

LEMMA 2.1.3. /( has multiplier P if, and only if, its representative Qt with
respect to f is ^-symmetric.

Linear transformations Y1; Y2 on W are called f -congruent if Y2 = YY1 Yt
for some non-singular linear transformation Y belonging to *€. The following
theorem reduces the original equivalence problem to a congruence problem
in <€.

THEOREM 2.1.1. Let fx, f2 be non-degenerate forms with multiplier P and let
Qlt Q2 be their {non-singular, ^-symmetric) representatives with respect to the
reference form f with multiplier P. Then fx «* /2 */, and only if, Qlt Q2 are
^-congruent.

PROOF. If Y is a linear transformation on W,

(xY, yY), = (xY, yYQJ = (x, yYQ^) = (x,

Therefore fx «& /2 if, and only if, Q2 = YQXY^ for some non-singular Y.
But this equation implies that Y e <# : Y ^ Y t = (Y&YtJt = y t t & y t ,
hence Ytt = Y, hence, by (2.1.2), Y etf. This proves the theorem.

2.2 Approximation Theorem. Let ^V = ^V(P) denote the radical of *€ =
^{P). The main theorem of this section is proved under the assumption that
<€ satisfies the following trace condition:

(2.2.1) If JCJV is an ideal of % and N an element of J such that
iVt = eN{e = ± 1), then N = M + cAft for some M e J.

Apart from this, only the following properties of <€ are used:
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(i) # is a ring with unit element I;
(ii) % has an involutory anti-automorphism f;

(iii) JV is nilpotent (Jacobson [6], Ch. 4, § 7).

The following simple lemma shows that the trace condition "usually"
hold in

LEMMA 2.2.1. If 'tf contains a central element Y such that Y -f- Yt = I,
^ satisfies the trace condition.

PROOF. If 2Vt = sN, N = (YN) + e(Y2V)t.

COROLLARY. If any one of the following conditions holds, ^(P) satisfies the
trace condition:

(a) p^2;
(b) the restriction of J to the centre Z of D is not the identity;
(c) I + P is non-singular.

PROOF, (a) Y = |-7. (b) We may assume that p = 2. By hypothesis,
there is an a e Z such that a + a.J = $ ^ 0. Let Y = a ^ 1 / . (c) Y =

(2.2.2) NOTATION. The following conventions are observed both here and
in later sections. Suppose R is a ring with radical S. Then R denotes the
factor ring R/S and Y = Y -{- S the canonical image of an element Y of R
in R. If f is an anti-automorphism of R, the same symbol f will be used to
denote the induced anti-automorphism of R : (F)t = (Yt). An element of a
ring with / is called non-singular if it has a two-sided inverse.

THEOREM 2.2.1. (Approximation theorem) Suppose that *€ satisfies the
trace condition (2.2.1). Then

(a) every non-singular, ^-symmetric (or ^-skewsymmetric) element of W —
^IJ^is the canonical image of a non-singular, '[-symmetric (or \-skewsymmetric)
element of %>;

(b) two non-singular, ^-symmetric (or \-skewsymmetric) elements of ^ are
^-congruent if, and only if, their canonical images in *& are ^-congruent.

PROOF. Let Q be a non-singular element of <& such that Q* = eQ, i.e.
Qt — SQ = N e^V (s = ±1) . Then iVt = — eN and so, by the trace con-
dition, N = Mt — SM, where M eJ^. Let Qx = Q — M. Then Q = Qx

and Ql = eQ^. Also Qx is non-singular. For, since Q is non-singular, there
exists an R e <£ such that Q^R = I — 2V1( where Nx e^V. Then R(I + Nt+
iVj + - • ') is a right inverse of Qx. Similarly Qt has a left inverse.

Suppose now that 5j , S2 are non-singular elements of ^ such that S] = eS(

(e = ± 1; i = 1, 2). Obviously JS17 <S2 are f-congruent if Slt 53 are. Conver-
sely, let Slt S2 be f-congruent, so that St — YS2Yt = N eA", where Y is
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non-singular. By the argument of the first paragraph, Y is non-singular.
Since Jf is nilpotent, it is sufficient to prove that if Sx — Y1S2Yl = Nx e JV*
(i ^ 1), where Yx is non-singular, then S2 — Y252Yj = Nz€jVi+1, where
Y2 is non-singular. Now N\ = sNx and so, by the trace condition,
Nx = Mx + sM\, where Mx e JV*. It is now easily verified that Y2 =
(I+M1(Y1S2Yl)~1)Y1 meets the requirements. This proves the theorem.

The following reduction theorem holds without any restriction on the
commutator rings involved. It is an immediate consequence of the uniqueness
of the Fitting decomposition.

THEOREM 2.2.2. Let f, g be non-degenerate sesquilinear forms on W and

/ = /o © • • • © / * . g = So © • • • © g*

their Fitting decompositions corresponding to (1.4.7). Then f to* g if and
only if, ft «* gi for i = 0, 1, • • • k.

The theorem shows, in particular, that the general case of equivalence
reduces to the two subcases: (a) P + / is non-singular and (b) P + 1 is
nilpotent. By lemma 2.2.1, cor., the approximation theorem is valid in
case (a), even when p = 2. Thus the essential difficulties are concentrated
into case (b).

Definition. Let R be a ring with 1 having an involutory anti-automor-
phism a. The group

N{OL,R) = {xeR\x3? = 1}

is called the norm group of R with respect to a.
In the theory of the centralizers of the elements of a classical group, the

norm groups N = N{\, <£) play an important part. Let N( = Nt{\, <<1>)
(i'• — 0, 1, • • •) denote the normal subgroup of N formed by the Y eN
such that Y = / (mod JV"*). Let Sf = S±(f, «") (* = 0, 1, • • •) denote the
additive group formed by the Y e J/"^ such that Yt = ^ Y.

THEOREM 2.2.3. If # satisfies the trace condition,

NjN0 ~ AT(t, V),
NJNi+1 s S~IS-+1 (i = 0, 1, • • •)•

PROOF. Consider the group homomorphism t](Y) = 7 of N into N{\, <€).
Let TeNtf, %), where Y e<tf. Then YYt = / (mod JT) and the proof of the
approximation theorem shows that Y = Y1, where YxeA^. Thus t](N) =
Ntf,¥). Since the kernel of rj is clearly No, we have IV/iV0 ^ 2V(f, V).

Consider next the mapping £(I — M) = M + S(+1 of N( into SJSj + 1 ,
where S( denotes the additive group of ^V^. If I — M and / — M' e N(,
we have

— M')=I — M- M'(mod Si+1),
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whence C is a homomorphism with kernel Ni+1. Also

I = (I - M)(7 - Mt) == 7 - M - Mt(mod S m ) ,

so that M + Mt e 5 j + 1 . By the trace condition, M + Mt = M1 + Ml,
where Mx e Sj+1. Thus

C(7 - M) = (M - Mx) + S{+1 e (Sr + 5i+1)/Si+1

and so C(Nt) C (Sj + S<+1)/5<+1.
Conversely, let R e St . We prove that R -f- Si+1 e f (2V<) by showing that

if R + Si+1 = Ri + Si+1, where R1 + R\ - R^l e Si+i (/ ^ 1), then
R + Si+1 = R2 + Si+1, where R2 + R\ ~ R2R\ e Sj+J+1. In fact, by the
trace condition, Rx -\- R\ — 7?x R\ = Rz-\- R\, where R3 e S,+>. Then
R2 = R1 — R3(I — i?!)"1 meets the requirements. This proves that
C{Nt) = (57 + Si+1)ISi+1.

We now have

NJNi+1 ~ (57 + S<+1)/Si+1 s 57/57+1,

which proves the theorem.

2.3. Multipliers. In the present section, we determine the conditions that
a given linear transformation 77 be the multiplier of some form.

Let 77 be the matrix of 77. Then (1.4.5)' shows that, if 77 is a multiplier,
II is similar to 77*-1. We indicate this by the symbolical notation *

(2.3.1) 77^77*-! .

Let 77 = Tlx © • • • be a splitting of 77 into indecomposable parts and let
R be any indecomposable linear transformation. If k of the summands 77̂
are similar to R, we say that 7? has multiplicity k in 77. Then (2.3.1) holds if,
and only if, 7? and R*^1 have the same multiplicity in 77 for every 7?.

LEMMA 2.3.1. Every linear transformation S ® S*~x is a multiplier.
This follows at once from the matrix identity

/0 7\ /0 A*- 1 /S 0 \
(2-3-2) ( s - o)(s" o) =(o s - j -

LEMMA 2.3.2. If II satisfies (2.3.1) and II2 — I is non-singular, II is a
multiplier.

PROOF. By the previous lemma it is sufficient to prove this when 77
is indecomposable. By (2.3.1), there exists a non-degenerate sesquilinear
form f(z, y) such that 77f = 77""1, where f denotes the /-adjoint. Let P be the
multiplier of / and write Y = P~^TI. Since the multiplier of g (x, y) — f{x,yQ)

* ~ indicates similarity oi matrices or linear transformations.
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is PQ^Q-1, it is sufficient to prove that Y = Q^Q'1 for some Q.
Let Jf" denote the commutator ring of 77. Since 77n = 77, we have Y e Jf~

by (2.1.2). Since 77 is indecomposable, Jf is a completely primary ring and so
every element of Jf not in the radical is non-singular. Since 77 — 7 is
non-singular and 77 — 7 = 77(Y + 7) — (77Y + 7), at least one of Y + I
and 77Y + 7 is non-singular. In the first case, take Q = (Y + 7)"1 and in
the second, Q = (77 -f- I)(IJY -j- 7)"1 (this choice being possible because
77 + 7 is non-singular). This proves the lemma.

LEMMA 2.3.3. Let 77 be an indecomposable <f>-nul * linear transformation
on W, where (f> = <£. Suppose that

(i) if J is the identity and <f>(t) = t — 1, then m is odd;
(ii) if J is the identity, p =£ 2 and <f>(t) = t -f- 1, then m is even.

Then IJ is a multiplier**.

PROOF. Let 0 denote the involutory automorphism g(IJ) -
of 2£ = Z\IT\. Suppose that we have determined a mapping % : 2£ -> D
such that

(a) x is ^-linear;
(b) x(Y

e) = x{Yn)J for all Ye %;
(c) % d° e s n ° t vanish identically on the minimal ideal ^ = ^(/>(77)e-1

of %.
Let u be a vector such that u, uIJ, • • •, uTIm~x are a basis of W. Then we

prove that the equations

(2.3.3) (w77', M77J) = z(77<-'+1) (t, / = 0, 1, • • • m - 1)

define a non-degenerate sesquilinear form f(x, y) = (x, y) on W, whose
multiplier is 77.

We first remark that

(2.3.4) (Xn, y) = (x, 2/77-1) (x, y * W),

(2.3.5) («2?, uS) = x{RSen) {R, S e Z).

By (2.3.4), the "left radical" °W is invariant under 77. Hence, if °>W # {()},
WJV C UP7. By (2.3.5), this implies that x vanishes on Jt', contrary to (c).
Thus "W = {0} and so / is nondegenerate. Finally, since

(uR, usn) = x{RS$nen) = x{RSe) = x{SReny
= (uS, uR)J (R, Se&),

77 is the multiplier of /.

• Cf. § 0.3.
** Zassenhaus ([20], theorem 1 (b)) gives an interesting construction which essentially redxi-

ces the present lemma to the case where <j>(II) = 0.

https://doi.org/10.1017/S1446788700027622 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027622


22 G. E. Wall [22]

It remains to construct %• Let <f>(t) = td -\ \- /?, <f>(t)e = tm -\ ha ,
so that m — de, a. = f}'. We suppose first that m is odd: m = 2/x -+- 1. Then
each Y e f has a unique representation

and we prove that #(Y) = Xr\_li satisfies (a)—(c) for suitable XeD.
(a) obviously holds for any A. Since n~''(f>(n)e-1 = /3<-1i7->' + •

(c) holds provided that A =£ 0. Finally, since

(b) holds if, and only if,

(2.3.6) XJ + Xtx. = 0.

Since <£ = </>, aa"7 = 1. Hence A = rot"7 — r7 satisfies (2.3.6) for any r e D.
Thus we get a non-zero solution A unless 7 is the identity, f =fc 2 and a = 1.
But these conditions are excluded by hypothesis (ii), for <x= 1, m odd and
<f> = <£ imply that (* + l)|<^(0e and thus that t + 1 = <£(<).

