SIMPLE ALGEBRAS THAT GENERALIZE THE JORDAN ALGEBRA $\mathbf{M}_{3}{ }^{8}$

ARTHUR A. SAGLE

In this paper we discuss a generalization of the split exceptional Jordan algebra $M_{3}{ }^{8}(\mathbb{C})$ of the 3×3 hermitian matrices with elements in the split Cayley-Dickson algebra (C (1). The generalization consists of replacing © by the non-commutative Jordan algebra $\mathfrak{H} \equiv \mathfrak{A}(A, f, s, t)$ discussed in (2; 3) and forming the set of 3×3 hermitian matrices $M_{3}{ }^{m}(\mathfrak{H}) \equiv M$ with elements in the m-dimensional algebra \mathfrak{A}. With the usual definition of multiplication $X \cdot Y=\frac{1}{2}(X Y+Y X), M$ becomes a commutative algebra and we have the following theorem, which shows how the structure of M is reflected by that of \mathfrak{H}.

Theorem. Let \mathfrak{H} and M be as above, then:
(1) M is simple if and only if \mathfrak{A} is simple;
(2) if \mathfrak{H} is simple, then every element of M satisfies a generic minimum polynomial of degree three or M is power associative if and only if M is Jordan;
(3) the bilinear form $(X, Y)=\operatorname{trace} R(X \cdot Y)$ is an invariant form, which is non-degenerate if and only if \mathfrak{A} is simple.

In §1 we develop further relations for the algebra \mathfrak{U}, which are used in §2 to prove the simplicity of $M=M_{3}{ }^{m}(\mathfrak{H})$. Now noting that if M is Jordan, then it is a power associative "cubic" algebra, we prove in §3 the converse statement given above in (2) by essentially showing that $M_{3}{ }^{m}(\mathfrak{H}) \subset M_{3}{ }^{8}(\mathbb{C})$. Finally in §4 we prove statement (3) concerning the bilinear form (X, Y). We shall assume that the base field F is of characteristic zero since we want to consider trace; but it should be clear when this condition can be relaxed.

1. Some identities for $\mathfrak{A}(\mathfrak{X}, f, s, t)$. In this section we discuss briefly the properties of the algebra $\mathfrak{U}=\mathfrak{H}(A, f, s, t)$ necessary for this paper. The noncommutative Jordan algebras in (2;3) are constructed as follows. Let $A \neq 0$ be an anti-commutative algebra with an invariant form $f(\alpha, \beta)$ (i.e. $f(\alpha \beta, \gamma)=$ $f(\alpha, \beta \gamma))$, and let $\mathfrak{H}=\mathfrak{H}(A, f, s, t)$ denote the set of matrices

$$
\left[\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right],
$$

where $\alpha, \beta \in A$ and $a, b \in F$. For these matrices define the usual vector space operations co-ordinate-wise and define multiplication of two such matrices by

$$
\left[\begin{array}{ll}
a & \alpha \\
\beta & b
\end{array}\right]\left[\begin{array}{ll}
c & \gamma \\
\delta & d
\end{array}\right]=\left[\begin{array}{cc}
a c+f(\alpha, \delta) & a \gamma+d \alpha+t \beta \delta \\
c \beta+b \delta+s \alpha \gamma & b d+f(\beta, \gamma)
\end{array}\right],
$$

[^0]where $f(\alpha, \beta)$ is the invariant form on A and $s, t \in F$. Thus letting $(x, y, z)=(x y) z-x(y z)$ denote the associator function, \mathfrak{Y} becomes an algebra with the following properties (2):
(i) $(x, y, x)=0$ for all $x, y \in \mathfrak{U}$, and $x^{2}-(a+b) x+[a b-f(\alpha, \beta)] 1=0$ for all
\[

x=\left[$$
\begin{array}{cc}
a & \alpha \\
\beta & b
\end{array}
$$\right] \in \mathfrak{N}
\]

that is, \mathfrak{N} is a flexible quadratic algebra with identity element 1 . Thus $\left(x^{2}, y, x\right)=0$, so that \mathfrak{A} is a non-commutative Jordan algebra.
(ii) \mathfrak{A} is simple if and only if $f(\alpha, \beta)$ is non-degenerate on A; a proof of an analogous statement may be found in (3).

