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Abstract

In a paper published in 1949, E. R. Love [10] found an integral relation between a
separated solution (in oblate spheroidal coordinates) to a particular mixed boundary-
value problem and a solution to the same problem using an integral representation. This
note examines further representations of the same type which occur in some simple two-
and three-dimensional potential problems.

1. Introduction

In two recent papers [5], [4], separated solutions of Laplace's equation in two
and three dimensions were used to derive solutions to frictionless punch and
crack problems in the linear theory of elasticity. In particular, quantities of
physical interest, such as the contact stress under a punch or the displacement
over a crack, could be expressed in terms of Chebyshev's polynomials in
two-dimensional problems and Legendre polynomials in three-dimensional
problems. There are several different methods of solution of the simplest mixed
boundary-value problems for Laplace's equation and these yield solutions in
different functional forms. In Section 2 the method of separation of variables is
compared with the integral representation approach due to E. T. Copson [1],
E. R. Love [10] and A. E. Green [6]. In this section, Love's integral representa-
tion is given and certain useful formulae derived from it. A comparison with the
solutions obtained in terms of the appropriate Green's functions is made in
Section 3.
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In Section 4, the same method is employed on plane problems and the
separated solution compared with an integral representation due to England and
Green [3]. In this case integral representations involving both Chebyshev and
Legendre polynomials are found. Some relations connecting the separated
solution with solutions obtained by alternative methods are also given.

2. Axially-symmetric problems

If (r, <j>, z) are cylindrical polar coordinates, then the set of oblate spheroidal
coordinates (TJ, £, <£) are related to the cylindrical polar coordinates by

r = { ( l - T , 2 ) ( l + £ 2 ) } ' / 2 and z = TJ£, (1)

where -1 < TJ < 1 and £ > 0. The surfaces £ = constant are oblate spheroids
whose axis of revolution is the z-axis. The surface £ = 0, TJ > 0 is the upper face
of the disc z = 0, 0 < r < 1. The surfaces TJ = constant are hyperboloids of
revolution about the z-axis. The half-space z > 0 corresponds to 0 < TJ < 1 and
TJ = 0 is the region z = 0, r > a.

In oblate spheroidal coordinates, separated solutions of Laplace's equation
which vanish as r2 + z2 -» oo are

PnWQM (2)
where Pn is the Legendre polynomial of degree n and Qn is the Legendre
function of the second kind. Note that Qn(£), where f is a complex variable, is
defined in the complex f-plane cut along the interval Im f = 0, |Re £| < 1.

These separated solutions lead naturally to the following mixed boundary-
value problems for the harmonic functions x a n d 41 defined in the half-space
z > 0 subject to the stated conditions on z = 0.

Problem A

On z = 0, x = ^ . {O - r2)i/2} for 0 < r < 1, and

- ^ = 0 forr > 1.
dz

Solution:

where

Problem A corresponds to a charged disc problem in electrostatics and a contact
problem in elasticity.

Q2n(i0+) = ^P2M/2i- (5)
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Problem B

On z = 0,

—̂  = 2"+ for 0 < r < 1,

and
\p = 0 f or r > 1.

Solution:

where
(8)

Problem B corresponds to the symmetrical inflation of a penny-shaped crack in
elasticity.

Problem A may be reduced to an Abel integral equation by using the integral
representation due to Copson [1], Love [10] and Green [6]:

x(r, z) = Re f' ^ — dt. (9)
J° {r2 + (z + it)2}i/2

This representation automatically satisfies the second boundary condition of (3)
and the first condition becomes

f^ 2
g{t\l/2

 dt = ^ { ( 1 - r2)x/2} for 0 < r < 1. (10)

This Abel integral equation may be inverted to give

This integral indicates that g(t) is a polynomial of degree 2n in /. The integral
has been evaluated by England and Shail [4] using the addition theorem for the
Legendre polynomials and yields the surprisingly simple result

Hence there are two representations for the unique harmonic function x. namely
(4) and (9) in which g(t) is given by (12). Equating these solutions yields the
identity

° {r2 + (z + it)2}2}W dL
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This identity was originally established by E. R. Love [10] and will be referred to
as Love's integral.

