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Abstract

This study investigates the molecular intricacies of the transmembrane protein TSP11 gene in
Echinococcus strains isolated from livestock and patients in Yunnan Province afflicted with
Echinococcus granulosus (E. granulosus) between 2016 and 2020. Gene typing analysis of
the ND1 gene revealed the presence of the G1 type, G5 type and untyped strains, constituting
52.4, 38.1 and 9.5%, respectively. The analysis of 42 DNA sequences has revealed 24 novel
single nucleotide polymorphic sites, delineating 11 haplotypes, all of which were of the mutant
type. Importantly, there were no variations observed in mutation sites or haplotypes in any of
the hosts. The total length of the TSP11 gene’s 4 exons is 762 bp, encoding 254 amino acids.
Our analysis posits the existence of 6 potential B-cell antigenic epitopes within TSP11, specif-
ically at positions 49-KSN-51, 139-GKRG-142, 162-DNG-164, 169-NGS-171, 185-DS-186
and 231-PPRFTN-236. Notably, these epitopes exhibit consistent presence among various
intermediate hosts and haplotypes. However, further validation is imperative to ascertain
their viability as diagnostic antigens for E. granulosus in the Yunnan Province.

Introduction

Echinococcosis, also known as hydatid disease, is a persistent cystic zoonotic parasitic disease
that affects humans and both domestic and wild odd-toed ungulates. It is caused by the larval
stage of the dog tapeworm, a member of the Echinococcus, family Taeniidae, specifically
E. granulosus (Chi, 2015).

Designated by the World Health Organization as one of the 20 easily neglected tropical dis-
eases, E. granulosus is regionally endemic throughout Europe, North and East Africa, Central
Asia, the Middle East, Central and South America and Australia (World Health Organization,
2021; Hogea et al., 2024), it currently affects approximately 3 million patients with this disease,
leading to an estimated annual economic loss of 760 million USD. In the livestock industry,
the infection of domestic animals by the larval stage of Echinococcus results in economic losses
exceeding 3 billion USD annually due to reduced weight and lower fertility (Budke et al., 2006;
Otero-Abad and Torgerson, 2013; Oian et al., 2017).

China bears one of the highest incidences of hydatid disease, with primary endemic areas
including Xinjiang, Sichuan, Qinghai, Tibet, Gansu, Ningxia, Inner Mongolia and semi-
agricultural and semi-pastoral regions (Sivalingam and Shepherd, 2012). Incomplete statistics
indicate that by the end of 2016, over 368 counties (districts) in China had been affected by
hydatid disease, with an incidence rate among the population ranging from 0.6 to 4.5%, total-
ling approximately 170 000 patients (Kolaskar and Tongaonkar, 1990; Jiang, 2002). Hydatid
disease constitutes 40% of the global burden (Wu, 2017). In Yunnan Province, Echinococcus
endemic areas are concentrated primarily west of 25°N latitude, in regions highly affected
by hydatid disease, including Ganzi in Sichuan, Changdu in Tibet and others (Qiu et al.,
2000; Huang et al., 2012; Lei and Wang, 2012). Notably, counties (districts) such as Deqen
and Dali exhibit an incidence rate of 0.06% among the population, with all infections identi-
fied as E. granulosus. However, the Diqing region also demonstrates high infection rates
among animal hosts, indicating a potential risk of natural focal transmission (Li et al.,
2019; Li et al., 2020).

Mitigating the disease burden of human echinococcosis involves both effective patient
treatment and accurate diagnoses. Presently, the primary treatment for hydatid disease
involves the surgical excision of lesion tissue and chemotherapy (Wen et al., 2015). While sur-
gical intervention can promptly alleviate the harm caused by hydatid disease, it is associated
with high recurrence rates and numerous postoperative complications (Guo et al., 2019),
necessitating adjunctive drug therapy (Aghayev, 2016). Very few adverse events have been
reported by treatment with albendazole, however, even a single dose treatment (for empirical
or seasonal use) of albendazole (400 mg) could cause acute liver toxicity in adult patients (Chai
et al., 2021).