Suppose now that m is even: w = 2/i. Each Y e f has a unique represen-
tation

and we prove that ^(Y) = A?y1_/( + XJrjll satisfies (a)—(c) for suitable
X e D. (a) holds for any X. An easy calculation shows that (b) also holds
for all X. If d > 1, the equation

shows that (c) holds for any X ̂  0 If <Z = 1, so that <f>(t) = t + 0,
X{ni~''<f>(n)e-1) = A/3"1-1 + XJ is non-zero for suitable A, unless / is the
identity and /S"1"1 = — 1 But these conditions are excluded by hypothesis
(i), for since /9/S-7 = fi2 = 1, /J"1"1 = — 1 implies that t + 0 = t — 1. This
completes the proof.

THEOREM 2.3.1. Let II be a linear transformation on the finite-dimensional
space W. Then II is the multiplier of a non-degenerate sesquilinear form on W
if, and only if,

(i) 77^77*-!;
(ii) if J is the identity, the multiplicity of (t — I)2* as elementary divisor of

77 is even (k = 1, 2, • • •);
(iii) if J is the identity and p =£ 2, the multiplicity of (t + I)2*"1 as ele-

mentary divisor of II is even (k = 1, 2, • • •).
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PROOF. The sufficiency of the conditions is easily proved by splitting 77
into indecomposable parts and applying the preceding lemmas. Suppose,
conversely, that 77 is the multiplier of the non-degenerate form f(x, y) =
(x, y). We have proved that (i) is necessary. In proving (ii), (iii) necessary,
we may, by the Fitting decomposition and lemma 1.4.6, cor., assume that 77
is of commutative type with a single elementary divisor (t — l)2k or
(t + I)2*"1, say of multiplicity fi. We may also assume that p =fi 2 in the
second case and that / is the identity in both cases. Then the left hand side
of the equation (x, y) — (y, x) = (y, x(Tl — I)) is an alternate form, whence
the rank of 77 — I, viz. fi(2k — 1), is even. Thus the multiplicity /j, is even
as required. This proves the theorem.

Supplementary Remarks. The following discussion of the construction in
lemma 2.3.3. is required only in § 2.6. Since we shall be comparing the
constructions corresponding to different powers </>' of the one fixed polyno-
mial <j>, we shall write IIe, 2?\ ,••• instead of 77, 2£, • • •. We assume that /
is the identity, d > 1, p ^ 2. Since <f> = <£, d is even. A fortiori, the dimension
de of the Z-space 2£', is even. Since d > 1, we may take X = 1 in the defini-
tion %e(Y) = ^li-n + ^JV/t °f Xe- Let us now consider the quadratic form
Pe(Y) = xe{YYe) on St. The matrix of Pe is \{Q + iiT) = $(/ + II1)®,
where ii is the matrix of /. Therefore pe is non-degenerate. If e is even,
pe is a form of maximum Witt index \de. In fact, &e<j>(IIe)k' is a totally
isotropic subspace of dimension \de. If e is odd, pe is a form Witt index \de
or \de — 1; moreover, all the forms px, p3, • • • have the same Witt type.*
To see this, we remark that %e = ^e^>(77e)*

(e+1) is totally isotropic and that
T̂ "e = ^'e^(77e)i

<'~1> is its perpendicular space. Hence if T f̂is any comple-
ment of <%'e in ~f e, the restriction ae of pe to I^has the same Witt type as pe.
We take iTt as the subspace with basis elements 77*"i<i(<!-1)^(77(!)i

('!-1)

(K = 0, 1, • • •, d — 1). The first \d — 1 elements span a totally isotropic
subspace, so that the Witt index of ae is \d or \d — 1. It is easy to see that
the matrix of ae with respect to the above basis is independent of e, whence
Pi> P3> ' ' ' a r e a ^ °f the same Witt type. This proves our result.

2.4. Equivalence invariants. We consider |-congruence in ^ = ^JJV.
This leads to explicit solutions of the equivalence and conjugacy problems
when the trace condition holds in <€. We make constant use of the notational
conventions in (2.2.2).

Let P be a multiplier on W. We choose a direct decomposition of P into
multipliers, none of which is itself a proper direct sum of multipliers; say,

(2.4.1)' P = Pl © P[ © • • • 0 Pa ® • • • 0 K "

where terms with like subscripts are similar. Then we choose a reference form

* Cf. Bourbaki [1], § 8.
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(2.4.2)' / = /x © /J © • • • © / . © • • • © f."",

where terms with like subscripts are equivalent and where, if P( is decom-
posable, /, is constructed by the method of lemma 2.3.1. A reference form of
this kind will be called standard. When comparing forms with similar multi-
pliers, we shall always assume that the corresponding reference forms are
equivalent.

Suppose that Pt is indecomposable for i = 1, • • •, r, and decomposable
for i = r -f- 1, • • • s. In a suitable coordinate system, the matrices of /, P
have the forms

(2.4.1) Si = diag (fl1, • • •, Si'), P = diag ( P \ • • •, P"),

where, if 1 ^ i fjS, r,

(2.4.2) fl< = diag ( £ „ • • • , « , ) , P '

Pt = SifSif'1, P( indecomposable,

and where, if r + 1 ^ i ^ s,

si<=( ) P=(
\(U*)*-i or lo ()

(2 4 3)
77' = diag (II{, • • •, IIJ, II\ indecomposable.

Let Q e *<€. The matrix of Q has the form

(2-4.4) 0 = «?"),.,..!.....

where PfQij = QijPs. The matrix Qf of ^f is given by

In particular, the diagonal block Q" belongs to the commutator ring c€i =
#(P<) and (Q^)" is the adjoint (Q")f of Q" with respect to fl*. But the
mapping

Q -»- Q" e • • • e 0"

is an isomorphism of # onto the direct sum "j?1 ® • • • © "^' (Jacobson [6],
Ch. 4, § 8). It follows that Q is non-singular and f-symmetric if, and only if,
Q" is non-singular and f-symmetric (i'•= 1, • • • s) and that G, .# (Re &)
are f-congruent if, and only if, Qu, ^ " are f-congruent (i= 1, • • • s).

Let 1 ^ i ' ^ r. Then
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where Q ^ belongs to the commutator ring e€i = ^(/**). Let Jt denote the
fl,-adjoint mapping in #,-:

YJ* = Si* Y* Q*-1 {Yetfi)
Then

(Qi;)f = (Qi!xJt),
i.e. f is the conjugate transpose operation with respect to Jf. The mapping

Q77 -> Z
is an isomorphism of *&* onto the total matrix algebra Mm^i) over #,. and,
since P{ is indecomposable, ^{ is a division ring. Suppose now that Q, R are
non-singular and f-symmetric. Then the matrices (Q"^), (R"/,) are non-
singular and /,-Hermitian, and Qu, R" are f-congruent if, and only if,
they are /rcongruent. The /rHermitian form with matrix (Q^) is called
the i-th Hermitian invariant of the f-symmetric element Q.

LEMMA 2.4.1. Let Q, R be non-singular, ^-symmetric elements of 9o. Except
when p = 2, J is the identity and I -\- P is singular, Q, R are ^-congruent if
(and only if) their corresponding Hermitian invariants are equivalent.

PROOF. We have to prove that under the conditions stated Q", Ru are
f-congruent for i = r + 1, • • • s.

First Case: II\ -P Ilf'1. The matrix Q" has the form

where Yx, Y2 belong to the anti-isomorphic commutator rings F* =
#(J7'), F<* = ^(11**). Since II*, (U1*)-1 have no common indecomposable
part, the mapping Q(i -> Yx © Y2 is an isomorphism of W* onto F* © F**.
Since Q" is non-singular and ^-symmetric, and since

(Qt)« =

we have V2 = K* and Y1 is non-singular. Similarly, ^ " -^Z^® Z*, where
Zx is non-singular. Then

~S«Qii(STi~)i = ^ "
where

so that Qu, R" are f-congruent as required.
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Second Case: U, r*-> J7f-1. By theorem 2.3.1, / is the identity and U.t is
of commutative type with a single elementary divisor (t — 1 )2* or (t + I)2*"1.
It is convenient to modify the previous notation by taking

(nt,---nt).

By hypothesis, p ^ 2. Hence, by theorem 2.3.1, — nt is a multiplier, say
of the form gt with matrix Wt. Then — P* is the multiplier of g* = g< © • • •
© gj. Let I denote the adjoint with respect to g*. It is easily verified that the
elements of # ' corresponding to Q", Ru are J-skewsymmetric and that they
are f-congruent if, and only if, they are J-congruent. On the other hand,
these elements may be identified by our previous method with non-singular,
2wi-rowed, /^-skew-Hermitian matrices over the division ring #,-, where
# , = ^{JJi) and/< denotes the gradjoint. Now ¥t = D and/^ is the identity,
since II( is (t ± l)-null a n d / is the identity. Thus the representing matrices
are essentially skew-symmetric matrices over the field D. Since any two
non-singular, skew-symmetric matrices are congruent, our result follows.
This proves the lemma.

We are now in a position to prove the main theorems about equivalence
and conjugacy. Let g be a non-degenerate sesquilinear form on W with
multiplier P and let / be a standard reference form with multiplier P. Let Q
be the representative of g with respect to /. Then the Hermitian invariants
of Q are called the Hermitian invariants of g with respect to f. If X is an ele-
ment of a unitary or orthogonal group, the Hermitian invariants of X are
defined to be those of its form Fx-

THEOREM 2.4.1. (Equivalence theorem) Let D be a division ring with
involutory anti-automorphism J. Let /x, /2 be non-degenerate J-sesquilinear
forms on the finite-dimensional space W over D. Let Px, P2 be their multipliers.
If the characteristic of D is 2 and J leaves invariant every element of the centre
of D, let P1+I be non-singular. Then /1( /2 are equivalent if, and only if,

(a) Plt Pa are similar;
(b) the corresponding Hermitian invariants of /1( f2 (with respect to equiv-

alent standard forms) are equivalent.
This follows from the theorem 2.2.1 and lemmas 2.2.1 (cor.), 2.4.1.

COROLLARY. Under the conditions of the theorem, /x is directly decomposable
if (and only if) Px has a proper direct decomposition P1 = P[ ® P'i , where
P[, P'I are multipliers.

PROOF. Write /', P instead of fx, Px and suppose that P has a proper
decomposition (2.4.1)'. Choose a standard form / as in (2.4.2)'. Let /' be
represented with respect to / by the matrix Q in (2.4.4). We choose a form g
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with multiplier P as follows. If s > 1, the matrix R representing g with
respect to / is taken as diag (Q11, • • •, Q"). If s = 1, and r = 0, g is taken
as /. If s = r = 1, R is taken as any diagonal matrix /^congruent to the
J^-Hermitian matrix Q11. Then g is decomposable and has the same Hermi-
tian invariants as /. Hence / is decomposable.

THEOREM 2.4.2. (Conjugacy theorem). Let D be a division ring with
involutory anti-automorphism J, V a vector space over D. Let G be either the
unitary group of a non-degenerate J-Hermitian or J-skew Hermitian form on V
or (when D is a field and J the identity) the orthogonal group of a non-degenerate
quadratic form on V. Let X1, X2 e G$, where G# is the subgroup formed by the
finite-dimensional elements of G. If the characteristic of D is 2 and J leaves
invariant every element of the centre of D, let Wt n Wf = W2 n W2 — {0},
where Wx, W2 are the spaces of Xlt X2. Then Xlt T2 are conjugate in G^
(or G) if, and only if,

(a) Xlt X2 are similar;
(b) the corresponding Hermitian invariants of Xlt X2 (with respect to

equivalent standard forms) are equivalent.

PROOF. The theorem follows from theorems 1.3.1. and 2.4.1. We have
only to check that the hypotheses of these theorems hold, viz. that

(i) if p = 2 and the restriction of / to Z is the identity, then Pt -\- I is
non-singular;

(ii) Wt n (Vr)± = {0}.
(i) follows from lemma 1.4.4 (cor.) and our hypothesis that W? = {0}

in the case under consideration. If either p ^ 2 or the restriction of / to Z
is not the identity, then (ii) is obvious because V = V. In the contrary
case, (ii) follows from the hypothesis that W? = {0}; for, since W( C VT, we
have W? = Wtn Wf D Wf n (V^. This completes the proof.

Supplementary Remarks. With the notation of the beginning of this section,
let g be a form with multiplier P which is represented by Q with respect to /.
Let % denote the adjoint with respect to g. It is easy to see that the norm
group N(%, V) consists of the Y e <€ such that YQY* == Q. It follows that
N(X,'S) is isomorphic to the direct product Hx X H2 X • • • X Hs, where Ht

is the group formed by the P ' e ^ ' such that ^Q^Y* = Q". Using the
same methods as before, we see that

(i) if i ^ r, H( is isomorphic to the unitary group of the i-th. Hermitian
invariant of g;

(ii) if i > r and 71,- o^ II*~l, Ht is isomorphic to the full linear group
GL(mit Tt), where ft is the division ring ^(11^;

(iii) if i > r and nt = n*~x, and if we assume that p ^ 2, then Ht

is isomorphic to the symplectic group Sp(2mitD).
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In order to determine these groups in practice, we need to know the
division rings and anti-automorphisms involved. The following lemma gives
some information or these points.