The corresponding identity for the odd-order functions is

P2n+l(v)Q2n+l00 = Im / ' P»+M dt. (14)
J° {r2 + (z + it)2}l/2

This leads directly to the solution of Problem B. In this case the corresponding
form of the integral representation of Copson, Love and Green is

dt= Im f
0 I r2 +

and this automatically satisfies the second boundary condition of (6). The first
boundary condition of (6) yields the Abel integral equation

f 2
kV)

2
->0 (r2 _ ,2)

* = '—ZP*.^ - ^ ) ' / 2 } ' 0<r<l, (16)
2l/2

which may be inverted to give

k(t) = - f'Junillll _1_^L_ dr. (17)
m J0 ( ,2 _ ,.2)1/2^ _ r2)l/2

Hence k(t) is a polynomial of degree 2n + 1 in t. On comparing (15) with the
separated solution (7) and the second Love integral (14), we see that

A number of useful formulae spring from the identities (13) and (14) and
involve Abel transforms of the Legendre functions. Some of the following
relations were given by England and Shail [4].

If we use the notation

then the inverse Abel transformation is given by

Note also that on making the substitutions t = (1 - s2)1/2 and x = (1 - r2)1 /2

the transform (19) becomes

Sf^ " " 2 ) ' / 2 ^ A =y{(l - r 2 ) l / 2 } . (21)
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The corresponding inversion formula is

357

( 2 2 )

Using the obvious notation, if

then

A?{k{r),s) - - — A

( 2 3 )

(24)

The Legendre function relations which may be deduced from (13) and (14) are

A{P2n0), x) = P2n(0)/>2n{(l ~ * 2 ) ' / 2 } . (25)

= P2n(.0)P2n(x),

A
2 i >2n +i{(l - * 2 ) ' / 2 }

W(2« + l)P2n(0)

7T(2« + l)P2n(0)

and

These relations hold with x in the range 0 < x < 1.
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3. Integral transform techniques

[61

(27)

(28)

Hankel transform techniques may be applied to Problems A and B. If we put

X = CA(Z)J0{ir)e-* di,
Jo

the boundary conditions (3) reduce to the dual integral equations

Jo°°A(i)Jo(Sr) di = P2n{{\ - r2)1/2} for 0 < r < 1,

and

(e°tA(t)Utr)di-'O fo r r> 1.
•'o

If we follow Sneddon's method [13, Section 4.4] and put

A(i)= Cg(t)cos{$t) dt,

then the integral representation (9) results and the method of solution is
identical to that described in Section 2. Alternatively, if we denote d\/dz by o(r)
on z = 0 for 0 < r < 1, then

When this form is substituted into the first condition of (28), it is found that o(s)
satisfies the singular integral equation

) * - ' * { ( I - ' 1 ) 1 / a ) f o r 0 < ' < L

(29)

In (29), K(£) is a complete elliptic integral.
Since this problem has the known solution (4), it is straightforward to show

that

o(s) = forO < r < 1. (30)

This relation has been given by Popov [11], [12]. The complete solution to the
problem when expressed in terms of Hankel transforms (or equivalently via the
Green's function for a half-space) is then

f' C

= I sa(s) j J0(l-r)J0\

sa(s)

ds

ds. (31)
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Hence there exists the identity that the representation (4) is also equal to (31)
where a(s) is defined by (30). Popov [12] and Gladwell and England [5] have
used these relations in the solution of certain contact problems.

Problem B may be solved in a similar fashion. If 4> has the Hankel transform
representation

then the boundary conditions (6) reduce to the dual integral equations

(1 - r2)l/z

and

r°°B(|)/0(|r) d£ = 0 for r > 1.