Conversely, diagnostic methods reliant on imaging technology are not conducive to clear
diagnoses of early-stage, non-cystic patients with echinococcosis (Craig et al., 2007).
Consequently, immunodiagnostic tools have gained widespread use in recent years for
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epidemiological screening and early diagnosis of echinococcosis
(Li and Gao, 2017). Nevertheless, the antigen employed for
enzyme-linked immunosorbent assay (ELISA) detection plates
typically comprises echinococcosis cyst fluid. The complexity of
protein components in the cyst fluid compromises the accuracy
of detecting Echinococcus due to cross-reactivity with other tape-
worms of the family Diplotriaenidae. Therefore, selecting specific
and highly sensitive coating antigens has become a focal point of
current research (Chow et al., 2004; Liu et al., 2015; Xu et al.,
2018). Notably, the 4-transmembrane protein (TSP11) on the sur-
face of Echinococcus, identified for its pivotal role in stimulating
the host’s acquired immune response, serves as a specific marker
for echinococcosis infection (Wang et al., 2017). This current
study aimed to analyse the polymorphism of the TSP11 gene dis-
tributed in Yunnan and its surrounding areas and investigation of
B antigenic determinant cluster of this protein for use as a diag-
nostic antigen.

Materials and methods

Study sample

Throughout the implementation of the ‘Yunnan Province
Hydatid Disease Monitoring Program’ from 2016 to 2020, post-
slaughter inspections and parasitic infection checks were carried
out on the organs of livestock (hosts) including cattle, pigs and
sheep, which displayed cysts, cystic formations or nodules.
Following slaughter, we collected organ tissues with cystic masses
and fluid from lesions for parasitic infection examination. The
samples encompassed single-cystic, multi-vesicular and collapsed
internal cyst types of hepatic hydatid disease with an average cyst
diameter >5 cm. Additionally, various types of hepatic hydatid
with an average cyst diameter <5 cm, situated in the first or
second porta hepatis and likely to cause severe complications
(such as obstructive jaundice, portal hypertension, Budd–Chiari
syndrome) were included. We also considered various types of
hepatic hydatid disease where drug adverse reactions were signifi-
cant (hepatorenal dysfunction and other detrimental side effects),
or patients struggled to adhere to medication, or the cyst contin-
ued to enlarge after more than 6 months of drug treatment. In
these cases, tissues from surgically removed cystic masses and
fluid from lesions were gathered for parasitic infection examin-
ation (National Health Commission of the People’s Republic of
China, 2017).

Microscopic confirmation of echinococcosis infection and its
genotyping

The collected tissues from affected organs and fluid from lesions
underwent immediate optical microscopy (10–40×) to identify

Echinococcus cyst walls, daughter cysts, protoscoleces or small
hooks (Zhu and Su, 2019).

For samples testing positive forE. granulosus infection, we further
sequenced theND1 gene to identify the genotype. PCR amplification
of the ND1 gene for types 1 and 5 utilized primers designed with ref-
erence sequences MN199128.1 (https://www.ncbi.nlm.nih.gov/
nuccore/MN199128.1) and KY766908.1 (https://www.ncbi.nlm.nih.
gov/nuccore/KY766908.1) (Table 1) (Li et al., 2023).

Design of primers for Echinococcus TSP11 gene

The primers for amplifying the Echinococcus TSP11 gene were
designed based on the reference sequence (XP_024352489.1)
((Huang et al., 2017)) (Table 1).

Echinococcus DNA extraction and nested PCR amplification of
ND1 and TSP11 gene

Approximately 20 mg of tissue exhibiting cyst-like changes was
excised from the affected organs and cut into 5–10 mm fragments.
DNA extraction of Echinococcus was conducted following the
guidelines of the DNA extraction kit, and the extracted DNA
was stored at −20°C for subsequent use.

The nested PCR amplification for NAD1 and TSP11 genes
involved 4 reaction systems, each comprising DNA template
(2.5 μL), 2 × Taq enzyme (14.0 μL), primer forward and reverse
(10 μmol /L each, 0.7 μL), and ddH2O (7.1 μL). The PCR reaction
conditions were set at 95°C for 5 min, followed by 35 cycles of 95°
C for 30 sec, 55°C for 45 sec and 72°C for 1 min 30 sec, conclud-
ing with 72°C for 10 min (Han and Gao, 2020). The
second-round amplification products were visualized through
2% agarose gel electrophoresis, and the resulting products were
sent to Guangzhou Tianyi Huiyuan Genetic Technology Co.,
Ltd., for bidirectional sequencing.