LEMMA 2.4.2. / / P is indecomposable and <f>-nul, *€ ~ A, where A is the
division ring obtained by adjoining * a root r of <f>(t) to D. For a suitable choice

of the reference form f with multiplier P, <€ can be identified with A in such a
way that

where A = ± XJ e D. A can be chosen as 1 except when D is non-commutative,
the restriction of J to Z is the identity and <j>(t) = t i 1.

PROOF. Using the definition (0.3.1), we may identify # with the ring
D[P]. P commutes with the scalars cd e D[P] and P t = P~J. Also, since
<£(P) is nilpotent and # a division ring (because P is indecomposable),
(j>{P) = 0. Thus the mapping 2«iT* -»- 2«< P* is a n isomorphism of A onto <€.
It remains to prove that, for a suitable choice of /,

(2.4.6) (of = (A-ior'A) (a«D),

where A satisfies the stated conditions.
If the matrix of / with respect to the basis u, uP, uP2, • • • has coefficients

in Z, it is clear that (2.4.6) holds with A = 1 (for a/ e D[P] has matrix a/
with respect to this basis). An examination of the proof of lemma 2.3.3
shows that such a choice of / is possible except when D is non-commutative,
/ is the identity on Z and <f>(t) = t ± 1.

Let us now consider this exceptional case. Write P = ± I + M, where
M is nilpotent. Choose a form / with multiplier P and let ii = (can) ^ e ^ s

matrix with respect to the basis u, uM, uM2, • • •. Let (o/)t = J^1 &M\
It is clear that /Jo = a.6, where 0 is an involutory anti-automorphism of D.
Comparing the last columns in the adjoint equation

diag (a, a, • • • a) ii = Si

we get 0La>im = coim(xe)J (i = 1, • • • m). Since not all a>im are zero, a.6 has
the form A"1 a-7A for some AeD. Since 0 is involutory, a = A-1AJa(A-1)"/A,
whence lJ = tf, £ e Z. Since £CJ = 1 and / is the identity on Z, £ = ± 1
and so XJ = ± A as required. This proves the lemma.

• Cf. § 0.3.
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2.5 Centralizers. We investigate the centralizers of the finite-dimensional
elements of a classical group G. We suppose first that G is the unitary group
of a trace-valued form F(x, y) = x • y (= e(y • x), s = ± 1) on V and later
describe the modifications necessary in the orthogonal case. Let X be a
finite-dimensional element of G with space V x = W, form fx(u, v) = (u, v)
and multiplier Px = P. Let C = C(X) denote the centralizer of X in G,
<g = <#{P) the commutator ring of P.

Each element Y of C leaves W and fx invariant. Let rj(Y) denote the
restriction of Y to W. Clearly, the mapping Y ->t)(Y) is a homomorphism
of C into the group of invertible elements of <S. The kernel C1 = CX(X)
consists of the Y which leave every element of W invariant. Thus

LEMMA 2.5.1. CjC1 is isomorphic to the norm group N (J, <€), where %
denotes the adjoint mapping with respect to fx-

PROOF. We have to show that rj(C) = N(%, <#). Let YeC. Since Y leaves
fx invariant, we have

(u, v) = H(Y) , vrifX)) = (u, vr,(X)r,(y)*)

when u, veW. Thus •n{Y)eN(X,^) and so ri(C)CN[X,V).
Conversely, let R eN(%, <€). Since R leaves fx invariant it also leaves the

restriction of F to W invariant, i.e. it is an isometry of W onto W. By Witt's
theorem, R can be extended to an element Y of G. Clearly, YeC and R =
T](Y), whence iV(J, #) Cr](C). This proves the lemma.

Notation. If L is a subspace of V, the equations

(x + LP)- {y + L")=x-y (x, y e L)

define a non-degenerate form onLjLp called the core of F on L.
Each element Y of C1 leaves W± and (W1-)'' = W invariant. Let ^(Y)

denote the linear transformation on W-LIWP induced by Y. Then r\x is a
homomorphism of Cx into the group of non-singular linear transformations
on W±/Wp. The kernel C2 = C2(X) of ^ consists of the Y which map every
coset x + W(xe Wx) into itself:

C2 = {Y e G|Fr C W1- and W ^ / - Y) C

LEMMA 2.5.2. CJC^ ^ f/(F'), where F' is the core of F on

PROOF. It is evident that r}x{Cx) CU{F'). It remains to prove that U(F')C
?y1(C1), i.e. that each S' e U(F') can be "extended" to an element of C1.

Choose a basis ux, • • •, ur of W and elements vt, • • •, vr of V such that
ui-vj = 6iS (i, / = 1, • • •, r). Then the subspace M — H1-, where H = W-\-

https://doi.org/10.1017/S1446788700027622 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027622


30 G. E. Wall [30]

{*>i,---, vr}, is a complement of W in Wx and oi H inV: W-1 = M ® W>,
V = M © H. We now define a linear transformation S on V as follows:

AS = h {he H),

mS = m' when (w + W")S' = (m' + WP) (m, m' e M).

Then it is clear that S e C, and rj^S) = S'. This proves the lemma.
Let Y e C2. Since Y is a finite-dimensional element of G, its restriction

%(Y) to W-1- has the form
r

(2.5.1) a; -+ x — £ (^ • «>,)«, (ze»1( • • •, wr e Pfx),

where, as before Wj, • • •, «r are basis a of W. The kernel C3 = C3(X) of the
homomorphic mapping rj2 consists of the Y which leave every element of Wx

invariant. Thus

C3 = {Ye G\Vy C (W + W"-)1- = WP}.

LEMMA 2.5.3. CJC3 ^ A, where A is the abelian group formed by all
linear transformations on W1- of the form (2.5.1).

PROOF. Let Y' be the element (2.5.1) of A. It is required to prove that Y'
can be extended to an element of C2. Let v1, • • •, vr and M be defined as in
the proof of the previous lemma. Without loss of generality we may suppose
that the wt are in M. We now define a linear transformation Y on V by:

xY = xY' when xeW^;

xY = x when x e W;
r

v{Y = vt — ew( — J Xiiui (i = 1, • • •, r),
l

where the Xu are arbitrary elements of D. Y is of course an extension of Y'.
It is easily verified that Y « C2 if, and only if, Xtj + sXJ

H = (w{ • ws) (i, j = 1,
• • •, r). Such a choice of the XiS is possible because F is assumed to be trace-
valued. This completes the proof.

The structure of C3 is easily determined. Each of its elements has the form
r

(2.5.2) x^x— 2 (x • UJCD^UJ,

where ult • • -,'ur are a basis of W. Conversely, the linear transformation
(2.5.2) is an element of C3 if, and only, if, o){i + EO/H — 0 {i, j = 1, • • \ r).
Thus we have

LEMMA 2.5.4. C3 is isomor-phic to the additive group formed by all r X r
matrices K over D such that K + sK* = 0 (r = dim W).
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The following important reduction theorem is an immediate consequence
of the uniqueness of the Fitting decomposition. It allows us, in particular,
to restrict attention to the two special cases: (a) W = V and (b) X — I is
nilpotent.

THEOREM 2.5.1. Let

V = Vo ® • • • © Vk, - cX-i = ( - eX?) 0 • • • ( - eX,1),

be the Fitting decomposition of — eX~x corresponding to (1.4.7). Let Gt = U(Fi),
where F{ is the restriction of FtoVi, and let C{Xt) be the centralizer of Xt in
Gt (i = 0, • • • , k). If Y is a linear transformation on V, then Y eC(X) if,
and only if, it has the form Yo © • • • © Yk, where Yt e C(Xi) (i = 0, • • •, k).

Although lemmas 2.5.2—2.5.4 are perfectly explicit, lemma 2.5.1 requires
further elucidation. When & satisfies the trace condition, the finer structure
of N(X, #) is given by theorem 2.2.3. The group N(%, <£) was discussed in
detail in § 2.4. With the groups S7 in mind, we now study the following
situation. Let J be an ideal of # such that J = J* C Jf. Consider its
additive subgroups

f{£) =S0 = {Ye J\YX = BY) (0 = ± 1).

The J6 are vector spaces over the subfield, Zo, of the centre Z formed by
its symmetric elements. We shall determine their dimensions dim0 Je

over Zo. We assume that the dimension of D over Z is finite and that, when
p = 2 and Z = Zo, / + P is non-singular. The first asumption ensures
that dimo^ is finite, for the elements of 'tf are finite-dimensional Z0-linear
transformations.

We begin with three simple observations. Firstly, our assumptions imply
that W satisfies the trace condition. Secondly, Y -^Y + Y*(Y E / ) is a
Z0-linear mapping of J onto J+ with kernel J~, so that

(2.5.3) dim0 J
r+ + dim0 J~ = dim0 J.

Thirdly, if ^ contains a non-singular central element M such that Mx = —M,
then Y*->MY (Y e J+) is a Z0-linear isomorphism between J+ and J~.
Hence, in this case,

(2.5.4) dimo,/fl = £dim0. / (6 = ± 1).

(We shall regard dimo«/ as known, so that (2.5.4), when it holds, is a com-
plete answer to our problem.)

Suppose that we are given a direct decomposition

fx = h 0 • • • © /*. P = -Pi © • • • e Pt-

Let / = Ex + • • • + Ek be the corresponding idempotent decomposition
of the identity. If f is an ideal of ^ , we write f it — E^Ej (i, j — 1, • • •, k).
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Then each Y e / has a unique decomposition Y = ^,ftiYit, where Yu

(= EfYEj) e J'it • ^u may be identified with the commutator ring of P,
and then % (applied to the elements of ̂ u) becomes the adjoint mapping with
respect to f{ • ^Vu is the radical of #„, Jfu an ideal of ̂ H. We prove now that

k

(2.5.5) (dim0 J
9 - \ dim0 J) = £ (dim0 J% - \ dim0 Ju).

i=l

Indeed let YeS. Since E\ = Eit we have (Y*)o = {YHf. Therefore
Y € J9 if, and only if, Yti e J6

U{\ ^ * ̂  A), Yu = Q{YH)x\l ^i<j <k).
(2.5.5) now follows after a simple computation.

In view of (2.5.5), we may now assume that / is directly indecompsable.
By theorem 2.4.1 (cor.), P has no proper direct decomposition into multi-
pliers. By theorem 2.3.1 and our assumption that / + P is non-singular
when f = 2 and Z = Zo, either P is directly indecomposable or P has a
proper direct decomposition P = (— P') ® (— P"), where P' and P"
are directly indecomposable multipliers. If g is a form with multiplier P and
f the adjoint mapping with respect to g, it is easy to see that ^~e{%) and
«/fl(f) are isomorphic Z0-spaces. We may therefore now assume that P i s
directly indecomposable.

We distinguish two cases. First case: either Z =£ Zo or P2 — / is non-
singular. Here ^ contains a non-singular central element M such that
Mx = — M and so dim0./9 is given by (2.5.4). In fact, if Zo ^ Z, we may
take M = (A — AJ)7, where A is any element of Z not in Zo, and if P2 — /
is non-singular, we may take M = P — P"1. Second case: Z — Zo and
P = ± I — R, where R is nilpotent and indecomposable. Let R' = 0,
i?»-i :£ 0; then . / is one of the ideals Jt = VR'il ^i^e). Let now
Y = xR* + PR'+1 H (i< e). By lemma 2.4.2, Y* = xJ'(- lyR* -\ ,
where a/' has the form X-xa.JX, XJ = ± X. Let D" denote the Z0-subspace
of D formed by its elements fi such that fiJI = 6 /i. Then the dimensions of
D and De have the forms

dim0D = &2, dim0D
9 = \k(k + Or) (r = ± 1)

(cf. Dieudonn^ [2]). Since Y ± Yx = (a ± OLJ'(- 1) ')^ ' -\ and <6
satisfies the trace condition, it follows that

dimo./f - dim0J^f+1 = dimo(J^ + J
= \k{k + ( -

Thus

(2.5.6) (dinv/f-^dinio./,) = (dimo^f+1-idi

from which the value of dim0t/,
9 — J dim0J^i follows at once.