If we put

for 0 < r < 1,

[
Jo

then the representation (15) results and the dual integral equations reduce to
(16). Alternatively, if we denote ip{r, 0) by r(r) in 0 < r < 1, then

•'o
In this case the representation for \p is

K
r, , ,2 21 V 4 f/ , \2 , 21 '

{{r + s) + z2} [ {(r + s) + z2}

On comparison with Problem B, the value of T(.S) is
2 _ t ,, ->\ 1 /21

ds. (32)

Thus the integral (32) is equal to (7) for each integral value of n.
A different approach to these problems was adopted by Heins and MacCamy

[7] and is based on earlier work by Erdelyi. Their method depends on the
property that if </>(.*, y) is symmetric about y = 0 and <>(x, y) satisfies Laplace's
equation in two dimensions, then the Abel transformation A{$(z,y),y —» r) =
U(r, z) forms an axially-symmetric solution of Laplace's equation. There is a
corresponding inverse transformation relating <f> to U(r, z). The method converts
a mixed boundary-value problem for an axially-symmetric potential into a
Dirichlet problem for a plane potential but does not appear to yield significant
results when applied to Problems A and B of Section 2 or to the basic problems
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of the next section. In a later paper, Heins [8] represents an axially-symmetric
potential by means of the Poisson integral representation

U(r, z) = - /"V(0, z + ir cos 9) d9,
if Jo

and solves Problem A in the case n = 0 when the potential of the disc is
constant. With care this method may be extended to rederive Love's integral
formula (13).

4. Plane problems

Separated solutions of Laplace's equation in elliptical polar coordinates are
most easily produced by using the conformal transformation

z = —

This maps the region |f | > 1 in the f-plane onto the z-plane cut along y = 0 for
|JC| < 1 where z = x + iy. The natural analytic function in the region |f | > 1 is
£~" which, in terms of z, becomes

The function Rn(z) is analytic in the cut z-plane. The real and imaginary parts of
the function Rn(z) satisfy the following fundamental mixed boundary-value
problems for Laplace's equation in the half-plane y > 0.

Problem C

The harmonic function <£„ = Re{/?n(z)} satisfies the following
boundary conditions on_y = 0 + :

and

<!>„ = Tn{x) for |JC| < 1

0 for \x\ > 1,

(33)

where Tn(x) is a Chebyshev polynomial of the first kind. Also on
y = 0 + ,

and

-«(1 - x2yl/2Tn(x) for

= {x - sgn(x)(x2 - 1)1/2}" for |x| > 1.

(34)
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Problem C corresponds to a contact problem in two-dimensional elasticity and a
charged strip in electrostatics.

Problem D

The harmonic function Bn = lm{Rn(z)} satisfies the following
boundary conditions on_y = 0 + :

= nUn_{(x) for |JC| < 1

and

0n = 0 for |JC| > 1,

(35)

where Un(x) is a Chebyshev polynomial of the second kind. Also on
y = 0 + ,

for

and

sgn(*)(;c2 -
f o r W > 1 .

(36)

Problem Z) corresponds to a plane crack problem in elasticity.
Alternatively these problems may be solved by use of the integral representa-

tion suggested by England and Green [3]. This is the two-dimensional analogue
of the integral representation employed in Section 2. If we consider the
anti-symmetrical solution given by Problem C in which n = 2k + 1 and
= Re{i?2;t+i(z)}> then an alternative representation for <f>2k+\ is

8(0~Re L (z2 - , 2 ) I / 2
dt. (37)

The second boundary condition of (33) is satisfied automatically and the first
condition implies

dt ~ (38)
o (x2 -

Hence

dt

. 2 )

° (t2 - vl/2
(39)
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on integration by parts. Thus g(t) is a polynomial of degree 2k + 1 in /. By
making the substitution x = cos(#/2), this assumes the form of a Mehler-
Dirichlet integral,

A/2 r sin(k
Jt> (cos 4> - cos 9) '

where <£> = 2 cos"1 /. The Mehler-Dirichlet integral is a representation for the
Legendre polynomial