TSP11 gene polymorphism and evolutionary relationships of
sequences from different host sources

The PCR product sequencing results were compiled using
DNAStar 11.0 or BioEdit 7.2.5 software to generate DNA
sequences for the NAD1 and TSP11 genes. The organized
sequences of 2 genes were individually analysed using BLAST,
comparing them against the reference sequences MN199128.1
and XP_024352489.1. The query coverage and identity were
examined, and when both query coverage and identity exceeded
98%, it was indicative that the organized sequencing sequences
represented the target sequences. A match of both coverage
(Query cover) and similarity (Identifies) exceeding 98% con-
firmed the compiled sequences as the target sequences. The cod-
ing DNA sequences (CDS) for the 4 exons encoding the TSP11

Table 1. Primer sequence and other information

Gene name Primer name Sequence (5’-3’) Length of fragment/bp Amplification region

TSP11 TSP11-F1 TGTTTTCTATTTTTACCCACTAGAT 1230 85 417–86 646

TSP11-R1 TTTAAAGTTAATTAGGAGAAGGACG

TSP11-F2 TATTAATCCAGCTTTAAGGTCATTT 1021 85 555–86 575

TSP11-R2 TATTTGTCCAGATAGGATTTAATGG

NAD1 NAD1-F1 TGTTACTTGTTACTCCATTGTCT 1486 6869–8354

NAD1-R1 TATCAAAGTAACCTGCTATGCAG

NAD1-F2 TTTAAGTTGGGTGGTGATTA 1232 6997–8228

NAD1-R2 TTGAAGTTAACAGCATCACG
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Figure 1. Intermediate host, diseased organ, protocephalic segment of Echinococcus granulosus
Note: a: Yak from Weixi County, Diqing Prefecture; b: Diqing Tibetan pig; c: the liver; d: lungs; e: diseased part of the lung (arrow points to the diseased part); f, g:
hydatid (40X); h, i: protoscolex (10X)
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gene were concatenated from the 5′ to 3′ end (Xu et al., 2020).
Amino acid sequences were deduced using MEGA 7.0.26 software
for TSP11 and the alignment file. DnaSP 5.10 software was
employed to identify haplotypes, single-nucleotide polymorphism
(SNP) sites, and their mutation types (synonymous/non-
synonymous) for the 4 exons of the TSP11 gene. Expected hetero-
zygosity (He) and nucleotide diversity (π) were calculated for each
haplotype (Dong et al., 2019 and Xu et al., 2020). All base substi-
tutions were verified by examining the sequencing peak charts.
Network 10.0 software was used to create intermediate network
evolutionary diagrams for each haplotype.

Prediction of B-cell antigenic determinants of different
haplotypes of the TSP11 gene

B-cell epitopes of TSP11 were predicted using the IEDB online
platform (https://www.iedb.org/) and the ‘Protean’ module of
DNAStar 11.0. Comparative analysis of different hydrophilicity
plots (Ponomarenko et al., 2011), accessibility (Allcorn and
Martin, 2002), flexibility (Li et al., 2016), antigenicity (Resende
et al., 2012) and β-turn regions among the amino acid chains
of different TSP11 haplotypes (Hu et al., 2014) was conducted.
Parameters such as hydrophilicity, antigenic index, flexibility
and β-turn were assessed to identify common B-cell antigenic epi-
topes among different intermediate hosts and haplotypes. Points
with the highest local average hydrophilicity were often situated
at or adjacent to the antigenic determinant clusters (epitopes).
Surface accessibility prediction considered the likelihood of
amino acid residues in the antigen coming into contact with cor-
responding antibodies or solvent molecules. Polar amino acids,
more likely to be exposed on the protein surface, were deemed
probable components of antigenic epitopes. Amino acid residues
with high activity represented flexible sites likely to form antigenic
epitopes. The β-turn region and structurally loose, prominently
exposed, deformable and twisted areas in irregularly coiled
regions were identified as potential antigenic epitope regions
exposed on the protein surface that could easily bind to
antibodies.

Statistical analysis

Establishing a counting database within Excel software, we con-
ducted chi-square tests to analyse the distribution variances
among intermediate hosts exhibiting different genotypes of

Echinococcus, nucleotide peptides of the TSP11 gene, and dispar-
ities in haplotype detection rates across diverse intermediate hosts,
maintaining a significance level of α = 0.05.

