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AUTOMORPHISMS OF THE LIE ALGEBRAS
W IN CHARACTERISTICO

J. MARSHALL OSBORN

1. Introduction. In arecent paper [2] we defined four classes of infinite dimen-
sional simple Lie algebras over afield of characteristic 0 which we called W*, S*, H*,
and K*. As the names suggest, these classes generalize the Lie algebras of Cartan type.
A second paper [3] investigatesthe derivations of the algebrasW* and S*, and the possi-
ble isomorphisms between these algebras and the algebras defined by Block [1]. In the
present paper we investigate the automorphisms of the algebras of type W*. We show
that the automorphism group of an algebra A of type W* isisomorphic to a subgroup of
the automorphism group of the associative algebra B of which it is a subalgebra of the
derivations. In case A is al derivations of B, then Aut A = AutB. We also use automor-
phisms to show that two algebras of type W* can be isomorphic only if they have the
same number of invertible variables and the same number of noninvertible variables.

The definition of the algebras of type W* isgivenin Section 2, and much of the termi-
nology is established there. Our basic results on the automorphisms of these algebrasis
found in Section 3, and some examplesare givenin Section 4. We a so show in Section 4
that the dimension of atorusin the noninvertible part of the agebrais no more than the
number of noninvertible elements. Our final result on the isomorphisms of algebras of
type W* and the machinery necessary for this result are in Section 5.

2. Background. Wehbegin by giving adefinition of an algebra of type W*. (A more
formal definition can be found in [2] or [3].) Let F be a field of characteristic O, let
X1, - -+, Xn benindeterminates or variables over F, and let the integer k < n befixed. For
eachiwith1 <i < klet A denotethe nonnegativeintegers, and for eachi withk <i <n
let A; denote an additive subgroup of F containing the integers. Let B be the associative
algebraover F spanned by all products of the form x7*x3? - - - X" where o € A; for each
i. We can write this element more succinctly as x* where « is the n-tuple whose i-th
component is «;. Multiplication in B is then given by x*x? = x2*8 in this notation. The
variables x; for 1 < i < k are called noninvertible, and those with k < i < n are called
invertible.

For 1 <i < nlet 0; denote the usual partial derivative with respect to x; acting on B.
We denote by A the set of all elements of the form Y"1<j<n fid; whereeachf; € B, and A
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isaLiealgebraunder the product defined by letting
[fidi, gi0;] = fidi(9))0; — gi9;(fi)ai-

It is obvious that B acts as on A as a left module, and that A acts on B as a ring of
derivations.

The set of algebras A that we have constructed are exactly the algebras of type W*. In
the following, A will always denote a Lie algebra of type W*, and B will always denote
the associated associative algebra. The symbols n and k will always denote respectively
the number of variables and the number of noninvertible variables. The symbol ¢; will
denote the n-tuple with 1 in the i-th position and 0's elsewhere. Thus, x = x;.

If each A fork < i < nhasrank 1, then Aiseasily seento bethe set of all derivations
of B. Suppose, on the other hand, for some ¢ with k < ¢ < nthat A, hasrank > 1,
so that we can write A, = Ay B Ay, for two nontrivial subgroups A,1 and Ag,. Then
X(;’] = x(;“x(;” where oy, € Appand oy € App, and o + app = . We haveeffectlvely
divided x, into two new variables. The new associative algebra B’ on n + 1 variables
which we get in this way, although isomorphic to B as an algebra, gives rise to another
algebra A’ of type W* which properly contains an isomorphic copy of A. In particular, A
is not the set of al derivations of B.

3. Relations between the automor phisms of A and of B. In this section we give
the basic results on which everything else is grounded.

THEOREM 3.1. Letk > 1 and let ¢ be an automorphism of A. Then there exists an
automor phisme of B such that ¢(tw) = o(t)p(w) and o(wt) = ¢(w)o(t) for all t € Band
we A

PROOF. Define W(t,w) = ¢~*(t¢(w)) fort € Bandw € A, and note that W(t, w) is
linear in both t and w. Then

[X 8, W(t, 9))]

X 05,67 (to(3y)) ]

o ([o(x 0, t6(3))])

o7 ((604a)t)0(0)) + o7 (1[0 ), 6(@)])
= 671 ((604 1) 0(@)) — 80 (o4 9))).