\I1 r* sin(& +\)ff
Pk(cos 4>)=^f i ^ — dB (40)

' * h (cos <*> - cos 0)1/2

and its properties are covered in Hobson [9, Chapter 18]. Hence
g(t) = (2* + 1 ) ^ ( 2 / 2 - 1). (41)

On comparing the two representations for 2̂*+i> w e s e e ma^ a two-dimen-
sional equivalent of Love's integral is

= (z - (z* - l)»/»}»+I - (2* + 1)/; y a " J 2
} *• (42)

This integral representation may also be derived from other boundary-value
problems of the types C and D but I believe the above derivation is the most
direct. Gladwell and England [5] have observed that Rn(z) is a generalisation of
the Chebyshev polynomials and Rn(z) satisfies the same recurrence relation as
the Chebyshev polynomials, namely

In particular, when n is even, this yields a representation for /?2*(z) °f m e form

2zR2k(z)=f '—-{(2k + \)Pk(2t* - 1) + (2k - \)Pk_{(2t* - 1)} dt.
J° (z2 - / 2 ) 1 / 2

Alternatively it is possible to manipulate these relations to show that

R^k(z) = Ak Jf1 2 J 2 i / 2 { />; (2 , 2 - 1) + ^_,(2/2 - 1)} dt. (43)

This representation can also be derived from the symmetrical case of Problem C
which occurs when n = 2k.

Various relations between Chebyshev polynomials and Legendre polynomials
may be found by comparing the boundary values which occur in Problems C
and D with the representations (42) and (43). These relations involve Abel
integral equations and their inverses. It should be observed that the Mehler-
Dirichlet integral itself may be written in the form of an Abel integral equation
on a simple change of variable. For example, for Problem C from (33) and (37),
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we can conclude

(2k + 1) (Xt k ~ dt = T2k+l(x) forO < x < 1, (44)
J0 ( j e2 - ,2)1/2

and, on inversion from (20),

dx. (45)

This is the Mehler-Dirichlet integral.
The symmetrical case for Problem C in which n = 2k yields the relation

T^(x) = 2kU2k_t(x) = 2irkA{t[Pk-(2t2 - 1) + Pk_,(2t2 - 1)], x)

from (41) and (43). This relation may be inverted using the Abel transformation
relations given in Section 2.

A comparison of the separated solution with the integral representation form
for various simple boundary-value problems of the types C and D yields the
following relations:

A{U2k(t),x) = Pk(2x2- 1),

A{tU2k_M, *} = \[Pk(2x2 - 1) + Pk_x{2x2 - 1)],

A{T2k(t), x) = \[Pk(2x2 - 1) - P*_,(2*2 - 1)] (46)

and

A{tT2k_x(t), x) = \[Pk(2x2 - 1) - Pk.2(2x2 - 1)].

Note that, if A{J{t), x) = g(x), then the inverse relation is

f(t)=ji[A{xg(x),t}].

Each of the relations (46) may be inverted. In particular the inverse of the first is
the relation (44) (on integration). Note also that there are corresponding rela-
tions of the type (21) and inverse relations of the type (24) between these
polynomials. The Abel transformations of the odd-order Chebyshev polynomials
do not seem to occur naturally in these problems.

Alternative methods of solution of these problems include integral transform
techniques and complex variable techniques. As in the three-dimensional prob-
lems it is possible to manipulate the Fourier transform techniques one would use
to solve Problems C and D to give rise to Abel integral equations corresponding
to (38). For Problem C the Green's function approach may be used to determine
the singular integral equation satisfied by 9</>n/9y = o(x) in |x| < 1. It is simple

https://doi.org/10.1017/S0334270000002691 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002691


364 A. H.England [12]

to show that o(x) satisfies

— f o(s)log\x - s\ ds = Tn(x) for \x\ < 1 and n > 1.