Results

Sample collection sites and Echinococcus infection

Between 2016 and 2020, a comprehensive total of 42 samples of
visceral tissues from Echinococcus were meticulously collected
and subjected to rigorous testing. These samples comprised 13
of human origin (4 from Jianchuan County, 4 from Ganzi
Prefecture, 3 from Yulong County and 2 from Weixi County),
13 sourced from pigs (5 from Daguan County, 3 from Eryuan
County, 3 from Lushui City, 1 from Shangri-La and 1 from
Weixi), 14 originating from cattle (as illustrated in Fig. 1a, b)
(13 from Shangri-La and 1 from Weixi) and 2 derived from
sheep (1 from Weixi and 1 from Honghe). These samples encom-
passed 37 instances of diseased liver tissues and 6 cases of dis-
eased lung tissues (as depicted in Figs 1c–e) (refer to
Supplementary Material 1 for further details).

Echinococcus was detected in all 42 samples of infected tissues
(Fig. 1f–i). Under microscopic examination, structures with
double-layered cyst walls enclosing fluid and sand-like bodies
were observed. The inner layer of the cyst wall was pink, and the
cyst fluid was either transparent or slightly turbid. Small hooks
floated in the fluid, and internally, elliptical or circular structures
resembling ‘original heads’ were observed, which were invaginated
and contracted (Fig. 1f, g, green arrows). Inside the ‘original heads,’
brown elliptical structures were identified as calcareous corpuscles
(Fig. 1h, i, black arrows). The wheel-shaped structure represented
a sucker (Fig. 1h, brown arrows), and the bushy structure featured
small hooks (Fig. 1h, i, purple arrows).

Sequencing of gene PCR amplification products

PCR amplification of TSP11 and ND1 genes produced target
bands of approximately 1021 and 1232 bp respectively (Fig. 2).

42 ND1 Gene Sequences of the 42 ND1 genes exhibited greater
than 98% similarity with the reference sequences MN199128.1
and KY766908.1. Among these, the ND1 gene DNA sequences
of 22 samples were identical to MN199128.1, with a length of
894 bp, classifying them as Type 1. 16 samples exhibited ND1
gene DNA sequences identical to KY766908.1, also with a length

Figure 2. Electrophoresis Map of PCR Amplified Products of TSP11 Gene and ND1 Gene in the Pathological Organs of Echinococcus granulosus
Note: M: DNA marker; 1. 2: Negative control of the first and second rounds of PCR of TSP11 gene; 3: TSP11 gene PCR positive control; 12. 13: Negative control of ND1
gene in the first and second rounds of PCR; 14: ND1 gene positive control; 4. 5, 6, 7, 8, 9, 10: amplification products of TSP11 gene; 16. 17, 18, 19, 20, 21, 22:
amplification products of ND1 gene
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of 894 bp, categorizing them as Type 5. For the remaining 4 sam-
ples, the similarity to both MN199128.1 and KY766908.1 did not
reach 100%, designating them as an undefined genotype (Table 2).

In all, 3 distinct genotypes were identified: Type 1, Type 5 and
undefined, constituting 52.4, 38.1 and 9.5% of the total, respect-
ively. While all 3 genotypes were detectable across intermediate
hosts including humans, pigs, cattle and sheep, the discrepancies
in their detection rates did not reach statistical significance
(P = 0.045, P = 0.083 and P = 0.0428) (refer to Table 2).

Nucleotide diversity of TSP11 gene CDS sequences

Sequencing the TSP11 gene from the 42 Echinococcus samples
resulted in complete coding DNA sequences (CDS), each com-
prising 4 exons with a length of 762 bp. These sequences exhibited

greater than 98% similarity with the reference sequence
XP_024352489.1. The nucleotide diversity index (π) was calcu-
lated to be 0.00413. There were 24 polymorphic sites, with the
most frequent biallelic site being c.127 (42.9%, 18/42), and the
minor allele frequency (MAF) for c.192 was 26.2% (11/42).
There were 8 singleton variable sites and 16 parsimony inform-
ative sites (2 variants). Among the 24 polymorphic sites, 66.7%
(16/24) were located at the third base of amino acid codons,
and only 6.25% (1/16) of base substitutions resulted in amino
acid variations. The proportions for the second and first base
positions were 8.3% (2/24) and 25.0% (6/24), respectively
(Table 3). The detection rates of these 24 polymorphic sites in
sequences from different intermediate hosts such as humans,
pigs, cattle and sheep showed no statistically significant
differences.