In particular, suppose that G is a finite-dimensional symplectic or ortho-
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gonal group over a field of characteristic not 2. Let <u" be the multiplicity of
(t -f- a*)* as elementary divisor of X (<o = ± 1; t = 1, 2, • • •). The above
methods give, for the group SQ in theorem 2.2.3,

(2.5.7) dimoSo ( t *) - i dimo^r = \e £ ( ^ + 1 - / 4 ) ,
*si

where e = 1 or — 1 according as G is symplectic or orthogonal.

Orthogonal groups. (G = O(Q), Q(x) = \x\, p — 2). The principal modifica-
tions necessary (apart from the obvious replacements of F by Q, F{ by Qit

etc.) is to substitute the singular radical for the radical throughout. Thus,
the core of Q on L is the non-degenerate quadratic form on L/L" defined by

|s+ £"1 = 1*1 (xci).

Also W is to be replaced by W in the definitions of C2, C3, A and in lemma
2.5.4. All the unitary results carry over with the possible exception of lemma
2.5.2. I do not know whether CJC^ is always isomorphic to the orthogonal
group 0(Q') of the core Q' of Q on Wx. However, this is true if W = W,
and in any case CX\C% is isomorphic to a subgroup of 0(Q') which contains
all finite-dimensional elements.

2.6 Example: finite classical groups. We suppose now that D is a Galois
field GF(q), where q — pa, and that the dimension, n, of V is finite. The
symplectic and orthogonal groups over fields of characteristic 2 are excluded
from the discussion. Three cases arise.

(A) Unitary. Here q is a square r2 and XJ = Xr. Any two non-degenerate
skew-Hermitian forms on V are equivalent, so that the unitary group
U(n, r2) is essentially unique. Its order is

(2.6.1) \U(n, r2)| = r*(nl-"> f[ {r* - ( - 1)').
I

In this unitary case we allow p to be 2.
(B) Symplectic. Here n is even: n = 2v. We assume that p # 2. The

2v-dimensional symplectic group Sp(2v, q) is essentially unique and

(2.6.2) \Sp$v,q)\=f[itf*-\).
I

(C) Orthogonal. We assume that p ̂  2. If n = 2v, a non-degenerate
quadratic form \x\ on V is equivalent to

V

2*81-1*2* (°f Witt index v)

or

(xj - dx\) + 2*2i-i*2< (of Witt index v - 1),
2
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where d is a fixed non-square of D. The corresponding orthogonal groups
are denoted by 0+(2v, q), 0_(2v, q) respectively. Their orders are

(2.6.3) |0±(2r, q)\ = 2q"2-"(q" T 1) S (<72< - 1).
l

If n = 2v + 1> |*| is equivalent to

£*? or 6^x1
I i

The common orthogonal group is denoted by 0(n, q). Its order is

(2.6.4) \0(2v +l,q)\ = 2q>* JJ (q*< - 1).
I

For notational convenience, we observe the following conventions. If n is
even, 0(n, q) stands for an unspecified one of 0+(n, q) and 0_(n, q). If « is
odd, O+(n, q) = 0_{n, q) = O(n, q).

Notation. X stands for a non-singular linear transformation on V. <f> = <f>(t)
stands genetically for an irreducible monic polynomial over GF(q), distinct
from t. \<f>\ denotes the degree of <f> and m(<f>*) the multiplicity of <f>K as elemen-
tary divisor of X. \K\ denotes the number of elements in a finite set K.

Case (A). This is the simplest case. In a number of respects, U(n, q)
behaves like the full linear group GL(n, q).

(i) X is similar to an element of U(n, q) if, and only if, X ^X*'1, i.e.
m(<f>") = m($K) for all <f>, K.

(ii) Two elements of U(n, q) are conjugate in U(n, q) if, and only if, they
are similar.

(iii) The number of conjugacy classes in U (n, q) is the coefficient of tn in

ii ll -
(iv) Let XeU[n,q). Write

\GL(m/t,Q)\i

where Q = qW, m^ = m^). Then the order of the conjugacy class of X in
U(n,q) is

Proof of (i). Suppose that X^X*'1. Let P be the restriction of X~x
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to W = V(I — X). Since P ~ P*~}, P is the multiplier of a certain form /,
by theorem 2.3.1. Let

(2.6.5) G{x,y)=f{x,y)~f{y,x)J.

Now, since W = V(I — X), dim V — dim W = mx + m2 -f- • • •, where
mt = m({t— 1)*). Also, by (2.6.5), the G-radical W of W is the null-space of
I — P. Hence dim W = m2 + m3 + • • •. Since dim W <: dim V — dim
W, G can be extended to a non-degenerate skew-Hermitian form F on V.
Then X is similar to the element of U(F) with space W and form /, which
proves our result.

Proof of (ii). Suppose that X ~ Y, where X,Y e U(n, q). By theorem
2.4.2, it is sufficient to prove that corresponding Hermitian invariants of
X, Y are equivalent. Let %, yi be the Hermitian invariants of X, Y corre-
sponding to the elementary divisor </>" (where tf> = <f>). Let m' be the common
multiplicity of (f>K as elementary divisor of X, Y, A — D[T] the field obtained
by adjoining a root T of <f> to D, ]' the involutory automorphism of A which
extends / and maps T into T^1. Then %, %p are both w'-dimensional, non-
degenerate, /'-Hermitian forms over A. Since / ' is not the identity, % «a y>
as required.

Proof of (iii). We use a method of W. Feit and N. J. Fine ([3]). Let kn

denote the number of conjugacy classes in U(n, q). By (i), kn is the number
of similarity classes of linear transformations X such that X ~ X*-1.
Let /x(<), f%(t), • • • be the invariant factors of X, where fi+1 is a divisor of ft

for each i. In terms of the quotients g, = ftlfi+1, the condition X ~ X*"1

means that

(2 6 6) g < ( 0 ) * ° ' gi = ii C - 1 ' 2 ' " - > '
\gi\ + 2|g,| + 3|g,| + ••• = ».

Let c(<i) denote the number of monic polynomials g(t) such that

0, g = £. \g\ = d.
Then, by (2.6.6),

K =
and so

An easy enumeration gives c{i) = qi* -f gi'*-1', so that 2C(^)^ = (* + 0
(1 — ^i^)"1. This proves our result.

Proof of (iv). It is required to prove that \C(X)\ = ]J^B{<f>). We use
the notation of § 2.5. By lemma 1.4.4 (cor.) and lemma 1.4.5 (cor. 2), we have
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dim Wx = ;£>;,

where m't = m({t — 1)*). By § 2.5 and theorem 2.2.3,

= \N(t

\Ct\ = y

The value of |2V(J, # ) | follows from the discussion in § 2.4 and \^V\ is easily
evaluated from elementary divisor theory. We find that

|C/CX| = ( IT

whence \C\ = H$JB(<£) as required.
Case (B). This case is similar to the unitary one, but with added compli-

cations due to the elementary divisors (t ^ 1)*. Notation. If X e Sfl(n, q), let
y)2i{X), ipuiX) denote the Hermitian invariants of X associated with the
elementary divisors (t + I)2', (t — l)2i~x of P respectively, and thus, by
lemma 1.4.5 and corollaries, with the elementary divisors (t + l)2i, (t — 1)2<

of X respectively (i = 1, 2, • • •). The ^(X) are symmetric bilinear forms
over GF(q).

(i) X is similar to an element of Sp(n, q) if, and only if,
(a) X~X*~\
(b) each elementary divisor (t ± l)2*+i of X has even multiplicity.

(ii) Two elements X, Y of Sp(n, q) are conjugate in Sp(n, q) if, and only if,
(a) X ~ Y,
(b) y+(X) « WUY) and V^(X) « VS(Y) (» = 1. 2, • • •)•

(iii) The number of conjugacy classes in Sp (n, q) is the coefficient of tn in

(iv) Le^ X e Sp(n, q). Then the order of the conjugacy class of X in Sp (n, q) is

\Sp(n,q)\lllB(<f>),

where B(<f>), A {^>lt) are defined as in the unitary case, except that, when <j>{t) =

t± 1,

Here Oim^.q) is the orthogonal group of the corresponding Hermitian in-
variant
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Proof of (i). Let X e Sp(n, q). (a) holds as in the unitary case. By lemma
1.4.5 and corollaries, the multiplicities of (t + 1)2*+1, (t — l)2k+3 (k ^ 0) as
elementary divisors of X are the multiplicities of (t + 1)2&+1, (t — 1)2*+2 as
elementary divisors of P. By theorem 2.3.1, (b) holds for (t + 1)2*+1,
(t — l)«*+s(ft ^ 0). It also holds for (t — I)1, because the multiplicity of
this elementary divisor is the dimension of the (non-degenerate, alternate)
core of F on Wx. Thus the conditions are necessary. Their sufficiency is
proved as in the unitary case.

Proof of (ii). As in the unitary case. The ip£t are the only Hermitian in-
variants for which the corresponding automorphism ]' is the identity (by
lemma 2.4.2).

Proof of (iii). Let F(t) = ~£knt
n be the generating function for the number

of conjugacy classes in Sp(n, q). By the Fitting decomposition,

F(t) = F0(t)F+(t)F_(t),

where Fo, F+, F_ are the generating functions for the numbers of conjugacy
classes of X e Sp (n, q) such that X2 — I is non-singular, X + / is nilpotent,
X — I is nilpotent, respectively. By the method of the unitary case,

A=l «=0

where c'(d) is the number of monic polynomials g(t) such that

Let c(d) be the number of monic polynomials g(t) such that

0, g = g, \g\ = d.

Out of these c(d) polynomials of degree d, c(d — 1) are divisible by / + 1,
c{d — 1) by t — 1 and c(d — 2) by t2 — 1. Hence

c'(d) = c{d) - 2c{d - 1) + c(d - 2)
and so

2c'(*y=(i-0*2c(*X'.
• i

An easy enumeration gives ^,c(i)t* = (1 -f t)2(l — qt2)'1, whence

Since X — I is nilpotent if, and only if, (— X) +1 is nilpotent, we have

F+(t) = F_(t).

Let X be a linear transformation such that X -\-1 is nilpotent and let m{
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be the multiplicity of (t + 1)' as elementary divisor of X. The conditions
that X be similar to an element of Sp(n, q) are:

m2i+1 = 0 (mod 2) (.* = 0, 1, • • •)
mx + 2m2 + ••• = » .

Each such set of mi gives rise to 2* conjugacy classes of Sp(n, q), where s is
the number of non-zero multiplicities m2, m4, • • •; for if mZi ^ 0 there are
two possible equivalence classes for the Hermitian invariant y2i. It follows
that

Hence

= n
as required.

Proof of (iv). As in unitary case. We remark only that \SQ \ differs from
^ ( P ) ! * in this case. The correction factor (2.5.7) is incorporated in the
modified definition of A((t ± I)2*).

Case (C) Two kinds of complication arise in this case, the first due to
the elementary divisors (t ± 1)* and the second to the fact that there are
two orthogonal groups for a given even dimension. Notation. If X e 0(n, q),
let y>£i-i(X), y>2i+1(X) denote the Hermitian invariants of X associated with
the elementary divisors (t — I)2'"1, (t + I)2' of P respectively, and thus, by
lemma 1.4.5 and corollaries, with the elementary divisors (t + I)2'"1,
(t — I)2'-*-1 of X respectively (i = 1, 2, • • •). The T/>£-I> y>2i+1 are symmetric
bilinear forms over GF(q). It is formally convenient to define yf[ as the core
of F on Wx. Then ^ _ i is defined for i — 1, 2, • • •.

(i) X is similar to an element of some orthogonal group 0 (n, q) if, and only if,
(a) X~X*-*,
(b) each elementary divisor (t ± I)2* of X has even multiplicity.

(i)' Let n be even and suppose that (a), (b) in (i) are satisfied. If any
elementary divisor (t i 1)2*+J of X has positive multiplicity, X is similar to an
element of O+(n, q) and also to an element of O_(n, q). If every such elementary
divisor has multiplicity zero, X is similar to an element of O+(n, q) (0_(n, q))
if, and only if, ^^m^) = 0 (mod 2) (Z^fimtf") = 1 (mod 2)).

(ii) Two elements X, Y of 0(n, q) are conjugate in O(n, q) if, and only if,
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(a) X ~ Y,
(b) yJ+1(X) « wti+1(Y) and ^ ( X ) ** vi+iPO (* = 0, 1, • • •)•

(iii) Let k%, kn denote the numbers of conjugacy classes in O+(n, q), O_(n, q)
respectively. Then

2 (*: - w = n h—
n=0 A=l \ 1 —

A—2

(iv) Let X eO(n, q). Then the order of the conjugacy class of X in O(n, q) is

\O(n,q)\fUB (<{>),

where B(<f>), Aty?) are defined as in the unitary and symplectic cases, expect
that, when <j>(t) = t ± 1,

^.q^ (fi even).