This integral equation has the solution given by (34), namely a(x) =
-n{\ — x2)~l/2Tn(x), a result which when differentiated is stated by Tricomi
[14, page 180] (see also [2]). Hence alternative representations for <j>n are

* •

This result is equivalent to the complex integral representation derived by
Gladwell and England [5]

K{z) = 1 f' ™ *. (47)

Alternatively, if we examine Problem D and denote 6n ony = 0, |x| < 1 by
T(X), then the singular integral equation satisfied by T(X) is

fllliL ds= nUn ,(x) f o r | x | < l .f
IT J_i S — X

From (36) the solution of this equation is T(J) = - ( 1 — s2y/2(Jn_i(s). The
corresponding homogeneous equation has a non-zero solution (see [5]) but this
may be neglected here. The corresponding integral representation for 6n is

(s - x) + y2

Hence

a result which was also given in [5].
From a practical point of view it should be noted that the solutions of the

homogeneous equations may have a direct physical interpretation. For example,
if a two-dimensional frictionless punch with an end-face profile y = f(x) makes
complete contact with the half-plane y > 0 over the interval \x\ < 1, the
problem reduces to finding a plane harmonic function </> in y > 0 subject to the
boundary conditions

v = il^Jl^ = d + /(x)ony = 0+ for

and

-£• = 0 on^ = 0 + for IJCI > 1,

dy

(49)

in the usual notation.
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To this problem must be added the requirement that a non-zero resultant
force P acts on the half-plane under the punch. Hence as /11(9<>/9>')|>,_O dx = P
then by Green's theorem /r(3<^/3«) ds = P where T is the semicircle at infinity
taken in an anticlockwise sense. Thus <j> must have a logarithmic behaviour at
infinity, in fact <J> — (P / -ri) log|z| for large \z\. Thus the derivative 9</>/9x is
harmonic in y > 0, tends to zero at infinity and satisfies the boundary condi-
tions (49) differentiated with respect to x. Then using the solution to Problem C
(equation (33)) we might suppose

£ - R « 2 ± *.*•'(*).

where

2 K Un- , = 7T (50)

but this series has not the required behaviour at infinity and to it must be added
the solution of the homogeneous problem: 9<>/9x = Re(.P/7r)(z2 — 1)I/2. Thus

p_
77

+ constant.

From (34), the contact stress is

1

(1 - x2)2\l/2

N

for | < 1.

Further discussion of these solutions and the corresponding Hilbert integral
equation is given in [5]. It should be noted that similar difficulties do not arise in
the symmetrical inflation of a line crack and this solution may be found directly
from Problem D.

5. Discussion

The relations derived in this paper fall into three categories. There are the
relations between the different forms of solution of the fundamental mixed
boundary-value problems such as Love's integrals (13), (14) and the Green's
function relations (31), (32) for the axi-symmetric problems together with the
corresponding representations for Rn(z) for the plane problems, namely (42),
(43), (47) and (48). Alternative methods of solution will yield other relations of
this type. The fundamental problems chosen were the problems which arose
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naturally from the separated solutions. The use of these methods in the solution
of more general mixed boundary-value problems has been described in [10], [5],
[4], [13], [12] and in [2].

The second set of relations concerns the solution of the singular integral
equations which arise in these problems. For example, (29) has the solution (30),
and there is a corresponding equation which may be derived from (32) for
Problem B. For the plane problems the solutions of the Hilbert integral equation
depend on Chebyshev polynomials. It is important to note that the polynomials
which occur in these solutions are orthogonal polynomials with simple ortho-
gonality relations. Hence the analytical or numerical solution of such singular
integral equations is facilitated by the use of these orthogonal polynomial
solutions (see [5], [12], [14] and the references given therein).

The third category is that of implicit connections between the special func-
tions which occur in these solutions. Love's integrals imply that of necessity the
Legendre polynomials satisfy the relations (25) and (26), together with their
associated Abel transforms. The Mehler-Dirichlet integral and the plane sep-
arated solutions give rise to the relations (46) between the Chebyshev and
Legendre polynomials.
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