Table 2. Interspecific difference of ND1 gene

Order Somatotype (According to ND1)

intermediate host

Person (n = 13) Pig (n = 13) Cow (n = 14) Sheep (n = 2) p

1 G1 (n = 22, 52.4%) 10 (45.4) 4 (18.2) 8 (36.4) 0 0.045

2 G5 (n = 16, 38.1%) 2 (12.5) 8 (50.0) 5 (31.3) 1 (6.2) 0.083

3 Undefined type (n = 4, 9.5%) 1 (25.0) 1 (25.0) 1 (25.0) 1 (25.0) 0.0428

Table 3. Single nucleotide polymorphism in the TSP11 gene of Echinococcus granulos

Order Loci Alleles Coding

Amino
acid

variation

Frequency
intermediate host

P

No. of all
CDSs

(n = 42,%)
Person

(n = 13,%)
Pig

(n = 13,%)
Cow

(n = 14,%)
Sheep
(n = 2,%)

1 c.46 G > A GCA/ACA A16T 3 (7.1) 1 (7.7) 0 2 (14.2) 0 1.000

2 c.64 G > C GGG/CGG G22R 1 (2.4) 0 0 1 (7.1) 0 /

3 c.91 G > C GTG/CTG V31L 4 (9.5) 1 (7.7) 0 3 (21.4) 0 0.596

4 c.97 T > C TTT/CTT F33L 4 (9.5) 1 (7.7) 0 3 (21.4) 0 0.596

5 c.127 A > G ATT/GTT L43V 37 (88.1) 12 13 (100) 10 (71.4) 2 (100) 0.172

6 c.192 G > A GGG/GGA G64G 11 (26.2) 1 (7.7) 4 (30.8) 5 (11.9) 1 (50) 0.258

7 c.229 T > A TTC/ATT F77L 3 (7.1) 1 (7.7) 0 2 (14.2) 0 1.000

8 c.231 C > T TTC/ATT F77L 3 (7.1) 1 (7.7) 0 2 (14.2) 0 1.000

9 c.234 T > C CTT/CTC L78L 1 (2.4) 1 (7.7) 0 0 0 /

10 c.249 G > A TCG/TCA S83S 4 (9.5) 1 (7.7) 0 3 (21.4) 0 0.596

11 c.252 T > C ATT/ATC I84I 3 (7.1) 1 (7.7) 0 2 (14.2) 0 1.000

12 c.333 A > G GCA/GTG A111A 1 (2.4) 1 (7.7) 0 0 0 /

13 c.492 C > T GGC/GGT G164G 4 (9.5) 1 (7.7) 0 3 (21.4) 0 0.596

14 c.551 T > C GTC/GCC V184A 3 (7.1) 1 (7.7) 0 2 (14.2) 0 1.000

15 c.582 C > T TTC/TTT F194F 1 (2.4) 0 0 1 (7.1) 0 /

16 c.600 A > G AAA/AAG K200K 1 (2.4) 0 0 1 (7.1) 0 /

17 c.606 C > T TGC/TGT C202C 1 (2.4) 0 1 (7.7) 0 0 /

18 c.672 C > T TGC/TGT C224C 4 (9.5) 1 (7.7) 0 3 (21.4) 0 0.596

19 c.729 A > C CTA/CTC L243L 3 (7.1) 1 (7.7) 0 2 (14.2) 0 1.000

20 c.741 A > C GTA/GTC V247V 1 (2.4) 0 0 1 (7.1) 0 /

21 c.744 C > T AGC/AGT S248S 4 (9.5) 1 (7.7) 0 3 (21.4) 0 0.596

22 c.747 C > T TCC/TCT S249S 3 (7.1) 1 (7.7) 0 2 (14.2) 0 1.000

23 c.758 A > C TAT/TCT Y253S 1 (2.4) 0 0 1 (7.1) 0 /

24 c.759 T > C TAT/TAC Y253Y 4 (9.5) 1 (7.7) 0 3 (21.4) 0 0.596
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Multiple mutations and evolutionary analysis of TSP11 gene
CDS sequences