Here 0 (m^, q) is the orthogonal group of the corresponding Hermitian invariant

Proof of (i), (ii), (iv). As in the symplectic case.
As a preliminary to the proof of (i)', we derive a formula for the Witt

type * of the fundamental quadratic form in terms of the conjugacy in-
variants of an element X of its orthogonal group O(n, q). (We may regard
O(n, q) either as the unitary group U(F) of the nondegenerate symmetric
bilinear form F(x, y) = x • y ox as the orthogonal group O(|ccJ) of the quadra-
tic form |x| = \F(x, x).) There are 4 Witt types over GF(q), viz. 0 ,1 , 6, (a =
1 — d, corresponding to the forms 0, x2, dx2, x2 — by2, where 6 is a fixed
non-square of GF(q). The Witt type of a quadratic form % is denoted by
T(X) and we write i*+ 1 = r(y>fi+1(X)).

Let W, g(x, y), P be the space, form and multiplier of X, f(x, y) a standard
reference form with multiplier P and Q the representative of g with respect
to /. The Hermitian invariants y>2i-i(X) are calculated with respect to /.
We suppose that the matrices of /, P, Q are as in § 2.4. By theorem 2.4.2,
we may assume that, in (2.4.4), Q = diag (Q11, •••,Q"). An index i
(1 5S i fg s) will be called exceptional when it corresponds to one of the
Hermitian invariants ipf, y%, • • •, i.e. when (* 5S r and) the minimum poly-
nomial of P* is (t — I)2*-1 or (t + I)2*. By (ii) above, we may assume that,
in (2.4.5), Q" is the unit matrix when i is not exceptional, and a block-
diagonal matrix diag (a/, 81, • • •) when i is exceptional, where TJJC2 + fiy2 -\

• Cf. Bourbaki [1], § 8.

https://doi.org/10.1017/S1446788700027622 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027622


40 G. E. Wall [40]

is equivalent to the corresponding Hermitian invariant yai+i-

LEMMA 2.6.1. For a suitable choice of f,

(2.6.7) r(|*|) = (2 ' pmW))ta + 2 TjJU,

where summation 2 ' is over all powers <$>* of irreducible monic polynomials <f>(t)
distinct from t, t + 1, t — 1.

PROOF. Let \x\' denote the restriction of \x\ to W. By (1.1.3), \x\' = g(x, x).
Also it is easy to see that

(2.6.8) T(\X\) = rr + T(\X\').

Now let /', g*, \x\*' denote the direct summands of /, g, \x\' corresponding to
P* (1 5g t5S s) and fi the direct summand of / corresponding * to P(

(1 ^ i t==r)- Suppose first that r + 1 ̂  i ^ s. Then f*(x, x) = g'(a;, x) =
\x\*. By (2.4.3), the matrix of \x\*' is

*C+(n«)-i o+(/7)* )'
whence r(|a;|*') = 0. (It is easy to see that this is true whether / + (J71)*"1

is singular or not.) The corresponding part (2"/nm(<f>l'))oi in (2.6.7) is also
zero. In fact, summation is over the powers <f>^ = (t ± I)2* (for which the
multiplicities w (<£>*) are even) and over the powers ^ such that <f> =£ <j>
(which occur in pairs <ff, fr with m^) = mffi)).

Suppose next that 1 5g i ^ r. First let i be exceptional. By the way in
which g* was chosen, we have

T(W) = Tig'ix, X)) = T(V) X T{ft{x, X)),

where y> is the corresponding Hermitian invariant and where X denotes
multiplication in the ring of Witt types. The elementary divisor of Pt is
either (t — I)2*"1 or (t + I)2*. Since the matrix of f{(x, x) is \{Sit + Qf) =
\(I + Pj^Qi, fi(x, x) is a form of odd rank 2A: — 1. Hence, replacing /*
by df* if necessary, we may suppose that t{fi{x, x)) = 1 and so

Tflaf') = T(V).

These terms, with tl in (2.6.8), give the part 2 T«-i m (2-6-7)-
Finally, let * be non-exceptional (and ̂  r). Then the minimum polyno-

mial of Pi is a power ^, where <f> — <f>, <f>(t) ^£ (t ± 1). Since / + Pt is
non-singular, /̂ (a;, a:) is non-degenerate. By lemma 2.4.2, the field obtained
by adjoining a root of <f> to GF(q) has an involutory automorphism which

* There are actually mt different summands of / corresponding to the mt occurrences of Pt

in (2.4.2). But all are equivalent because / is standard.
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is the identity on GF(q). Hence \<f>\ is even, and so the dimension of f((x, x)
is even. By the form of (2.6.7), and since f{x,x) = g*(x,x) = |ar|*', it
remains only to prove that

(2.6.9) r(ft{x, x)) = pa,

i.e. that f({x, x) has type 0, to according as p is even or odd.
To prove (2.6.0), it is convenient to change to the notation of the proof

of lemma 2.3.3. Thus we identify ft(x, x) with the quadratic form
p(R) = x{RR°) o n t n e ^-space ,2°. The Supplementary Remarks in § 2.3
show that it is sufficient to prove our result when p — \. In this case,
JT ~ GF(<f), Re = Rqid+1, where d = \4>\. Let &0 be the subfield of JT of
index 2. There are ql*'1 — 1 non-zero solutions S of %(S) = 0 in 2?0 and,
for each such S, q** + 1 elements R of iT such that RRe ='S. Hence the
number of non-zero solutions of p(R) = 0 in 3£ is (qi*-1 — l){qld + 1).
This shows that T(/>) = o, as required.

Proof of (i)'. This follows immediately from (i) and lemma 2.6.1.
Proof of (iii). Let

= 2 (*: ± KYn,
where k% is the number of conjugacy classes in O±(n, q). Let F^, F$, Ft, F%
be the similarly defined functions for the numbers of conjugacy classes of
elements X of 0±(n, q) such that X2 — I is non-singular, X + / is nilpotent,
X — / is nilpotent, tf>(X)<f>(X) is nilpotent, respectively.

By lemma 2.6.1, and the methods of the symplectic case, we have

(2.6.10) F± = F±F±F± =

If ^ = 9* ^ (< ± 1), the coefficient of i!n in F j is the number of similarity
classes of linear transformations Z o n F such that <j>(X) is nilpotent, i.e.,
the number of partitions of nl\<j>\. Hence F${t) = P(tw), where P(t) =
TIALI(1 - ^ ) - 1 - Similarly, if <f> # $, F${t) = P{t2'^). Hence

(2.6.13) F%{t) = f |
A = l

where ATA is the number of <£ such that <f> = j> ^ (f ± 1), |0| = A , and MA

the number of pairs of p1 such that </> ^ ^, j<̂>[ = A.
A similar argument, together with lemma 2.6.1, gives

(2.6.14) FZ(t) = f l (P(-
A
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Let &0(t) be the generating function for the number of similarity classes
of linear transformations l o n F such that X(X2 — /) is non-singular.
Applying the two different methods used to evaluate F%(t), we get

00

*o(o = n
(2.6.15) A~X

By (2.6.12)—(2.6.15), we have

(2.6.16) _ ~ r(i-^)(i-^n
£A L (i - «**) J '

Let X be an element of 0(n, q) = 0{\x\) such that X + I is nilpotent and
let *»< be the multiplicity of (t + 1)' as elementary divisor of X. Then

m2i = 0 (mod 2) (» = 1, 2, • • •),

m1 + 2w 2 + ••• = » ,

Tf + T+ + • • • = T(|*|).

It follows, as in the symplectic case, that

= (1 + 2 S <') (5 <*') (1 + 2 | /«) ( f /«) • • •
(2'6-17)

 fi rd + ^ n

If s of the multiplicities m1, m3, • • • are positive and s > 0, then one half of
the 2* choices of the types TJ, TJ, • • • give rise to an element of 0+ (n, q)
and the other half to an element of O_(n, q). It follows that the coefficient of
t" in F^.(t) is the number of solutions of

m2i = 0 (mod 2) (i = 1, • • •)

2m2i + 4mi{ -\ = n.
Thus

(2.6.18) F+(t) = P(t*) - fl (1 - <«)-i.

The values of F±{t) now foUow from (2.6.10), (2.6.12), (2.6.16), (2.6.17),
(2.6.18). (Note that n?=iU - '4A~2) = IT?^(1 + t*)~\)
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3. Equivalence (Exceptional Case)

Throughout § 3, D is a field of characteristic 2, / is the identity, W a
vector space over D of finite dimension M and P a linear transformation on
W such that N = I + P is nilpotent. We consider the equivalence of forms
on W with multiplier P. This is the simplest case in which theorem 2.4.1
breaks down. It is essentially more complicated than the cases treated
already and our results are complete only when D satisfies the additional
hypothesis:

(3.0.1) every ternary quadratic form x2 -\- xy -\- Ay2 + pz2 over D is indefinite
(i.e. represents 0 non-trivially).

We remark that (3.0.1) holds when D is perfect or when every quadratic
extension of D is inseparable. Hence we shall be able to solve the conjugacy
problem for the finite classical groups O(n, 2a) and Sp(n, 2").

3.1 A matrix representation of *6'. For brevity, we omit most of the proofs
in this section. They are direct, though somewhat long, verifications.

Consider a splitting of P into indecomposable parts, say

W= © Wt, Wt= © Wu,

m,
P = © Pit P , = © Pu,

where PH is indecomposable and has minimum polynomial (1 + 0'»
where some of the multiplicities m{ may be zero. By theorem 2.3.1, w< is
even when i is even. By the same theorem, we may suppose that the standard
reference form / has the form

/ = © ft, ft = © /« (*odd), ft = © <j>ii2i (seven),
i = l 3 = 1 1 = 1

where (f>i2i is a form on W^^-i © Wi2i, which vanishes identically on each
of W<(2i-i and Wi>2j.

We define the ftj and (j>i2j explicitly as follows. Choose a basis of W(j of
the form uti, utjN, • • •, u^N*"1. We first postulate that

L (i odd, 0 sS A 5S i — 1),

= 1 (i even, 0 <; A ^ i — 1).

Then we extend the definition to the whole of Wti or Wi>2i-i © Wi2i, by
requiring that (xP~l, y) = (x, yP) = (y, x) for all x, y in these subspaces.
It may be verified that this definition is possible and unambiguous, and that
it yields a non-degenerate form / with multiplier P.

Let Dt denote the ring of formal power series 2J5° «A^A o v e r D a n ( i Mt the
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ring of m' X m' matrices over Dt, where m' = 2 i w« (*ne number of in-
decomposable parts of P). We write the elements of Mt a s r x r block
matrices:

where fl^ is an mi X ra, matrix over Df, and we denote the element in the
£-th row and l-th column of Sitj by a><fc.3-,. The notation £i(ta) indicates a
matrix whose elements are power series in t".

We now show that the elements of & s <&(P) can be represented by
certain elements of Mt. Consider the set C of all matrices

and the subset if of all matrices

It is easily seen that C is a Z)-algebra and if a (D-algebra) ideal of C.

LEMMA 3.1.1. / / $ e C , £Aer<? is a unique element [<P] of <€ such that

««[*] = I ^lAr4W-'+!^l)^;Jl(iV) (1 ^ i^ r; 1 ̂  A jg m4).

mapping 4> -> [<P] is a (D-algebra) homomorphism of C onto ^ with
kernel K, so that <£ ~ CIK.

Let co = 2«A^ A « £>„ !2 = («»«.„) e M ( .
We define

oo

55 = 2 aA^A. where I = 2 ^A»
I

&* = (0,*;,i). where 0 , M , = W;,.,*.

Then the mapping Si -> fl* is an involutory anti-automorphism of Mt .
Let T denote the 2 x 2 matrix ( ^ ^ ' j . We define the matrix

where the w,- X w^ matrix Wj is the unit matrix for odd i and the block
diagonal matrix diag (T, T, • • •, T) for even i. Then W = W1 = W*, so

I i

that the mapping (*m<)

(3.1.1) fi ^ fit = W.Q* W

is also an involutory anti-automorphism of Mt. I t is easily seen that f
induces involutory anti-automorphisms of C and K, and thus of CjK.

LEMMA 3.1.2. / / # e C, [4>t] = [4>]t.

In other words, if we identify CjK with ^ according to the isomorphism
&+K*-> [<&], then the mapping (3.1.1) induces the /-adjoint mapping in # .
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3.2 Analogue of theorem 2.2.1. Although the Approximation Theorem
itself is false in the present case, we can prove a weaker result of the same
kind. Consider, in *£, the set & of elements

X = © Xf,

and the subset 3F of elements

y = © Nx*Yt,

where
i = S f i odd) \
' ~~ 2 (i even) j '

Clearly $ is a subalgebra of # and ^" an ideal of S.