Next we derive some new relations for \mathfrak{A}, which are similar to conjugation in the split Cayley-Dickson algebra. For

$$
x=\left[\begin{array}{cc}
a & \alpha \\
\beta & b
\end{array}\right], \quad y=\left[\begin{array}{ll}
c & \gamma \\
\delta & d
\end{array}\right] \in \mathfrak{N}
$$

define

$$
\bar{x}=\left[\begin{array}{rr}
b & -\alpha \\
-\beta & a
\end{array}\right],
$$

then a straightforward computation shows that $x \rightarrow \bar{x}$ is linear and

$$
\begin{array}{ll}
x \bar{x}=\bar{x} x=n(x), \quad & \text { where } n(x)=(a b-f(\alpha, \beta)) 1, \\
& x y=\bar{y} \bar{x}, \tag{2}
\end{array}
$$

so that $x \rightarrow \bar{x}$ is an involution. Next define the bilinear form on \mathfrak{Y},

$$
n(x, y)=\frac{1}{2}[n(x+y)-n(x)-n(y)], x, y \in \mathfrak{A}
$$

Then

$$
\begin{equation*}
n(x, y)=\frac{1}{2}(x \bar{y}+y \bar{x})=\frac{1}{2}(\bar{x} y+\bar{y} x) \tag{3}
\end{equation*}
$$

and $n(x, y)$ is non-degenerate if and only if $f(\alpha, \beta)$ is non-degenerate on A (which is equivalent to \mathfrak{H} being simple (2)). For, using (1),

$$
\begin{align*}
n(x, y)= & \frac{1}{2}[(a+c)(b+d)-f(\alpha+\gamma, \beta+\delta) \tag{4}\\
& \quad-(a b-f(\alpha, \beta))-(c d-f(\gamma, \delta))] 1 \\
& =\frac{1}{2}[c b+a d-f(\alpha, \delta)-f(\gamma, \beta)] 1 \\
& =\frac{1}{2}(x \bar{y}+y \bar{x}),
\end{align*}
$$

and from the second equation we see that if $n(x, y)$ is non-degenerate, so is $f(\alpha, \beta)$. Conversely, suppose $f(\alpha, \beta)$ is non-degenerate and $n(x, y)=0$ for all $y \in \mathfrak{N}$. Then using the above equations with $c=1, d=\delta=\gamma=0$, we have $b=0$; similarly $a=0$. Choosing $\gamma=0$ and δ arbitrary yields $\alpha=0$; similarly $\beta=0$ so that $x=0$ and therefore $n(x, y)$ is non-degenerate. Next we have

$$
\begin{equation*}
n(x \bar{y}, z)=n(\bar{z} x, y) . \tag{5}
\end{equation*}
$$

For, letting (x, y, z) denote the association function, we have, using (3),

$$
2 n(x \bar{y}, z)-2 n(\bar{z} x, y)=(y, \bar{x}, z)+\overline{(y, \bar{x}, z)}=0
$$

since for any $x, y, z \in \mathfrak{U}$ we have

$$
\begin{array}{rlrl}
(x, y, z) & =-(z, y, x), & \text { since } \mathfrak{A} \text { is flexible, } \\
& =(z, y, \bar{x}), & \text { since } x+\bar{x}=(a+b) 1 \in 1 F, \\
& =(\bar{z}, \bar{y}, \bar{x}) \\
& =(\bar{z} \bar{y}) \bar{x}-\bar{z}(\bar{y} \bar{x}) \\
& =\overline{x(y, z)}-\overline{(x y) z} \\
& =-\overline{(x, y, z)} .
\end{array}
$$

We shall need the following lemma.
Lemma. Let $A \neq 0$ be an anti-commutative algebra with a non-degenerate invariant form $f(\alpha, \beta)$ such that for all $\alpha, \beta, \gamma \in A$

$$
s t \beta(\alpha \gamma)=f(\alpha, \beta) \gamma-f(\beta, \alpha) \alpha
$$

Then $\mathfrak{N}=\mathfrak{N}(A, f, s, t)$ is a split Cayley-Dickson algebra \mathbb{E} or a "split" quaternion associative algebra $\mathfrak{\mathfrak { Q }}$. In either case $M_{3}{ }^{8}(\mathfrak{C})$ and $M_{3}{ }^{4}(\mathfrak{Q})$ are Jordan algebras and if F is algebraically closed, we may consider $\mathfrak{C} \supset \mathfrak{\mathfrak { O }}$ and therefore $M_{3}{ }^{8}(\mathbb{C})$ $\supset M_{3}{ }^{4}(\mathfrak{Q})$ as Jordan algebras.