The alignment of the 42 TSP11 gene CDS sequences with the ref-
erence sequence (XP_024352489.1) revealed the presence of 11
haplotypes. Haplotype Hap_1 perfectly matched the reference
sequence, with the remaining 10 haplotypes (Hap_2 to Hap_11)
representing mutated forms of the reference sequence
(XP_024352489.1), resulting in expected heterozygosity (He) of
0.6622. Among them, Hap_2 had the highest frequency (57%,
24/42), followed by Hap_3 (19%, 8/42) and Hap_8 (4.8%, 2/42),
with the remaining haplotypes each accounting for (2.4% 1/42)
(Table 4). The mildest mutations were observed in Hap_2 (57%,
24/42) and Hap_9 (2.4%, 1/42), while the most intense mutation
was observed in Hap_8 ( 4.8%, 2/42). Hap_4, Hap_5 and Hap_11
were exclusive to human samples, Hap_6 was only found in pig
samples, and Hap_7, Hap_8, Hap_9, Hap_10 and Hap_12 were
solely present in cattle samples. Both Hap_2 and Hap_3 were
detected in samples from humans, pigs, cattle and sheep,
with no statistically significant differences among the 4 groups
(P = 0.197 and P = 0.387) (Table 4).

The network diagram illustrated that the 11 haplotypes (Hap_2 to
Hap_12) evolved from the reference sequence (XP_024352489.1)
(Hap_1) through 1 mutation (Hap_2, Hap_9), progressing to 2
mutations (Hap_3, Hap_4, Hap_5, Hap_12), 3 mutations (Hap_6),
6 mutations (Hap_7), 8 mutations (Hap_10), 12 mutations
(Hap_11) and 13 mutations (Hap_8). Notably, Hap_8 and Hap_11
shared the c.229 and c.231 positions, representing the same protein
F77L, counted as 1 mutation in Table 4. Additionally, Hap_11 had
2 mutations at position c.747, reverting to the wild-type allele S
(S249), making the joint mutation multiplicity higher in Hap_8
and Hap_11 than indicated in Table 4 (Fig. 3).

Prediction of B-cell antigen precursors in the amino acid chain
of the TSP11 gene

The translation of the 11 haplotypes (Hap_2 to Hap_12) of the
TSP11 gene CDS into amino acid chains, followed by prediction

using IEBD and DNA Star software, revealed 5 and 10 B-cell anti-
genic determinant clusters, respectively (Table 5). These clusters
had lengths ranging from 3 to 40 amino acids, with an average
hydrophilicity value of 0.460 (see Supplementary Material 2 for
detailed results). The predicted regions, such as 49-KSN-51,
139-GKRG-142, 162-DNG-164, 169-NGS-171, 185-DS-186 and
231-PPRFTN-236, were identified as 6 conserved B-cell antigenic
epitopes among the 11 amino acid chains (Table 5).

Discussion

This study builds upon both morphological and genetic confirm-
ation of E. granulosus sensu lato, focusing on the identification of
B-cell antigenic epitopes in the TSP11 protein of the protoscolex
of Yunnan Province and its surrounding regions. The diversity
of the ND1 gene sequence presently allows the classification of
E. granulosus into 10 genotypes (Yang et al., 2015) and 5 strains.
Specifically, G1–G3 represent E. granulosus strains (Echinococcus
granulosus sensu stricto), with G1 for the sheep strain, G2 for the
Tasmanian sheep strain（this genotype is not currently recog-
nized as valid）and G3 for the water buffalo strain (Omadang
et al., 2024). The remaining strains, G4–G10, include the horse
strain (G4 – Echinococcus equinus), Ortlepp’s strain (G5 –
Echinococcus ortleppi) and the Canadian strain (G6–G10) com-
prising the camel strain (G6), pig strain (G7), deer strain (G8),
Poland strain (G9)（this genotype is not currently recognized
as valid）and elk strain (G10) (Nakao et al., 2007;, 2013;
Wassermann et al., 2024). The predominant genotypes observed
among the E. granulosus samples in this study were G1 and G5,
with G1 being the most prevalent. However, the differences in
detection rates of G1 and G5 genotypes across various intermedi-
ate hosts such as humans, pigs, cattle and sheep did not attain
statistical significance, indicating an absence of bias in host
sources. However, its prevalence was slightly lower than the pre-
viously reported detection rates of 98.1 and 97.9% in Chinese
populations and animals (Alvarez et al., 2014; Zhang et al.,
2014). This discrepancy may be attributed to the high sensitivity

