A STATISTICAL ANALYSIS OF THE RADIO PROPERTIES OF A LARGE SAMPLE OF 374 OPTICALLY SELECTED QUASARS

Gopal Krishna¹, H.Steppe², T.Ghosh¹ and L.Saripalli¹
¹ T.I.F.R Centre, P.O.Box 1234, Bangalore 560 012 (India)
² I.R.A.M., Avd.Divina Pastora 7, Bloque 6/2B, Granada (Spain)

ABSTRACT. Using a large, unbiased sample of 374 optically selected QSOs, of which 54 are radio detected, we have computed for different redshift ranges the probability distribution function ψ (R) of R defined as the ratio of monochromatic luminosities at 15 GHz and 2500 Å in the QSO's rest frame. A significant variation of ψ (R) with redshift is noticed. At small redshifts (z < 0.5), the distinctive feature of ψ (R) is a peak near R~10², arising due to the QSOs having steep radio spectrum(α_r <-0.5).

1. THE QSO SAMPLE AND THE PROBABILITY DISTRIBUTION FUNCTION $\psi(\mathbf{R})$

The sample (374 QSOs) consists of 6 sets, each derived from the radiosurveyed portion of a major QSO list, by excluding all objects with $M_B>-23(q_0=0,H_0=50 \text{ Km s}^{-1} \text{ Mpc}^{-1})$ and also those for which QSO classification or tabulated redshift(z), or app.magnitude(m) has been labelled as doubtful/uncertain in the parent list (Table 1). Radio data available for all 54 detections in the sample permit classification into flat or steep spectrum type, based on α_r defined between~5 and~30 GHz and also yield flux density, S_r , at 15 GHz needed for computing 'R' (see Abstract),

Fig.1:The probability distribution function $\psi(R)$ for different z-ranges.

G. Swarup and V. K. Kapahi (eds.), Quasars, 111–112. © 1986 by the IAU.

https://doi.org/10.1017/S0074180900152404 Published online by Cambridge University Press

Tab	le 1	: T	he	<u>6 sets</u>	constituting our sample of	<u>374 optically-selected QSOs</u>
Set	, No).	of	QS0s	Radio telescope used,	Type+ of the adopted mag.
(ra	dio	de	tec	tions)	<pre>frequency*,sensitivity limit</pre>	(m) and reference to m&z
1. (CTIC)1:1	19(12)	VLA ² ,5 GHZ,10 mJy	m_{con} at $\lambda_{p} = 1475 \text{ Å},(1)$
2. I	3QS³	:	92(23)	Effelsberg ⁴ ,10.7 GHz, 10 mJy	B-magnitude,(3)
3. /	٩ÂO	⁹ :	53(7)	Parkes ⁵ , 5 GHz, 25 mJy	B-magnitude, (5)
4.1	MCS	⁶ :	48(7)	Effelsberg ⁷ , 5 GHz, 10 mJy	$m_{con} at \lambda_{a} = 4500 \text{\AA}, (6), (\phi)$
5. I	KP ⁸	:	44 (3)	Arecibo ⁹ , 2.4 GHz, ~14 mJy	$m_{con}^{con} at \lambda_{0}^{a} = 4500 \text{Å}, (8, 10)$
					VLA ¹⁰ , 5 GHz,~1 mJy	
7	2 DC ¥	¥	1 0/	()	Westernhaulil 0 1 hCll	\mathbf{D} mean initial (11)

6. BPS**: 18(2) Westerbork¹⁰, 1.4GHz,~4 mJy B-magnitude, (11) **Referencess**(1)Osmer and Smith(Ap.J.Suppl.42,333,1980);(2)Condon et al.(Ap.J.244,5,1981):(3)Schmidt and Green(Ap.J.269,352,1983);(4)Steppe et al.(preprint,1985);(5)Savage and Bolton(MNRAS 188,599, 1979);(6)Lewis et al.(Ap.J.233,787,1979);(7)Strittmatter et al.(Astr.Ap.88,L12,1980);(8)Vaucher and Weedman(Ap.J.240,10,1980);(9)Sramek and Weedman(Ap.J.221,468,1978);(10)Sramek and Weedman (Ap.J.238,435,1980);(11)Marshall et al.(Ap.J.269,42,1983);(12)Fanti et al.(Astr.Ap.61,487,1977). * flux depsities at additional frequencies are taken from the references cited

* flux densities at additional frequencies are taken from the references cited here and from the major radio source catalogues.

+ m_{con} =continuum magnitude, λ_e =emitted wavelength, λ_o =observed wavelength. § from the sample given in ref.5.QSOs outside the central 5°x5° are excluded. ϕ values of m not given in ref.6 are deduced following ref.(10).

**derived from the 'Bologna-Palomar Schmidt' sample defined in ref.(11). following Schmidt and Green (Ap.J.<u>269</u>,352,1983).For the (320) QSOs undetected in radio,the quoted limits to flux density were adopted for S_r . Note that all the 3 frequencies refer to the QSO's rest frame. Now, using this database we computed $\psi(R)$ for the entire z-range (0 to 3.3), following ref.(10) (Fig.1).It is found to be consistent with the earlier determinations(refs.10,12),though much better defined here.We next computed $\psi(R)$ dividing the sample into low (z<0.5) and high(z>0.5) redshift subsamples: a clear variation of $\psi(R)$ with z is noticed (Fig.1).At low-z $\psi(R)$ is marked by a peak arising near R~10² due to steep-spectrum QSOs.

For the high-z subsample, $(z_{med} \sim 2), \psi(R)$ is dominated by flat-spectrum QSOS. This is not likely to be due to an observational bias, since for our major sets of both high-z (CTIO,MCS,AAO) and low-z (BQS) QSOs, the survey frequencies roughly correspond to the same emission frequency of ~15 GHz(see Table 1). The inferred lower probability for steep-spectrum QSOs at high z is also difficult to explain as an artefact of the median optical luminosity of our high-z subsample being higher(by ~3 mag.), compared to our low-z subsample. This is because, as seen from fig.2, optically more luminous QSOs in fact seem to produce steep-spectrum sources, preferrentially. The inferred rarity of steep-spectrum QSOs at high-z may, thus, be real, unless a bias against sources with steep radio spectrum is somehow present already in the parent optical lists of high-z QSOs (Gopal-Krishna etal, in prep.)

Fig.2: The distribution of M_B for the high-z and low-z QSOs in the sample.