LEMMA 3.2.1. Every non-singular, ^-symmetric element Q of %> is ^-con-
gruent to an element of S'.

PROOF. Let E( be the element of # which maps Wf identically onto itself
and every other Wt onto {0}. Write

Clearly, Qxe S. Since Q2, Q3e^V, Q1 is non-singular. Since Q is f-symmetric,
Q1 is f-symmetric and Q3 = Q\.

Assume now that Q2e^irk (k^l). We prove the lemma by showing that
Q is f-congruent to S, where (in the same notation) S2e^Vk+1. In fact, let

S = (/ + Q-i

Then S2 = J.i<jEiQlQ-iQiEj c (.yT*)2 Q JT*+\ as required.
The above proof actually gives the slightly stronger result:

COROLLARY 3.2.1. Let'S be an ideal of IS, Q1andQ2non-singular, f -symmetric
elements of <€ such that Qx = Q2 (mod <S). Then Qx, Q2 are f-congruent to
elements Rlt R2 of £ such that Rx = R2 (mod &).

LEMMA 3.2.2. Let Q be a ^-symmetric element of N2k^{k S; 0). Then Q has
the form R + Ri, where R e N**^.

PROOF. By the method of proof of lemma 3.2.1 we may suppose / inde-
composable. Thus, either (a) / = fa (i odd) or (b) / = <j>i2 (i even).

Case (a) <€ is the polynomial algebra D[P] and iV2*^ = N2k+3(£. Let Z
be the subspace of ^ formed by the f -symmetric elements. Write i = 2e + 1.
Since the matrices Px (— e ^ X ^ e) form a basis of <€, the elements I and
px _|_ p-x ^ <^x^e) obviously span E. Hence the elements I and
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(P + P-1)A(1 ^ A ^ e) also span Z1. Since P + P"1 = N2 + N3 -\ ,
the elements (P + P"1)* (k + 2^X^e) span 27 n Nik+3V. But (P + P-*)A

= Xx + X{, where Xx = 2V" (P + P-*) \ and Xx eN2!c+3V when £ + 2 ^
A 5S <?. This proves the lemma in case (a).

Case (b) Each S e # is determined by the pair of equations

M a S = j>MsA, ,(P) (A = 1 , 2 ) ,

and therefore can be represented by the 2 x 2 matrix (sX/i(P)) over D[P].
It can be verified that the lemma is equivalent to the following statement:

(3.2.1) if g(P) is an element of N2k+iD[P] such that g(P) = PgiP'1), then
g(P) = h(P) + PhiP-1) for some h(P) eN2k+2D[P].

Let E be the subspace of D[P] formed by the elements g(P) such that
g(P) = Pg(P~1). Let i = 2e. Writing g(P) in terms of the basis elements
PA(— e + 1 5£j A 5S e), we see that the elements PA + P1-* span Z. There-
fore S consists of the elements of D[P~\ of the form h(P) + Ph{P~1). Hence
the elements Nx + P(iVt)A = N(iVA-1 + (iVt)A-1) span E, and so the ele-
ments N(N + 2Vt)A also span E. Since N + W = NM = N2 + N3 H ,
the elements iV(iV + Art)A (k + 1 ̂  A ^ 2e — 1) span 2" n iV2*+2Z)[P]. But
YA + PY\= N(N + iVt)A, where Yx= {N + iVt)A, and YA eN

2k+2D[P]
when ^ + l ^ A ^ 2 e — 1. This proves (3.2.1) and the lemma.

COROLLARY 3.2.2. Let Q e S. Then Q + IF is the canonical image of a
^-symmetric element of € if, and, only if, Q = (?t (mod 3F).

PROOF. If Q = gt (m od ^ ) , then, by lemma 3.2.2, (? + <?t = i? + j?t
for some R e ̂ . Thus <? + Ĵ " is the canonical image of the f-symmetric
element Q -\- R. The converse is obvious.

THEOREM 3.2.1. Let <S be an ideal of <€ such that <3 n S Q &'. Let Qlt Q2

be non-singular, ^-symmetric elements of <& such that QiSsQ2 (mod &). Then
Qi is ^-congruent to Q2.

PROOF. By corollary 3.2.1, we may suppose that Qlt Q2 e £ and thus that
Qx = Q2 (mod &). Assuming that Qx = Q2 (mod N2k^) (k^O), we prove
the theorem by showing that X^QXX = Q2 (mod N2k+22?) for some XeS.

By lemma 3.2.2, Q1 + Q2 = L + Lt, where L e F ^ . Let X = / +
(J^ i . Since * LI Q?L e N*"^2 QN2k+2&, we have Xt&X == (?2 + L t ^ L
= Q2 (modiV2*+2^), as required.

• Up to this point, we could have taken Af = 1 (i odd) in the definition of &'• But here
we definitely require X( j£ 2 (all i) in order that N1"^2 £ Nik+'^ when ft = 0. Since lemma
3.2.2 is only valid when Xt = t (mod 2) (all t), we are led to the values A, = 3 (i odd), A< = 2
(» even) adopted in the definition.
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The results of this section reduce the problem of f-congruence to the
following one:

(3.2.2) given non-singular elements Q, R of £ such that Q = @t and R E= i?t
(mod^"), to determine the conditions that X^QX = R (mod @) for
some X e <&.

We may assume, where convenient, that Q, R are actually f-symmetric,
so that the forms

(3.2.3) g(x, y) = (x, yQ), h[x, y) = (*, yR)

have multipher P. Then, since Q, Re S, g, h have direct decompositions

(3.2.4) g = gi ® ' • • ® gr>
 h ~ K ® ' - • ® K-

If H = (ilt • • •, is) is a subset of (1, • • • r) we write

(3.2.5) gH = gh ® • • • 0 git, hH = hh ® • • • 0 hu.

3.3 Detailed equations of congruence. We consider the problem (3.2.2) in
terms of the matrix algebra C. Let E, F, G denote the subrings of C which
correspond to <?, «̂ ~, ^ . Thus E consists of the matrices diag (Xlt • • • Xr) e C,
and F of the matrices in E such that* Xx = 0 (mod t2), Xt = 0 (mod ft)
(i odd and ^ 3), X( = 0 (mod <4) (i even). We define G as the set of matrices
(*""" #„(**)) such that

diag ( * u , •••*„.) e F,
^i} ^ 0 (mod t2) when |* — j\ = 1 (all *')
^..^ = 0 (mod t2) when |t — /| = 2 (all odd t).

It is easily verified that G is an ideal of C and that KCG, G n E = F.
Thus, the corresponding ideal 'S in ^ satisfies ^ n <? £ ^" as required in
theorem 3.2.1.

Choose matrices Q, R e C which represent the elements Q, R in (3.2.2).
Write

= diag «?!,-••,<?,)
= diag {Rlt---,Rr).

Since Q is non-singular and Q = ^ t (mod ^"), we have

Qr = S2 (mod <2)
Q,. = S, + (P€ + P*)t2 + Ptt* (mod <•) (* odd and ^ 3),

where the Sf, P4 are matrices over D and the Ss non-singular and symmetric;

(3.3.2) ^ _ c , m , OT\

• A matrix congruence (ait) = (b(j) (mod tk) means that ait = bit (mod tk) for all i, j .
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and

(3.3.3) (1 + t)Qt = Pt + Pf + P, t2 (mod t*) (i even)

where the Pt are matrices over D such that P4 + Pf is non-singular.
The form of Q,- can be simplified by a preliminary transformation Q ->

Xt QX, where X is an element of E in which only the i-th diagonal block, Xt,
differs from the unit matrix. Let the i-th diagonal block of WX* QX be Q(.
Taking X, = yM<> 1 + Ytt

2, I + Z(P in turn, where Mit Yit Zt are matrices
over D, we get, when i is odd,

MfStMt + ••• 1
Q,. = S,. + ( ( Y f S t ) + ( Y f S { ) T + P t + P?)t* + •••

S< + (Pt + Pf)P + ({ZfSt) + [Z*St)
r + P{)t* + - - - )

and, when i is even,

~ (Pi + Pf) + (Y?{Pt + Pf) + (Yf (P, + Pf))T + Pt

When m{ is even, let Jt denote the "canonical" alternate * matrix

• • (?! ) ) •
i \ i

A non-singular symmetric matrix over a field of characteristic 2 is congruent
to the canonical matrix if it is alternate and to a diagonal matrix otherwise
(Jacobson [5]). We may therefore suppose that, in (3.3.2),

(3.3.4) either Si = Ji or S< = diag (s{, • • • s^),

and that, in (3.3.3),

(3.3.5) Pt + P* = Jt.

By the second and third equations for Qit we may further suppose that, in
(3.3.2),

(3-3.6) P t = diag (PI---K),

and that, in (3.3.3),

Thus

(3 3 2)' O l ^ S l ( m ° d t2)'
Qi = Si + P^ (mod t6) (i odd and ^ 3),

* An alternate matrix is one of the form M + MT.
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(3.3.3)' (1 + t)Qi=J1 + PJ* (mod **) (* even),

where (3.3.4)—(3.3.7) hold. Similarly, we may suppose that

Rx = 2, (mod t2),
(3.3.2 "

Rt = 2t + ntfl (mod fi) (i odd and ^ 3); .

(3.3.3)" Rt=Jt + n^ (mod**) (teven).

Let now X= (f'*"1' Uu(t
%)), where

U =X- + YJ* + ZJt (mod*8),

the A"o F1( ^i , Xw being matrices over D. Write

(3.3.9) Kt = YfSiXi (i odd and ^ 3).

Then the equation X*QX = R (mod G), i.e. X* WQX = W# (mod WG),
i ld h f l l i t f ti

q ( )
yields the following system of equations:

7(A odd).

(3.3.10) Sx = X? SAXA

(3.3.11) Kx + 2 îr+»,A'PA+*^A+*,A is symmetric (A ̂  3).

(3.3.12) UA « ^ P A X A + tfA + I T ^ 1 * ? |

"T" Z, AA+*,A':'A+*-*A+*>A+ 2, -AA+*,A*^A+*-AA+*,A I
*=±2 t-±l '

(3.3.13) 0 = XT
KSxXkA+x + Xf+liAJA+1ATA+1 (A ^ 3).

(3.3.14) 0 = Xx SXXX A + 2 + ^A+l,A«^A+l-^A+l,A+2 + •^A+2,A'SA+2-^'A+2-

(A ^ 3 )
77 {[i even).

(3.3.15) J^XfJ^X,,.

(3.3.16) I I , «, XjP^X, + 2

( 3 . 3 . 1 7 ) 0 = X J J ^ X ^ + ^ ^ ^ ^

Remarks. (1) The symbol » in (3.3.12) and (3.3.16) means that the two
sides of the equation are equal apart from terms of the form M -\- MT.
Taking into account the form of these equations and (3.3.15), this simply
means that corresponding diagonal elements on both sides are to be equated.

(2) When A = 1, (3.3.13) and (3.3.14) do actually form part of the equa-
tion system. But we can omit them because they serve only to define X21

and X3l which do not appear in any other equations.
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(3) The complete set of equations (3.3.10)—(3.3.17) (for all A, ft) will
be denoted by 0. Let H be a subset of the indices 1, • • • r. Then the system
of equations (3.3.10)—(3.3.17) (for all X, fieH), with the omission of all
terms involving indices not in H, will be denoted by 0H. Clearly, 0a ex-
presses the equivalence gH m hH of the forms in (3.2.5).

3.4 Case of a single elementary divisor. With g, h as in (3.2.3), we study the
equivalence gt on h{ of individual summands in (3.2.4). (It should be empha-
sized, however, that the equivalence g «» h does not in general reduce to
the system gt «s ht (i = 1, • • • r).) We always assume that (3.3.4)—(3.3.7)
hold.

Consider first an even index (i. We associate with g^ the non-defective
quadratic form

(3.4.1) p^x) = 2 W ! * * - ! + *2<-i*2i + PSt4t).

in the vector x = (xx, • • •, xm ). Then we have

LEMMA 3.4.1. Let y, be an even index and, let p^x), n^x) be the quadratic
forms associated with g^, h^. Then gA «* h^ if, and only if, p^x) is equivalent
to n^x).

PROOF. The system 0^ consists of the two equations J^ — X^J^X^ and
IIM «a XpPflXM. It is easily seen that these express the equivalence of
Pn{x) and n^x).