Table 4. Different haplotypes having mutations in TSP11gene

Multiple mutants of different degrees
Frequency

intermediate host

Haplotype Type Multiplicity

No. of all
CDSs

person
(n = 13,
31.0%)

pig
(n = 13,
31.0%)

cow
(n = 14,
33.3%)

sheep
(n = 2,
4.8%) p

(n = 42,
100%)

Hap_2 L43V 1 24 (57) 9 (69.2) 9 (69.2) 5 (35.7) 1 (50) 0.197

Hap_9 G64G 1 1 (2.4) 0 0 1 (7.1) 0 /

Hap_3 L43V/G64G 2 8 (19) 1 (7.7) 3 (23.1) 3 (21.4) 1 (50) 0.387

Hap_4 L43V/L78L 2 1 (2.4) 1 (7.7) 0 0 0 /

Hap_5 L43V/A111A 2 1 (2.4) 1 (7.7) 0 0 0 /

Hap_12 L43V/K200K 2 1 (2.4) 0 0 1 (7.1) 0 /

Hap_6 L43V/G64G/C202C 3 1 (2.4) 0 1 (7.7) 0 0 /

Hap_7 G22R/L43V/F194F/V247V/Y253S 6 1 (2.4) 0 0 1 (7.1) 0 /

Hap_10 V31L/F33L/S83S/G164G/
C224C/S248S/S249S/Y253Y

8 1 (2.4) 0 0 1 (7.1) 0 /

Hap_11 A16T/V31L/F33L/F77L/S83S/
I84I/G164G/V184A/C224C/
L243L/S248S/Y253Y

12 1 (2.4) 1 (7.7) 0 0 0 /

Hap_8 A16T/V31L/F33L/F77L/S83S/
I84I/G164G/V184A/C224C/
L243L/S248S/S249S/Y254Y

13 2 (4.8) 0 0 2 (14.3) 0 /
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of the ND1 full-gene sequence alignment utilized for genotyping
in this study, resulting in 9.5% of the sample sequences being
unclassified according to the published reference sequences.

The Tetraspanin (TSP) family is a crucial component of the
tetraspanin-enriched membrane microdomain (TEM) superfam-
ily, comprising 4 main subfamilies: the CD family (CD9, CD81
and CD151), the slow retinal degeneration (RDS) family
(RDS-ROM), the uroplakin family (UPK1A/1B) and the CD63
family (CD63 and TSPAN31). These proteins, ranging from 200
to 350 amino acids (Hu et al., 2015; Xian et al., 2021), exhibit a
structural composition that includes 2 extracellular domains
known as the small extracellular loop (EC1) and large extracellular
loop (EC2/LEL), an intracellular loop (transitioning from structural

domain 2–3), andN- andC-terminal tails. Among the 4 highly con-
served transmembrane domains (TM1–4) of TSP, the EC2/LEL
structural domain, referred to as the ‘Tetraspanin Structural
Web,’ serves as a binding site for numerous ligand proteins and
stands out as an area of concentration for anti-TSP antibodies
(Piratae et al., 2012; Graham et al., 2020; Ahmed et al., 2021).

TSP11 has long been recognized as a promising candidate pro-
tein for vaccine development targeting various diseases, including
schistosomiasis (Tran et al., 2006; Cardoso et al., 2008; Jiang et al.,
2010; Zhang et al., 2011), clonorchiasis (Kim et al., 2012;
Chaiyadet et al., 2017), opisthorchiasis (Piratae et al., 2012;
Tomii et al., 2019; Phumrattanaprapin et al., 2021), Manson’s
schistosomiasis (Pearson et al., 2012; Cheng et al., 2013; Curti