(3.2)

It is clear from (3.2) that, when we apply the ad’s of the different toral elements x;0; to
W(t, 9;) and takelinear combinationsto separate the different homogeneous components
of W(t, 9;), we are simultaneously separating t into its different homogeneous compo-
nents with respect to the different toral elements ¢(x;d;). In particular, the toral elements
¢(x0;) decomposet into elementsin root spaceswith exactly the same set of roots asthe
decomposition of W(t, ;) induced by the elements x;0;.

We show next that W(t, 0;) isan element of B times d;. It is sufficient to show thiswhen
tisinasingleroot spacewith respect to the torus consisting of the elements ¢(x;0;). Say
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that, for each i, ¢(x0;)t = atfor g € F. If g is not a positive integer for somei # j,
there exists by € A so that g + by is a positive integer. Further, we can pick b; to be
different from the exponent of x; in every term of W(t,4;). In this case, ¥(t, J;) has the
desired formif and only if

OB, W(t, 9))] = ¢—1((¢(x?'6i)t)¢(6j))
= W00, 9))

has the desired form. This shows that we can take each g; for i # j to be a nonnegative
integer. If any &; is positive, we see that [d;, W(t, 9;)] has the same form, and its value of
a isoneless. Thusit is sufficient to deal with the case where each g isOfor i # j. But
in this case,

[0:, W(t. 9)] = ¢ *([6(3). 16(3))]) = O,

fori # j. It follows that W(t, 9;) isjust amultiple of 0; by an element of B for any t.
Then when w = 0;, we can write W(t,0;) = 7(t)9;. It is clear that T is one-to-one,
and we want to see that it is also onto. But each monomia s € B is characterized by
its set of eigenvalues under the operators x;0;. So choosingt € B to have the same set
of eigenvalues under the operators ¢(x;0;) as s has under the x;0;’s, we see that 7(t) isa
nonzero multiple of sby (3.2). Thust has an inverse ¢, and we can write our relation in

theform

to; = ¢~ (a(t)6(3)))-
Applying ¢ to both sides,
(3.3 o(t0;) = a()9(9)).

Let o; bethe function o determined by using ¢; as above. We can change variablesin
B by letting x; = x1 — X, and X = x; for i # 1. Making the change 9] = 9; + 91 and
0] = 0; fori # jin A, wearrive at new basesof B and A which act like the original bases.
If o] isthe function o going with 9/, we obtain

0i(D6(0)) + 71()$(01) = H(1(0) +01)) = o' (VH(; + ),

and because of the independence of the B multiples of ¢(d;) and ¢(d1), we seethat o; =
o’ = 1. We have shown that ¢ is independent of the subscript j.

From the equation
6 6@ ®6@)) = 671([6(@). 0o®$(@)))
= [0;,10]
= (9i1)0;
= ¢ (a(11)9(3)),
we obtain
(3.4) #(0))a(t) = a(9;t).
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We want to show next that
(3.5 a(s)o(t) = o(st).
Applying ¢ to both sides of [s0;,19;] = (sd;t — t9;9)0; yields
[0(8)6(9)), o())6(3))] = o( (At — 10y9)) $(y)-
Theleft side of thisis {a(S)$(0;)o(t) — a(t)$(0;)a(s) } #(9;), so we have
a(8)p(0))a(t) — a(t)¢(9)a(s) = o(sojt — t9;s).
Using (3.4), this becomes
a(9)a(0;t) — o (t)o(9;s) = (It — t9;9),
or
(3.6) o(9)a(dt) — a(sBit) = a(t)o(d;9) — o(td;9).
If 9;s = 0, theright side of the last equation vanishes, giving
a(9)a(9;t) = o(sojt).

Thus (3.5) holds for deg;(t) # —1 and deg(s) = 0. Now the right side of (3.6) also
vanishes when deg;(s) = 1, showing that the left side does also. Hence, (3.5) aso holds
for deg(t) # —1 and deg;(s) = 1. We can use this last to show that (3.5) holds when
deg;(t) = —1 and deg;(s) = O:

a(o(t) = o(a(x)o(4 ')

= a()o 1)

= o(sx% M)

= o(st).
We also can obtain the special case of (3.5) with s = x* andt = X‘H by noting that
deg,(s) = 0 and deg,(t) = O for ¢ # j, and that we may interchange the roles of 1
and j. Finally, the general case of (3.5) follows by writing s = X"sp and t = xj”to where
deg;(so) = 0 and deg;(to) = 0, and by calculating that

o(S)o(t) = o (6o )o(S0)o(to)

(4™ )o(soto)
= 04 soto)
= o(st).