The situation for an odd index X is more complicated and we require some
preliminaries on bilinear forms. Consider a non-degenerate symmetric
bilinear form <f> = [x, y] on the w-dimensional space W. The mapping
6 : x -> [x, x] is an additive homomorphism of W into D. Let W = 6(W),
Wo = 0-!(O). Since [he, Ax] = X\x, x],

(A) W is a D2-subspace of D of dimension k 5S m.

Let U denote the perpendicular space W$ of Wo with respect to <f> and
write % = 6(U). Let I be the dimension of °tt as Z)2-space. Then

/ = dim U - dim (U n Wo) = m - dim Wo - dim (U n Wo)

and, since the restriction of <f> to Wo is alternate,

dim Wo - dim (U n Wo) = 0 (mod 2),

whence

(3.4.2) Z = m(mod2).

Thus,

(B) °tt is a D2-subspace of iV whose dimension I satisfies (3.4.2).
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Let xx, x2, yx, y2 be elements of U such that txx,xx] = [x2>x2] and
[*/i. 2/il = [2/2.2/2]- Then xx - x2, yx-y2eU n Wo so that [xx, yx] =
[x2, y2]. Therefore the equations

uniquely define a function y = <A, /i} of the variables X, jif.%. It is easily
verified that

<A, 11) = <ji, A>

(C) <A + /i, v> = <A, r> + <At) v>

<A, A> = A

whenever A, /*, v e t , a e D . One constructs a function y satisfying (C) by
choosing a Z)2-basis sx, • • •, st of Ql and defining

(3-4.3) G.£si, 2ftsi>=2Pii*tpi,
where piS = pHe D and pu = s,- for all *', /. Conversely, every y is obtained
in this way. We call "W, W, y the invariants of <j>.

LEMMA 3.4.2. If W, °U, y satisfy (A)—(C), they are the invariants of a
non-degenerate symmetric bilinear form on W. Two such forms are equivalent
if, and only if, they have the same invariants.

PROOF. Choose a fixed Z)2-basis slt • • •, sk of W such that sx, • • •, s{ is a
basis of <2f. Let

A be the I X I matrix « s j ( s,>) (i, j = 1, • • • I),
B be the (k — I) x (k — 1) matrix diag (sl+1, • • •, sk),
J be the (m — 2k + I) x (m — 2k + I) canonical alternate matrix,
/ be the (k — I) x (k — I) unit matrix,
T be the m X m matrix

(3.4.4)

It is easily verified that a bilinear form with matrix T is symmetric and
non-degenerate, and that it has the invariants "W, W, y.

Suppose now that </> is any form with these invariants. We prove the last
part of the lemma by showing that </> has matrix T with respect to a suitable
basis. Let d'lt- • •, d'k_t be elements of W such that d(d'i) = sl+i (1 ̂  i ^ k—l).
Clearly, the d[ are linearly independent and span a complement of U + Wo

in W. Since £/ + Wo = (U n PF,,)-1-, there exist elements a1( • • •, «J._J of

https://doi.org/10.1017/S1446788700027622 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027622


52 G. E. Wall [52]

U n Wo such that [d^, af) = di} (Kronecker delta) and there also exist
complements U', W'o of U n Wo in (7, Wo which are perpendicular to
d[, • • •, <^_,. Let dg = d't + 23><|>2-, <*>]«*• T h e n { î. ' " ' dk-i} is a comple-
ment of U -+• Wo which is perpendicular to [/', W^ and [rf̂  i,] = d^Sf,
[d(, cij] = ^w. The (unique) elements blt • • •, 6, in U' such that d(b{) = s{

clearly form a basis of U'. Since the restriction of <f> to Wo is alternate and
U n VF0 = WQ n >F0, the restriction y of ^ to W^ is non-degenerate and
alternate. Hence there is a basis c1( • • •, cm_2fc+! with respect to which ip has
matrix J. It is now easily verified that <j> has matrix T with respect to the
basis at, • • •, blt • • •, cx, • • •, dlt • • • of W. This completes the proof.

By § 3.3, gx % hK (X odd) if, and only if,

(3.4.5) 2X = *rSAJtA

(3.4.6) nx ~ J^r^A^A + K^Kx + K,

for a non-singular matrix Xx and symmetric matrix Kx. (3.4.5) states that
the non-degenerate symmetric bilinear forms with matrices SK, Sx are
equivalent. Let us suppose that this condition holds. For convenience of
notation, we take W to be equal to its summand Wx. Then we may suppose
that SX = SX = T (see (3.4.4)). Let ^ be the form on W with matrix T, Xx

the linear transformation on W with matrix Xx. By (3.4.5), Xx leaves <f>
invariant. Therefore Xx leaves U, Wo, U n Wo invariant and so Xx has the
form

It is also easy to see (e.g. by considering the corresponding quadratic forms)
that the matrix equation

S)
implies that Y = /. Using these facts, we get

(
/ 0 X Y
0 / 0 0
0 0 Z W
0 0 0

where
ZT JZ = J,X= WTJZ, Y + YT = WTJW.

We may take

PA = diag {P*. Pi Pi P4
A), nx = diag (17*, III I73\ i74

A),

ATA= (Kti) (*,; = 1 . - - - .4 ) ,
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where the P,A, 2IA are diagonal and K?, = KH. Then (3.4.6) gives

PA + ffA » Ku + KuBKn

*BKU
( • • ' P} + n}** K22 + K*BK

and two other equations which may be omitted since they serve merely as
"defining equations" for Jf88, Ku. (3.4.7) can be written as a single matrix
equation

where AT is a symmetric matrix.
It follows that we can "normalize" PA, iIA by taking

(3.4.0) Px = diag (PA, Pi 0, 0), nK = diag (H*. /72\ 0, 0),

where the PA, 2IA are diagonal. Then (with 2X = Sx — T) gx «a hx if, and
only if, (3.4.8) has a symmetric solution K.

3.5 4̂ reduction theorem. With g, A as before, we prove now that, under
suitable conditions, the equivalence g a* h reduces to certain equivalences
gH m hH (cf. (3.2.5)). We also obtain an important necessary condition for
equivalence in the general case.

THEOREM 3.5.1. With g, h as in (3.2.3), (3.3.4)—(3.3.7), let i be an odd
index such that either m{ = 0 or St = Zt = J{. Then g f& h if, and only if,
gL KS hL and gM <*> hM, where L = (1, • • • i — 1), M = (t + 1, • • • r).

PROOF. The system of equations 0L forms part of the complete system 0,
except that the equations in 0L corresponding to (3.3.12) for X = i — 2
and (3.3.16) for/* = * — 1 lack the terms A'?'<_2S<X,.,._2 and A T ^ ^ S ^ , , ^ .
But these terms are immaterial because, under our hypotheses, they have
the form M + MT. Hence 6 implies 0L and similarly 0 implies 0M.

Conversely, let gL oa hL, gM m hM. It is obviously sufficient to prove that
gt «s ht when 2i = S{ = J(. But in this case Xt = I, Kt = II( + Pi is a
solution of the corresponding system 0t. This proves the theorem.

COROLLARY 3.5.1. Suppose that, for each odd index X, either mx = 0 or
Sx = 2X = Jx. Then g f*n h if, and only if, the quadratic forms p^x), n^x)
in (3.4.2) are equivalent for all even indices (i.

Let

(3.5.2) (! + *). , , . . . , (!_!_*). . ( 0 < « 1 < - - - < O

be the elementary divisors of P of positive multiplicity. With theorem
3.5.1 in mind, we now study the situation where

(3.5.3) every odd integer k such that ex ^ k ^ et is an e{, and Sk^ 0.
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Let us also suppose for the moment that ex > 1 (i.e. / has no symmetric
bilinear form as direct summand). Suppose that g & h and, as before, let
Q, R be matrices in C which represent Q, R. By slightly modifying the proof
of theorem 3.2.1, it is easy to show that YfQY = R (mod PC) for some
Y e C. We take determinants of both sides of the congruence, or more
conveniently of the congruence Y* WQY = WR (mod t6 WC). It is easy to
see that |F | has the form k[l + fit2 + vt*) (mod t6) and that therefore

I Y\\Y*\ = A2(l + lit2 + vt*) (1 + /d* + vP)

= A2(l -f- (A*2 + /*)£*) (modi8).

Also

\WQ\ = a(l + pt*)(modt6), \WR\ E= a i ( l + py4)(mod*6),

where

«= n ris*
(3-5.4) Aodd*=i

D TT> X"* i A / A I X"* X"* Jltt i.tt

p = > > Pil^i \ ]L 2* Pij—1 Pzj
A odd i = l *̂ even j = l

and similarly for ax, p\.
Equating determinants, we get

(3.5.5) ax = aA2, /5X = /3 + p2 + p.

We call a the first, p the second, discriminant of g\ We say that the second
discriminants of g, h are essentially equal when they are related as in (3.5.5),
and we write px ~ p. It is evident that the first discriminant is defined even
when e1 = 1. We assign the value 0 to the second discriminant in this case.

Let us now return to the general case where (3.5.3) is not assumed. We
say that there is a gap between the indices et and ei+1 with respect to g when
at least one of the following conditions holds:

(a) e( < k < ei+1 for some odd k;
(b) et is odd and Se . ^ 0;
(c) ei+1 is odd and Se. * 0 .

The gaps divide the indices ex, • • • eT into component sets with respect to g:

(3.5.5)' L1=(e1,---eSi), L2 = (e.i+1, • • • e.i+J, • • :

The second discriminants of gL , gL , • • • are called the partial second
discriminants of g. (If Lt consists of a single odd index X and SA ^ 0, we
define the corresponding second partial discriminant to be 0.) By (3.5.5)
and theorem 3.5.1, we have

THEOREM 3.5.2. With g, h as in (3.2.3), (3.3.4)—(3.3.7), let g t* h.
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Then g, h have the same component sets and their corresponding partial second
discriminants are essentially equal.

3.6 Complete solution in a special case.

LEMMA 3.6.1. Let a, b(^ 0) e D. If D satisfies (3.0.1), the equation

(3.6.1) x2 + x + a + by* = 0

has a solution (x, y).

PROOF. By (3.0.1), the equation ?2 + £?? + arf + b£2 = 0 has solutions
(f, r,, C) ^ (0, 0, 0). If 17 =̂ 0, (*. V) = (ffa, CM satisfies (3.6.1). If n = 0,
(a;, y) = (a, fa/f) satisfies (3.6.1). Q.E.D.

Consider a non-defective quadratic form q(x) = 2<"=ia»va;ia;j o v e r J^-
In terms of suitable new variables y,

u

b%iy\t).

The pseudo-discriminant of <?(.*) is defined to be 2?_i&2*-i&2*- ^̂  ^s uniquely
determined up to essential equality, i.e. apart from additive terms A2 + X
{XtD). (Cf. Dieudonne" [2]).

LEMMA 3.6.2. Suppose that D satisfies (3.0.1). Then two non-defective
quadratic forms qx{x), ^ M over D are equivalent if, and only if, their pseudo-
discriminants are essentially equal.

PROOF. The result holds for binary forms over any field of characteristic 2.
By (3.0.1), a non-defective form in 2M > 2 variables is indefinite. By Cahit
Arf's theorem *, it is equivalent to a form <f> = xtx2 + co(x3, • • • x2u). If
y = xxx2 + %{xz, • • -x2u) is another such form, then (again by Cahit Arf's
theorem) <f> is equivalent to y> if, and only if, o> is equivalent to %. The lemma
now follows obviously by induction.

THEOREM 3.6.1. Let g, h be as in (3.2.3), (3.3.4)—(3.3.7). / / D satisfies
(3.0.1), g ?a h if, and only if,
(3.6.2) SA is congruent to 2X f01' ea°h °dd index A;
(3.6.3) the corresponding partial second discriminants of g, h are essentially
equal.

REMARK. Necessary and sufficient conditions that (3.6.2) should hold are
given by lemma 3.4.2.

PROOF. We have proved that the conditions are necessary. In proving
that they are sufficient, we may suppose, by (3.6.2), that

(3.6.4) 2X = SA for all odd indices A.

* i.e. "Witt's theorem" in the case p = 2.
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Let W denote the system of equations (3.3.10),(3.3.13) —(3.3.17) (for all
A, p). We now show that W has a solution; in other words, we may make the
further assumption that

(3.6.5) Tin = Pj, for all even indices /x.