Figure 3. Evolutionary network of haplotype of TSP11 gene in the diseased organs of Echinococcus granulosus.
Note: The size of the circle is proportional to the number of isolates showing a particular haplotype; lines represent evolutional steps connecting haplotypes.
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et al., 2013; Jia et al., 2014), filariasis (Dakshinamoorthy et al.,
2013) and pulmonary hydatid disease (Dang et al., 2009a,
2009b, 2012a, 2012b). Additionally, it has been explored as a
potential target for detecting Taenia solium infection in pigs.
The detection of circulating antigen TSP11 in the human body
has demonstrated high sensitivity and specificity in diagnosing
cysticercosis (Hancock et al., 2006; Moribe and Mekada, 2013).
In this study, the TSP11 gene CDS length of the protoscoleces
in 42 samples remained consistently at 894 bp, resulting in an
amino acid chain of 298 aa. The 24 reported SNP mutations
were novel, and their detection differences among strains from
various hosts, including humans, pigs, cattle and sheep, were stat-
istically insignificant. While there is a certain bias in the host
source diversity of the TSP11 gene CDS sequence – with
Hap_4, Hap_5 and Hap_11 sequences detected exclusively in
human-derived strains, Hap_6 only in pig-derived strains, and
Hap_9 and Hap_12 only in cattle-derived strains – and Hap_7,
Hap_8 and Hap_10 exclusively present in sheep-derived strains,
these haplotypes are largely situated at the evolutionary distant
end. Hap_2 and Hap_3, considered earlier ancestors, are detect-
able in parasitic strains from all 4 intermediate hosts (Fig. 3), sug-
gesting the rationale for selecting sequences from Hap_2 and
Hap_3 for the detection of antigens in the 4 intermediate hosts.

A comprehensive evaluation of B-cell antigenic epitopes for
the 42 amino acid chains, considering hydrophilicity
(Ponomarenko et al., 2011), accessibility (Allcorn and Martin,
2002), flexibility (Li et al., 2016) and antigenicity (Resende
et al., 2012), reveals 6 peptide regions, namely 49-KSN-51,
139-GKRG-142, 162-DNG-164, 169-NGS-171, 185-DS-186 and
231-PPRFTN-236, distributed across strains from different spe-
cies and haplotypes. These 6 peptide chains exhibit robust conser-
vation. Among the 24 SNPs, only the c.492 C > T synonymous
mutation appears in the second amino acid (G164G) codon
within the 162-DNG-171 peptide chain. However, among these
6 B-cell antigenic epitopes, based on the findings of Wang et al.
(Wang et al., 2020) and Xian Jinwen (Xian et al., 2021) regarding
the strong antigenicity and immunogenicity of the
227-WQYGPPRFTNGAHN-240 peptide chain and its extracellu-
lar loop (LEL) region, and considering the principle that B-cell
antigenic epitopes are preferably composed of 5–15 amino acid
residues (Gong, 2016), this study supports the utilization of
the 231-PPRFTN-236 peptide chain as an immunodiagnostic
tool for developing a broadly effective immune diagnosis for
E. granulosus protoscoleces infection in different hosts.

This study marks a significant milestone as it successfully
obtained the gene sequencing sequences of the 4 exons of the
TSP11 gene from within the epidemic region of Yunnan
Province, E. granulosus sensu lato. This achievement contributes
substantially to the augmentation of shared data within
GenBank. Furthermore, the study delves into the mutation sites
and haplotypes of the TSP11 gene, offering valuable insights
into the potential applications of the tetraspanin family in addres-
sing E. granulosus. Nevertheless, certain limitations exist. The lack
of specific township localization in the sample sources restricts the
ability to make precise comparisons of the prevalence in different
regions. Additionally, due to spatial constraints, this paper does
not extend to the validation of the diagnostic antigen’s efficacy
selected from the TSP11 gene. Moving forward, the research
group plans to undertake pertinent studies to evaluate and sub-
stantiate the diagnostic antigen’s effectiveness for E. granulosus.

Conclusion

This study sheds light on prevalent intermediate hosts in the
endemic regions of Yunnan Province, primarily infected with
G1 and G5 genotypes of E. granulosus protoscoleces. The reportTa
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introduces 24 novel nucleotide peptide sites and uncovers 11 hap-
lotypes for the TSP11 transmembrane protein in Yunnan, all
representing mutated forms. Proposing 6 potential B-cell anti-
genic epitopes in TSP11, the study maintains consistency
among different intermediate hosts and haplotypes, laying the
groundwork for considering TSP11 protein as a candidate antigen
for diagnosing different species of E. granulosus protoscolecess,
offering theoretical support for the diagnosis of E. granulosus.
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