Asanimmediate consequence of (3.5) we have

o(st0)) = a(s)9(9)) = a(5)a()d(9)) = a(9)o(t9)).
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We show finally that ¢(tw) = o(t)d(w) and ¢(W)o(t) = o(wt) foralt € Bandw € A.
Writing w = ¥ 50, we have
6w = (13 50)
= IZ ¢(ts0))
=a(t) XI: ¢(si0:)
= a(p(w),

6@o() = 6(3258 )ott)
= ¥ 0(8)6(@)o(t)
— S o(8)e(@)
= io(s oit)
~ o(a) .

THEOREM 3.7. Themap y fromthe group of automorphisms Aut A of Ato the group
of automor phisms Aut B of B defined by mapping each ¢ into its corresponding o is an
isomorphismof Aut A into Aut B. Further, x isonto if and only if each A hasrank 1 for
k<i<n.

PROOF. Let ¢1 and ¢, be two automorphisms of A, and let o3 = x(¢1) and o2 =
x(¢2). Then x is agroup homomorphism since
$102(tW) = ¢1(02()d2(W)) = 01(02(t)) p1b2(W).
Supposethat ¢ isin the kernel of x, i.e., that ¢(tw) = to(w) for al t € B. If j # i, then
0= (10, %9]])
= [6(3), 6(% 9))]
= [6(30). % $(9))]
= {0@)%}0; + X/ [6(3). 6(3))]
= {6(0)x }0; +x6([31,0]])

= {6(@)%}9.
Thus, ¢(ai)xf = Ofor all ¢ wheneverj # i. But then ¢(0;) = fi0; for somef; € B. For
i # ],
0= ¢([ai,9])
= [¢(0), #(9))]
= [fi0;, 0]

= fi(0)9; — (0i%)d,
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which implies that 9;fi = 0. Hence, f; is just a polynomial in x;. If f; is not a constant
polynomial, then any element on which ¢(0;) acts ad-nilpotently is annihilated by ¢(0;).
But this cannot happen since ¢(0;) istheimage of the element d; which actsad-nilpotently
on some elementswhichit doesnot annihilate. It followsthat fi € F. Fromthecalculation

fidi = ¢(0)
= 9([3i, %))
= [6(01), (xi0))]
= [4(01), Xi0(0))]
= [fi0;, fixidi]
= fizai
we obtain fi = 1. Thus, ¢ isjust the identity automorphism, and y is1-1.

If A, has rank greater than 1 for some ¢ with k < ¢ < n, then A can be embedded
into alarger algebra A’ of derivations of B by splitting the ¢-th variable, as noted at the
end of Section 2. The map ' of AutA’ into AutB is one-to-one and clearly extends
x:Aut A — Aut B, so y could not be onto whenrank A, > 1.

Suppose, on the other hand, that rank A; = 1 for al i with k < i < n. To see that
x is onto this time, let ¢ be an automorphism of B, and define the map ¢: A — A by
dW)t = o(wo~(t)). Then clearly ¢(w) acts linearly on A, and the map ¢ is linear also.
Further, ¢(w) is aderivation of B since

PW)(st) = o(wo™(st))
- a(w(a—l(s)a—l(t)))
- a((wfl(s))ofl(t) + o’l(s)w(o’l(t)))
= U(chl(s))t + SU(W(fl(t))
= (¢(w)s)t + sp(w)t,

forall we Aands, t € B. Since Aisall derivations of B in the case we are considering,
it followsthat ¢p(w) € A. Finally, o = x(¢) since

St = o(swo~ (1)) = o(s)o(wo (1)) = (W,
fordlweBands, t €A n

REMARK. The following example due to Zhao Kaiming shows explicitly that the
map ¢ of the last paragraph does not map A into itself when rank A, > 1 for some £.
Splitting X, into two variables as at the end of Section 2, welet o be the automorphism of
B which inverts one of the new variables and preservesthe other new variable aswell as
the other old variables. Then the map ¢ of the last paragraph does not map A into itself.
Equivalently, this o has no corresponding ¢ in A.
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LEMMA 3.8.  For any automor phism ¢ of Athe gradient of ¢(0,) is zero for each m.