Let («„) = n,, (Pii) = P,+ YfS^^ + Y^S^Y^, where Ylt Y_x
are tnp+1 X m^ and m^ X m^ matrices respectively. In order to show that
W has a solution, it is sufficient to prove that u ~ v for suitable Y±1,
where u, v are the pseudo-discriminants of the non-defective quadratic
forms *2fi>i}Xi%j, ^Pu%i%f For if this is so, (3.3.15), (3.3.16) have a solution
Xp, ^ ± 1 , # by lemmas 3.4.1 and 3.6.2, and then the remaining equations in
W can obviously be satisfied by choosing the Xx, Xx±v A and Xx+2, x appro-
priately.

If the index [* is itself a component set, then, by (3.6.3), we can take the
Y±1 as zero matrices. If not, S^+E is a non-singular matrix diag (s, • • •) for
e = 1 or — 1. We take Y_e = 0, the (1,1), (1,2) elements of Ye as para-
meters f, T) and all other elements in Ye zero. Then the equation u ~ v, i.e.

5 <i-i< ~ (tf + si2) (K + sri2) + 2 Ki-itti
1 2

has the form
a2 + a + k + a|2 + V + s2£V = 0,

and it is easily seen from lemma 3.6.1 that this has solutions.
We now complete the proof of the theorem by showing that the full

system, ©, of equations for equivalence has a solution. We take the Xx, X^
as unit matrices and the A"A±1> x X^^ as zero matrices, so that all equations
except (3.3.12), (3.3.14) are satisfied. Let !PA denote these two equations for
a given A (!PA being empty when A = 1 or wA = 0). By theorem 3.5.1, we
may assume, without loss of generality, that elt • • •, et (cf. (3.5.2)) form a
single component set. By lemma 3.4.1, we may also assume that at least one
et is odd. Then the odd et, arranged in descending order, form a consecutive
sequence

Ax = 2<y + 1, A2 = 2w — 1, • • •, At = 2p + 1 (t = w — p + 1 ̂  1).

To prove the theorem, it obviously suffices to show that *FX u Wx • • • u Wx^
can be satisfied, assuming that WXi u • • • u 3/

A)i_i holds (0 < u ^ t).
Thus, we may assume that iJA = Px (A = Ax, • • \ K-\)- We shall take the
•̂ A+2,A

 an<i -^A.A+2
 a s z e r o matrices for A = 2.lt • • •, Au.

Consider now the equations Wx, where A = Au. Excluding the trivial case
u = t,X= 1, we have to consider the cases (a) u = t, A > 1 and (b) w < t.
In (a), !PA reduces to

(3.6.6)' nx^Px + KxSx
1Kx + Kx (KZ = KX).
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If SA = Jx, take Kx = IJX + Px. If not, (3.6.6)' becomes

(3.6.6) ,

We replace these equations by the first mx — 1 equations and the sum of all
equations, viz.

(3-6.7) 2 ( s i r ^ + ^i) =*« + *,

where k = 2™=î a<z/sa- We take all the elements of Kx zero, except those on
the main diagonal and in the last row and column. Then the first mx — 1
equations are satisfied for suitable k£a and k^,xa (a = 1, • • •, mx — 1) by
lemma 3.6.1. Finally, in view of (3.6.3), the sum equation has a solution

In case (b), Wx reduces to

(3.6.8) nx « Px + KXS?KX + KX + Xl_2, xSx_tXx_%x (K* = Kx).

This gives (3.6.6) with an added term 2ri" ' s«~2(x^/sa)2 i n t h e " a " equation
(« = 1, • • • mx).

The first mx — 1 equations can be solved as before. The sum of all mx

equations, viz.

2 (si)-1^ + Pi) = & + k + 2 2 *r (-?)
a=l a=l <=1 \ s a /

can be solved for k^m^ and the * o by lemma 3.6.1. This completes the proof.
3.7 Example: finite classical groups. We consider the finite-dimensional

symplectic and orthogonal groups * over Galois fields D = GF(q), q = 2".
For brevity, some of the proofs will be omitted.

Let n = dim V. In the symplectic case, n — 2v and Sp(2v, q) is essentially
unique. The order \Sp[2v, q)\ is given by (2.6.2). In the orthogonal case, if
n = 2v the fundamental form |a;| on V is equivalent to

V

,„ _ . x 2 *u-ixu (of W i t t i n d e x

(6.1.1) I V

or (x\ + x1x2 -\- 8x\) -\- 2 %2i-ix2i (°f Witt index v — 1)

where d is a fixed element of D such that t2 -\- t -\- d is irreducible (i.e.
8 <+> 0, in the notation of § 3.5). The numerical invariant which distinguishes
the two cases is the pseudo-discriminant** J(|*|), defined up to essential

• The unitary groups (U(n, 2a) were considered in § 2.6.
•• Cf. § 3.6.
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equality. The orthogonal groups of the forms (3.7.1) are denoted by O+(2v,q),
O_(2v, q) and their orders are given by (2.6.3). If n = 2v + 1, \x\ is equivalent
to x\ + 2ia;2i-ia;2t a n d the corresponding orthogonal group is isomorphic to
Sp(2v, q). We shall therefore omit this case and assume throughout that n = 2v.

In the orthogonal case, let L be a subspace of V. Then the equations

s(x + La) = \x\ {xeL)

define a non-degenerate form s on LjL*, called the core of |a;| on L. Notice
that s is an odd- or even-dimensional form according to whether Lp ^ L" or
L" = L".

Let X e G = Sp(2v, q) or O±(2v, q). As before, <f>(t) denotes an irreducible
monic polynomial distinct from t and mffi) is the multiplicity of </>' as
elementary divisor of X. Then we have

(3.7.2) mffl) = m(<j>*);
m((t + I)2'"1) is even (i = 1, 2, • • •).

The last two statements follow from theorem 2.3.1, lemma 1.4.5 (cor. 2)
and the evenness of n.

Let W, f, P denote the space, form and multiplier of X. We may suppose
that the Fitting (t -\- 1)-component of / is represented (with respect to a
standard reference form chosen as in § 3.1) by the matrix Q in (3.3.1),
where (3.3.2)', (3.3.3)', (3.3.4)—(3.3.7) hold.

A non-singular symmetric matrix over GF(2a) is congruent to the cano-
nical alternate matrix J or unit matrix /. Thus we may suppose in (3.3.2)'
that SA = Jx ox /A (A = 1, 3, • • •). Accordingly, we define an invariant
sA (A = 1, 3, • •

«A =

Then clearly

(3.7.3)

')

0

1

Further we have

by:

if

if

O
 

i-H

II 
II

= JA or

when

when

the c

m((t

m((t is odd.

LEMMA 3.7.1. In the orthogonal case, W=W'r if, and only if, s1 = 0.
(Proof omitted.)

The values of the sA determine the component sets L1( L%, • • • in (3.5.5)'.
Let ^1, d2, • • • be the corresponding partial second discriminants. We may
suppose that dt = 0 or d since dt is determined only up to essential equality.
It is convenient to define one further "partial second discriminant" <50 by:
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_A(s) if G = 0,Sl =
0 0 otherwise,

where s is the core of \x\ on W^. With this notation we have

LEMMA 3.7.2. In the orthogonal case,

(Proof omitted.)
The dt satisfy the conditions

(50 = 0 if G = Sp or G = 0, sx = 0;

(3.7.5) <5X = 0 if Si = 1;

d{ = 0 if the corresponding component set consists of a single

odd index A such that sA = 0.

(Cf. § 3.5.)
With the methods of § 2.6 and theorem 3.6.1, the following two theorems

are now easily deduced.

THEOREM 3.7.1. Two elements of G are conjugate in G if, and only if,
they have the same invariants m(<j>'), sA, 8(.

THEOREM 3.7.2. Choose a non-negative integer m' (<£') for each power (f>*
of a monic irreducible <f>, an integer sA = 0 or 1 for each index A = 1, 3, • • •
and an element 5\ = 0 or 5 of D for each of the component sets formally defined
by the m' (</>•') and sA. Then the m'(<(>'), sA, 6^ are the invariants of an element X
of G if, and only if, they satisfy (3.7.2)—(3.7.5).

It is now merely a combinatorial question to enumerate the conjugacy
classes in G. We define a sequence of polynomials %i = xAa> &', t)
(i — 1, 2, • • •) and a power series % = t {&>b;t) as follows:

X-i = a> Xo = b>

Xiv+l Xiv — * Xiv—\> I \ v = "A

THEOREM 3.7.3. Let the numbers of conjugacy classes in Sp(2v, q), O±(2v, q)
be the coefficients of t2" in the power series sp(t2), eo±(2

2). Then

= x(i,\\ t2) ft (i -
A = l

(OAF) —
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(Proof omitted.)
We determine finally the order of the conjugacy class of X in G.
Notation. A component set is called big if it contains an odd index A such

that sA = 1 and if, when G = Sp, it does not contain the index 1. An odd
index n + 1 is called isolated if either /i is positive and forms a component
set by itself or /i = 0, G = 0 and s± = 0. With such an isolated index /i + 1
is associated a partial second discriminant 6', viz. d' = d0 when fj, = 0,
d' = partial discriminant determined by /J. when fi > 0. 0 (w/1+1, q) denotes
the orthogonal group of the form of pseudo-discriminant 5' and dimension
m,+1 = m((* + lK+i).

We write
B{<f>)=Q *i<i im.m, + iS,(»-l)»»S-JJ.A (</,*),

where Q = q^\ mi = >»(<£') and A {ft) is defined as follows:

if

if <£(*) = (* + 1 ) ,

^ , ? ) ! (* even, s H = 0)

< - 1, ?)| (* even, s ^ = 1, w^ odd)

A (ft) = qV-+to«c-i\sp(mi - 2, q)\
(i even, s^j = 1, w,- even)

5*a+«»««\0{tn,,q)\{i odd, isolated)

?-id-e)m¥ |5^(w<> ? ) | (t- odd, non-isolated),

where e = + 1 or — 1 according as G = Sp or 0.

THEOREM 3.7.4. The order of the conjugacy class of X in G is

where k is the number of big component sets.

OUTLINE OF PROOF. By the methods of § 2.6 and the Fitting decomposition,
it is sufficient to consider the case where / + P is nilpotent. Let Q be the
representative of f — fx with respect to a standard reference form /' and let f
denote the adjoint with respect to /'. Let N denote the group of T e %> =
V(P) such that T1QT = Q, fi the group of T cV such that T^QT = Q,
where the — now denotes passage to the quotient ^ / ^ (cf. § 3.3.) As in
theorem 2.2.3,

\N\ =
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The mapping Y->YW gives a homomorphism of C(X) onto N, whose
kernel H consists of the Y eG which leave every element of W fixed. Thus

\C{X)\ = \N\\H\.

Since the calculation of \@\ is straightforward, it remains to-consider \U\
and \H\.

\U\ is the number of ways of choosing the matrices Xt(i = 1, 2, • • •),

so that (3.3.10) —(3.3.17) hold withSA, PA, P^ in place of Sx, UA, J I , on
the left hand sides. This number is conveniently calculated as the quotient
ujv, where u is the number of ways of choosing the X{, Yt, etc. so that
(3.3.10)—(3.3.17) hold with Sx = Sx and with JIA, 11^ having the forms

nx = diag («*, • • • «*J

lip = diag

and where v is the number of ways in which such Sx, 7IA, II^ can be chosen.
The calculation of u, v is straightforward except for the determination of the
number Xx satisfying XXSXXX = SA. By the methods of § 3.4, this number
is found to be

\Sfi{mx,q)\ if S A =J A ,

\Sp(mx-l,q)\ if SA = /A)mAodd,

qmx~x\Sp(mx — 2, q)\ if SA = /A, mx even,

where mx = dim SA.
It remains to calculate \H\. To fix ideas, consider the case G — 0, WP^W.

Write L = P7X, tnt = m((t + 1)'). Then

dim L = m1 + m2 + • • •
1 + dim L" = dim Lp = m2 + m3 + • • •

If Y eH, let rj(Y) denote the induced linear transformation on L\L". By
Witt's theorem, rj(H) s O(m1+ 1, j) s S^(w1( 9). Let /C be the kernel of
r\ and let f (Y) denote the transformation on L induced by Y e if. It is easy
to see that C(K) consists of the linear transformations which leave every
element of L/L0" and Lp fixed, so that

The kernel T of C consists of the Y eG which leave every element of W and
W1- fixed, i.e. the Y with spaces in {W + W^)x = W n Wx = W. Let
el, e2, • • • be a basis of W, where e2, • • • are a basis of W. Each element of
T has the form
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x^-x + 2 {x- c<)«>« .̂
Conversely, it is found that such a linear transformation belongs to G if,
and only if,

<»ii = mn (all *, /)
(Off = eo^ (all i).

Hence
\T\ = 2y*l">I+")(mi+"~1).

Putting these values together we get the required order \H\. The calculation
of \H\ in the other cases is similar.
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