Proof. Since \mathfrak{Y} is flexible, we first show that $x^{2} y=x(x y)$ so that \mathfrak{Y} is alternative. Thus for $x, y \in \mathfrak{H}$ as in the first part of this section we have

$$
x^{2}=\left[\begin{array}{cc}
a^{2}+f(\alpha, \beta) & (a+b) \alpha \\
(a+b) \beta & b^{2}+f(\alpha, \beta)
\end{array}\right]
$$

and

$$
x^{2} y=\left[\begin{array}{cc}
c\left(a^{2}+f(\alpha, \beta)\right)+(a+b) f(\alpha, \delta) & {\left[a^{2}+f(\alpha, \beta)\right] \gamma+(a+b) d \alpha} \\
& +s(a+b) \beta \delta \\
c(a+b) \beta+\left[b^{2}+f(\alpha, \beta)\right] \delta & d\left(b^{2}+f(\alpha, \beta)\right)+(a+b) f(\beta, \gamma) \\
+t(a+b) \alpha \gamma &
\end{array}\right]
$$

Also

$$
x(x y)=\left[\begin{array}{cc}
a(a c+f(\alpha, \delta) & a(a \gamma+d \alpha+s \beta \delta) \\
+f(\alpha, c \beta+b \delta+t \alpha \gamma) & \\
& +(b d+f(\beta, \gamma)) \alpha \\
(a c+f(\alpha, \delta)) \beta+b(c \beta+b \delta+t \alpha \gamma) & b(b d+f(\beta, \gamma)) \\
+t \alpha(a \gamma+d \alpha+s \beta \delta) & \\
& +f(\beta, a \gamma+d \alpha+s \beta \gamma)
\end{array}\right]
$$

and using the hypothesis we obtain the desired equality.
Now since $f(\alpha, \beta)$ is non-degenerate, \mathfrak{Y} is simple and therefore is the split Cayley-Dickson algebra \mathfrak{C}, or an associative algebra. In the latter case we let

$$
z=\left[\begin{array}{ll}
e & \lambda \\
\mu & f
\end{array}\right] \in \mathfrak{N}
$$

and compute the 2×2 matrix $(x, y, z)=0$ in \mathfrak{A}. From the $(1,1)$ position in this matrix we obtain $t f(\beta \delta, \mu)-s f(\gamma \lambda, \alpha)=0$. If st $\neq 0$, then since the elements in A in this expression are arbitrary, we have by choosing $\alpha=0$ (or $\mu=0$) that $f(\beta \delta, \mu)=0$ (or $f(\gamma \lambda, \alpha)=0$), which implies that $A^{2}=0$ by the non-degeneracy of $f(\alpha, \beta)$. But by hypothesis this yields $f(\alpha, \beta) \gamma=f(\beta, \gamma) \alpha$, and consequently the dimension of A is one; the same result holds if $s t=0$. Thus for $f(\beta, \beta)=b \neq 0$ we have $A=\beta F$, and $\mathfrak{Q}=\mathfrak{A}(\beta F, f, s, t)$ is associative. In both of these cases $M_{3}{ }^{8}(\mathfrak{C})$ and $M_{3}{ }^{4}(\mathfrak{Q})$ are Jordan algebras.

Next for $A=\beta F$ and F algebraically closed, we can find $\alpha \in A$ such that $f(\alpha, \alpha)=1$; and consequently the map

$$
\left[\begin{array}{cc}
a_{11} & a_{12} \alpha \\
a_{21} \alpha & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

is an isomorphism of \mathfrak{Q} onto the 2×2 matrix algebra over F, which may be regarded as the "split" quaternion algebra ($4, \mathrm{pp} .135$ and 162). Now we may regard $\mathfrak{G} \supset \mathfrak{Q}$ as follows. Since f is non-degenerate and symmetric, there exists $\alpha \in A$ (where $\mathbb{C}=\mathscr{H}(A, f, s, t)$) with $f(\alpha, \alpha) \neq 0$; assume that $f(\alpha, \alpha)=1$. With this $\alpha \in A$, we see that \mathfrak{Q} is isomorphic to $\mathfrak{H}(\alpha F, f, s, t)$ and therefore consider that $\mathfrak{C} \supset \mathfrak{Q}$ by this isomorphism; consequently $M_{3}{ }^{8}(\mathfrak{C}) \supset M_{3}{ }^{4}(\mathfrak{Q})$.
2. Simplicity of M. Let

$$
X=\left[\begin{array}{ccc}
\alpha_{1} & a_{3} & \bar{a}_{2} \tag{6}\\
\bar{a}_{3} & \alpha_{2} & a_{1} \\
a_{2} & \bar{a}_{1} & \alpha_{3}
\end{array}\right], \quad Y=\left[\begin{array}{lll}
\beta_{1} & b_{3} & \bar{b}_{2} \\
\bar{b}_{3} & \beta_{2} & b_{1} \\
b_{2} & \bar{b}_{1} & \beta_{3}
\end{array}\right]
$$

be 3×3 hermitian matrices in M, where $a_{i}, b_{i} \in \mathfrak{N}, \alpha_{i}, \beta_{i} \in F$, and where $x \rightarrow \bar{x}$ is the involution in A defined in $\S 1$. The commutative multiplication in M is given by $X \cdot Y=\frac{1}{2}(X Y+Y X)$ and the resulting 3×3 matrix is formally the same as obtained in $M_{3}{ }^{8}(\mathbb{C})$.