PROOF. Let ¢(dm) = ¥ f™dy, let ¢ = x(¢), and let o(x) = g;. Then ¥ fMaig; =
d(Om)a(X) = a(0mX;) = émj. For fixed m, the solution to this set of equationsis given by
Cramer's Rule as Cf(™ = C; where C = det ||8g;|| and where C; is obtained from C by
replacing the i-th column by en,. To show that the gradient of ¢(0m) is zero, we have to
establishthat 5~ 8f™ = 0, or that 3~ 8;C; = 0. If Ci, is obtained from C; by applying d;
to the ¢-th column, then 9;C; = X, C;j,. The assertion that the gradient of ¢(0n) is zero
can then be written in the form ¥ >, Ci; = 0. But this follows immediately from the
observationthat Cijy = —C,;. n

PrROPOSITION 3.9. Thegradient of theimage of an element of A under ¢ istheimage
of the gradient of that element under ¢. In particular, the set S of elements of gradient
zerois preserved under any automor phism.

PrROOF. The gradient of X*0p, iS 0nX* = amx® . On the other hand, using the
notation of Lemma 3.8, the gradient of

$(X*0m) = 0(X")$(0m) = o(X") > £Mg,

Y8 (00N™) = 30 (00))F™ + o) 3 aif™

= > ™Mo (0(x")) +0,
using Lemma 3.8. Then, using Theorem 3.1, this gradient is

$(0m)(0(x)) = ¢(@m) [T o(x™)
=0o(q") -+ dOm)a(xy) - - - o0")

We have established the first statement of the proposition, and the second statement fol-
lowsimmediately from this. L]

Hereafter let A’ denote the subalgebra consisting of all elements of A of the form
Ti<i<kfi0i for i € B.Alsolet G = AN S i.e, G isthe set of elements of A’ with
gradient zero. A subalgebra of A which is sent onto itself by every automorphism of A
will be called characteristic.

ProPosITION 3.10. Thesubalgebra A’ is characteristic.

ProoF. We show first that ¢(0;) € A’ when 1 < i < k for any automorphism ¢.
If this is not true, then ¢(8;)x, # O for some ¢ > k. Since X, is invertible, o=1(x,) is
invertible, and so 0=1(x;) = ax’ for somea € F and 3 € Awith g; = 0for 1 <j < k.
In particular, 5; = 0, and so

0 # ¢(@)x = (8)o(@ax’) = as(@) [ o(x") = 0,
J
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by Theorem 3.1. This contradiction showsthat ¢(0;) € A’. But then ¢(A’) C A’ since

¢>(Z Bai) c % Bo(d) C A

i<k

Combining Propositions 3.9 and 3.10, we obtain

COROLLARY 3.11. Thesubalgebra G’ is characteristic.

4. Examplesof automorphisms. Inview of Theorems3.1and 3.7, we can produce
examples of automorphisms of A simply by picking an automorphism ¢ of B and finding
images for 0;’s that satisfy the second relation in Theorem 3.1.

ExAmPLE 4.1. For fixed j and for fixed nonzero A € F, let o(x) = Ax and ¢(9;) =
2710, and for i # j let o(x) = % and ¢(8;) = @;. The automorphisms in the group
generated by automorphisms of this type are called scalar automorphisms.

ExAMPLE 4.2. For fixedj < kandfor fixed A € F, let o(x) = A + X and o(x) = X;
fori # j. For all i let ¢(d;) = 0;. We shall denote this automorphism by ¢j;,;. Products
of automorphisms of this type are called scalar shift automorphisms.

ExampLE4.3. Forfixedj <k, chooseg € Bwith d;(g) = 0. Defineo(x) = X +6ij0
and ¢(0;) = 0; — 0;(9)9;. We shall call this an elementary automorphism and denote it
by dig.

ExXAMPLE 4.4. For fixedj > K, let o(x) = xj—l and ¢(9j) = —x20;, and for i # j let
o(x) = X and ¢(0;) = 0d;. Products of automorphisms of this type are called inverting
automorphisms.

In general there are other automorphisms besidesthe group of automorphisms gener-
ated by these four types. For example, if A = A; we caninterchange x; and x;; or we can
replace x; by xx. We can use elementary automorphismsto establish

PrOPOSITION 4.5. Let T’ beatorusin A’. Then the dimension of T’ is no more than

PROOF. Let F bethe quotient field of thering F' = F[X1, - . ., Xn, Xira - - - % 2], and
let A = F @ A'. Then any semisimple element of A’ will be a semisimple element of
A Further, any set of linearly independent elements of atorusin A’ will remain linearly
independent in A. Thus it is sufficient to show that the dimension of any torus T/ of A’
is no more than k. It will be convenient to use the standard grading of A" in which the
element x*9; isin the component of level oy + az +- - - + o — 1. Asusual, we can think
of the elements of level 0 asn x n matrices under Lie product, and we can think of the
—1 level as an irreducible module over these matrices. The elementary automorphisms
in which g is a multiple of a noninvertible variable induce elementary transformations
on the matrices and its module. Thus, using products of elementary automorphisms, we
can do any change of basis on the matrices and module that is convenient.
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Let ty,...,t belinearly independent elements of the torus T’ of A Let di and g be
respectively the —1 and O level components of t;. If any set of nonzero d;’s is linearly
dependent, we can subtract multiples of onet; from another to make the nonzero d’s
linearly independent. Further, we can do a change of basis so that the nonzero d;’s are
respectively 01,02, ...,0,. Then tyq,...,t have zero components at the —1 level. It is
easy to see that e/, ...,6 must then correspond to idempotents in the matrices. We
have g # 0forj > ¢ since otherwise tj could not act semisimply. If there is any linear
relation between the g’sfor j > (, we could subtract multiples of some t;’s from others
and get at; without O component. The fact that the t;'s commute means that ey.4, ..., &
correspond to a set of pairwise orthogonal idempotents.

Forl <i < (¢ <j<r,thereation[t;,t] = Oimpliesthat 0 = [d, g] = [d;, §]. Thus,
€+1, . . ., & correspondtor — £ orthogonal idempotentswhich liein aset of matriceswith
k — ¢ nonzero columns. It followsthatr — ¢ < k — ¢, or that r < k, as we wished to
prove. n

5. Characteristic subalgebras and autogeneration. We say that a set C of Ais
autogenerated by an element w € A if Ciscontained in the set of all elements generated
from w under the operations of taking images under automorphisms of A, taking Lie
products, and forming linear combinations. The set of all elements autogenerated by wis
clearly a subalgebra. For our final result on isomorphisms of algebras of type W* we will
need to characterize certain subalgebrasintrinsically, and the concept of autogeneration
will play amajor role in this endeavor.

The subalgebra G’ of elements of A’ which have gradient zero is spanned by the ele-
ments of the form {x*0; | o = 0andj < k} and of the form {9;(f)o; — di(f)9; | i,j <
kandf € B}. If k = 1, only elements of thefirst typewill occur. Let G be the sum of G’
and the span of the elements of the form {fjxj0; | j < kand 0;(f;) = Ofor al i <k}. Itis
clear G isasubalgebraand that [G, G] = G'. Wewill also need

Nu:{zf@|ﬁeaammmy:MmamSk}
k<i<n
We have shown in [3] that the torus T = Y-« FX0; is the unique maximal torus of A",
and that all toral elements of A” are contained in it.

PrROPOSITION 5.1. ThesubalgebraG is characteristic. Further, if f isa monomial in
theinvertible variablesand if i < k, then ¢(fx;0;) is congruent to o(f)x;0; modulo G’ for
any automor phism ¢.

Proor. Inview of the Corollary 3.11, it is sufficient to show that the elements fx; g,
forj < kwheref isamonomial intheinvertible variablesare congruent to x;0; modulo G.
Now ¢(x;0;) € A’ for any automorphism ¢ by Proposition 3.10, say ¢(x0j) = > i<k hid;.
Using Proposition 3.9, the gradient of ¢(x0;) is1 = 0jx = Yi<dihi. Writing by =
aix +h/ whereh/ involves all termsin h; which correspond to roots of h;0; other than 0,
this becomes

(5.2) 1=a+> ah.

i<k i<k
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Sincethe second summation involves exactly the termswhich do not correspond to terms
ontheleft sideof the equation, it must vanish. Thus Y« hid; € G’, and ¢(x0;) iscongru-
ent to >j<x @ x0; modulo G'. Thus (5.2) reducesto Y j<x & = 1. Since x0; is congruent
modulo G" to 0, for i, j <Kk, infact, ¢(x0;) is congruent to x;0; modulo G'.
Considering now the general element fx;0; where f is a monomial in the invertible
variables, we note that o(f) must be an invertible element of B, so that o(f) is a scalar
multiple of a monomial in the invertible x;'s. Thus, ¢(fX0;) = o(f)$(x0;) is congruent
modulo G’ to o(f)x0; € G. n

LEMMA 5.3. Ifk > 2andifi <k, then 0; autogeneratesG'.

ProOF. Letj < kandj # i. We show first that the element f9; with f € B where
0j(f) = 0O is autogenerated by d;. Since x; is not invertible, we can find g € B with
0j(g) = Oand 0i(g) = f. If ¢jq is the elementary automorphism given in Example 4.3
using this g, then ¢(d;) = 0; + f9;. Thus fg; is indeed autogenerated by d;. Choosing
the special casewhenf = 1, we get 9;. Then switching the roles of i and j in the above
argument, we obtain hg; for any h € B with 0;(h) = 0. The elementsthat we have shown
to be autogenerated by d; in fact generate G’ as a subalgebra, to complete the proof. =

LEMMA 54. (i) If oy = 0 = G and oy = O = 3; wherei, ] <k, then
[X'X™"%8;, /% XX 0; — x| X" 1x99] € G

ifandonlyif 0 = (¢ + 1)(¢'m— ¢m).
(i) If s = 0= g and oy = 0 = §; wherei, ] <k, andif g > k, then

[X'X"™*0g, ('% X" x00; — mix X" Ixx.01] € G
if and only if 0 = (¢'m— ().

ProoF. Multiplying out the product in Part (i), the coefficient of the term with 0,
will be ¢/(¢' — 1), and the coefficient of theterm with 8; will be —m ¢/ — ¢/'m+m/ (£ + 1).
Thus the condition that thisliesin G’ will be

(0" = D(m+ ) = (C+ ) (=m' ¢ — 'm+nf (0 +1)).

Simplifying this condition yields the one given in the statement of Part (i) of the lemma.

Computing the product in Part (ii), we see that the coefficient of the term with dq will
vanishif and only if 0 = (¢’m— ¢n7). Thisis of course necessary if the product isto be
inG’ C A'. Theremaining expressionisseento bein G’ if and only if 0 = (¢/m— £ny).
Thus Part (ii) holds. ]

LEMMA 5.5. Letk > 2. Then

(i) Any element of G’ autogeneratesG'.

(i) Any element of G autogeneratesa subalgebra of G containing G'.
(iii) Any element of A’ not in G autogenerates A
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(iv) Any element of A not in A’ autogenerates a subalgebra containing G’.

PrOOF.  Suppose first that w € A’. We claim first that w autogenerates an element
of the form w' = x“9;. By taking an appropriate linear combination of the images of w
under different scalar automorphisms, we see that the component of w in any root space
is in the subspace autogenerated by w. Thus, to see that w autogenerates all of G/, it is
sufficient to suppose that w is contained in a single root space. Say that w has root «.
If a; > Ofor somei < k, apply the scalar shift automorphism ¢j;,; to w and take the
terms which have the root o — «j¢j, which will be nonzero. Repeating this operation if
necessary, we can assumethat w has root o where o; < 0for eachi < k. If oy = —1for
somej < k then we have arrived at the elementw' = Xa/aj whereo’ = a+¢.1f o =0
forali <k, thenw = x* Y« Cix0; for somec; € F. Choosing j so that ¢; # 0, we
apply the scalar shift automorphism ¢y;,) to w and take the component of degree —1inj
which is anonzero multiple of W = x*9;.

Consider now the casewhen o # —1for ali > k. Choosing ¢ < kwith £ # jand g
so that ;g = x~, we apply the automorphism ¢4 which sendsw’ into x*(9; — x~“9).
One component of thisis d,, which autogenerates all of G’ by Lemma 5.1. On the other
hand, if o = —1 for somei > k, we can again apply the automorphism ¢4, but this
time with g chosento be amonomial in X1, - . . , Xn With the property that degx*g # —1
fori > k. We can then apply thefirst case to autogenerate G'.

We have shown that the subalgebra autogenerated by any element w € A’ contains
G'. If w € G/, we see from Corollary 3.6 that w generates exactly G’, to give Part (i).
If wisin G but not in G/, then the subalgebra generated by w contains G’ by the above
argument, and is contained in G by Proposition 5.1. Thus Part (ii) holds.

Suppose now that wisin A’ but not in G. Asin the first part of this argument, the
component of w in any root spaceis autogenerated by w, so that we can assumethat wis
notin G but isin asingle root space, say the a-root space. Modulo G’ which we know
is autogenerated by w, we can pick w to be a single monomial. Sincew ¢ G/, it hasthe
formw = x*x;0; for somej < k; and sincew ¢ G, o # 0for somei < k. If o5 # 0,
the automorphism ¢;q induced by o(x) = X + g and o(x) = x fori # j applied tow
will show us that gx*9; is autogenerated by w. Here g can be any monomial which has
degree zero in x;. If oy # 0 for some ¢ # j with { < kK, then the automorphism ¢
whereg = X" applied to w will give that xjmxglw is autogenerated by w. Using these two
operations and the scalar shifts for lowering the powers of noninvertible variables, we
can get any monomial in A’ modulo G/, to establish Part (iii).

Finally for Part (iv), we have to show that any element w not in A’ autogenerates
at least G'. As usual, we may assume that w has a single root associated with it. If
any nonzero components of the root correspond to noninvertible variables, we can use
scalar shift automorphismsto get rid of these variables. Thus we may assumethat w =
X* Vi GiX0; for somec € F where oy = 0 fori < k, and where ¢; # 0 for some
j > k. Asin the proof of the last part, the automorphism ¢4 where g = X" applied to
w yields a nonzero component in A’. This component can be separated off using a scalar
automorphism, and it will autogenerated all of G’ by the first part of the proof. ]
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If k = 1, let G” denote the span of all elements of the form x*9; where «; = 0 and
o # Oforali > 2. Then we have

PROPOSITION 5.6. Supposethat k = 1. (i) Let G* denote the intersection of all
subalgebras of A which are autogenerated by elements of A which are not ad-nilpotent.
ThenG” c G* C G'.

(i) G isthecentralizer of G*.

ProOOF. The element x;0; is not ad-nilpotent and ¢(x;01) € Fx101 + G’ for any
automorphism ¢ by Proposition 5.1. Hence the subal gebraautogenerated by x;0; is con-
tained in Fx;01 + G'. Similarly, the subalgebra autogenerated by x,x;0; is contained in
>, Fo(xo)x101 + G, which does not contain x;0; . It follows that G* ¢ G'.

If w=Yfio; for f; € Bisanelement of Awhichisnot ad-nilpotent, we want to show
that w autogenerates G”. Supposefirst that f; # 0 for somej > 1. Then w autogenerates
each of its homogeneous components, so that it is sufficient to show that one component
of w autogenerates G”. Select a component of w which has a nonzero coefficient for
0j, say, W = x*; cix0; where ¢; € F. Applying the automorphism 4.4 to w' which
sendsx; into xj*1, we obtain the element w” = x*~2%¢ (% x;0; — 2%9;). Then the element
z = ¢ W', W] = x**2x0; is autogenerated by w. Writing 8 = 2« — 2ajej, we
have z = x°xd;. If 31 # 0, we can apply a scalar shift automorphism and take the
component that does not depend on x;. Thuswe may assumethat 3; = 0. Now applying
the elementary automorphism ¢14 to zwhere 0:9 = 0, and then subtracting z, we get the
element x’x;(9;9)01 € G'. Asg rangesover all monomialsin the invertible elements we
will get all elementsof G” (aswell as some elements not in G”).

Suppose then that the element w that is not ad-nilpotent has the form f9;. Then some
homogeneous component of it is not ad-nilpotent. We can take a scalar shift of thisele-
ment and take the component which has degree zero in x;. Thusit is sufficient to show
that any element of the form z = x*x;0; with o; = 0 autogeneratesall of G”. Applying
the automorphism ¢14 to z where 0,9 = 0, and subtracting z from this, we obtain the
element x*gd; € G'. Asgrangesover all monomialsin the invertible elements, we will
get all the elements of G”. This completes the proof of part (i).

For part (ii) we notefirst that G’ is abelian when k = 1, so that G’ is contained in the
centralizer of G*. Conversely, let w = 3 f,0; centralize G*. Then for any o with oy = 0
and o # Oforali > 1,

0= [W,x*d;] = [Z .05, xaal]
= 3 aifix 0, — X* (@110

Thisimpliesthat fi = Ofori > 1 and that 9;f; = 0. Thus,w € G'. n

ProPOSITION5.7. (i) If k > 2,then G’ isthe unique minimal nonzero characteristic
subalgebra of A.
(i) Gistheuniquecharacteristic maximal ideal of theidealizer H of G’ in A,
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(iii) A isthe unique largest characteristic subalgebra which properly contains G,
and whose intersection with H is G.
(iv) A” + A istheidealizer of A'.

ProOF. Part (i) followsfrom thefact that every nonzero element of A autogenerates
at least G’ by Lemma 5.5, and that elements of G’ autogenerate exactly G’ whenk > 2.
Turning to Part (ii), we know from Lemmab5.1 that G is a characteristic subalgebra, and
it is clearly contained in H. To complete the proof of Part (ii) we need to show that G is
the unique maximal ideal of H.

In view of Lemma 5.4(i), the only elements of A’ in H are the elements of G. (Note
that every element of A’ that isin a single root space can be taken to have a single term
modulo G'). If w € Handw & A, thenw = w; +w, wherew, € A’ andw; = i~k Gifi0;.
Each f; must be afunction only of theinvertible variables, since otherwise w cannot send
every element of G’ into G'. Thus, w; € A”. On the other hand, it is easy to seethat each
element of A” will idedlize G’. Thenw, = w—w; € H, and sow, € G. We have shown
that H = A” + G. Since [A”,G] C G and since A” is asimple algebra, G is a maximal
ideal of H. To establish uniqueness, let w € H and w ¢ G, and we will show that the
autoinvariant ideal of H generated by wisall of H. Now w = w; +w, wherew; € A”
andw, € G, andw; # 0. Asusual, by applying different scalar automorphisms we can
assumethat wisin asingleroot space, say, w = x* 7 Cix;0;. Thenc; # Ofor somej > k,
and

[ijaj ) [a, ) W]] = (OCJ2 — OCJ')Xa Z CiXi0i — ZCijaj.
i

Subtracting (ajz — oj)w from this we obtain that x*x;0; isin the ideal. Thus, w autogen-
eratesall of A”, since A” issimple. Hence w autogeneratesH because G = [A”, G]. This
completesthe proof of Part (ii).

To show Part (iii), we notefirst that A’ is characteristic by Proposition 3.10, and that
it properly contains G. The remaining thing to be shown for Part (iii) is that any other
subalgebrawith these properties which is not contained in A’ must haveintersection with
H which is larger than G. Let w be an element in such an algebra, and we can suppose
that itisnotin A’. By using scalar and scalar shift automorphisms, we can assumethat w
isin asingle root space, and that the corresponding root « has the property that o = 0
for i < k. Under this reduction we retain the property that w ¢ A’. Thenw = w; +w;
where 0 # wy = X* Tk Xi0i € A” andw, = X* i« X0; € G. But this elementisin
H, showing that the intersection of the algebrawith H is bigger than G. This completes
the proof of Part (iii). When k > 2 it follows from Lemma 5.5(iii) that A is the only
characteristic subalgebra of A which properly contains G and whose intersection with H
isG.

Finally, for Part (iv) we note that an element w = 3 ¢ifi0; for ¢; € F and f; € B will
idealize A’ if and only if, for eachi > k, f; isafunction only of the invertible variables.
But this saysthat widealizes A’ if and only if w € A” + A'. ]
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NOTATION. To get the analogue in an algebra A; of the various subalgebras G/, G,
A, A" of A, we shall simply add the subscript i. Similarly, the number of noninvertible
variablesin A; will be denoted by k; and the number of all variables by n;.

THEOREM 5.8.  Letf: Ay = A, beanisomorphismwhereA;, A, € W*. Then A} = A,
and A = AJ. In particular, k; = ky and n; = n,.

ProOF. Ifk; = 0,thenk, = Oandn; = ny by [3, Theorem4.16 and Corollary 4.12].
Both isomorphisms areftrivial in this case. If ky = 1, then G} is abelian, and so A, must
contain an abelian characteristic subalgebra. Thus, k, < 2 by Proposition 5.7(i). The
possibility that k; = Oisruled out by applying the first step of the proof to 61, showing
that k, = 1. Then G} and G} areinvariantly characterizedin A; and A by Proposition 5.6,
and so A] and A, are invariantly characterized in A; and A, by Proposition 5.7. Hence,
0(AY) = A

In order to complete the proof that A = A} and ki = k, we may assumethat k; > 2
andk; > 2. By Proposition 5.7, A] and A}, can be characterizedin an invariant manner, so
6 must map the one onto the other. Now A} has atorus of dimension k; of noninvertible
variables in A, and hence A, must have a torus of dimension k;. By Proposition 4.5,
ki < kp. By symmetry, k; = k.

Since A + A/ is the idealizer of A, § must also map A{ + A} onto Aj + A,,. Then,
Al = (A +A) /A = (A +A) /A, = AJ. By [3, Corollary 4.12], A and A] must have
the same number of variables. n
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