Next let $\left\{e_{i j}\right\}$ denote the usual matrix basis for the 3×3 matrices over F. Then $e_{i}=e_{i i}, i=1,2,3$, are orthogonal idempotents in M. For $a \in \mathfrak{H}$ define for $i \neq j$

$$
a_{i j}=(a)_{i j}=a e_{i j}+\bar{a} e_{j i} .
$$

Then $\bar{a}_{j i}=a_{i j}$ and setting

$$
M_{i j}=\left\{a_{i j}: a \in \mathfrak{R}\right\}
$$

we have the Peirce decomposition relative to the e_{i} given by

$$
M=e_{1} F \oplus e_{2} F \oplus e_{3} F \oplus M_{12} \oplus M_{13} \oplus M_{23}
$$

From this we see that if the dimension of A is n (so that the dimension of \mathfrak{H} is $m=2(n+1)$), then the dimension of M is

$$
3+3[2(n+1)]=3[2(n+1)+1]
$$

For $a, b \in \mathfrak{A}$ the multiplication of the basis elements of M is given by

$$
\begin{aligned}
e_{i} \cdot e_{j} & =\delta_{i j} e_{i}, \\
e_{i} \cdot a_{i j} & =\frac{1}{2} a_{i j}=a_{i j} \cdot e_{j}, \\
e_{k} \cdot a_{i j} & =0, \quad k \neq i, k \neq j, \\
a_{i j} \cdot b_{i j} & =n(a, b)\left(e_{i}+e_{j}\right), \\
2 a_{i j} \cdot b_{j k} & =(a b)_{i k}, \quad i \neq j \neq k \neq i .
\end{aligned}
$$

Next we consider the simplicity of M. Assume that $f(\alpha, \beta)$ is non-degenerate and therefore $n(a, b)$ is non-degenerate on M. Suppose B is a non-zero ideal of M containing the non-zero element

$$
X=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}+a_{12}+\bar{b}_{13}+c_{23}
$$

Now $e_{1} \cdot X=\alpha_{1} e_{1}+\frac{1}{2} a_{12}+\frac{1}{2} \bar{b}_{13} \in B$; therefore $\left(e_{1} \cdot X\right) \cdot e_{2}=\frac{1}{4} a_{12} \in B$ and $\left(e_{1} \cdot X\right) \cdot e_{3}=\frac{1}{4} \bar{b}_{13} \in B$. Thus since $e_{1} \cdot X \in B, \alpha_{1} e_{1} \in B$. Similarly $\alpha_{2} e_{2}$ and $\alpha_{3} e_{3}$ are in B. Now suppose that some $\alpha_{i} \neq 0$, say $\alpha_{1} \neq 0$. Then $e_{1} \in B$ and therefore

$$
\begin{aligned}
& M_{12}=e_{1} \cdot M_{12} \subset B \\
& M_{13}=e_{1} \cdot M_{13} \subset B \\
& M_{23}=M_{21} \cdot M_{13}=M_{12} \cdot M_{13} \subset B
\end{aligned}
$$

Next since $n(a, b)$ is non-degenerate on \mathfrak{A}, there exists $a \in \mathfrak{U}$ with $n(a) \neq 0$ and therefore $n(a)\left(e_{2}+e_{3}\right)=a_{23}{ }^{2} \in M_{23} \subset B$. Thus $e_{2}+e_{3} \in B$; similarly $e_{1}+e_{2} \in B$. Since $e_{1} \in B, e_{2}$ and e_{3} are in B so that $B=M$.

We now show that there exists $X \in B$ with some $\alpha_{i} \neq 0$. Suppose $Y=a_{12}+\bar{b}_{13}+c_{23} \in B$ with, say, $a_{12} \neq 0$, the other cases being similar. Then $\left(e_{1} \cdot Y\right) \cdot e_{2}=\frac{1}{4} a_{12} \in B$. Now since $n(a, b)$ is non-degenerate on \mathfrak{A}, there exists $b \in \mathfrak{A}$ with $n(a, b) \neq 0$ and therefore

$$
0 \neq n(a, b)\left(e_{1}+e_{2}\right)=a_{12} \cdot b_{12} \in B
$$

Thus $X=e_{1}+e_{2} \in B$ is the desired element with $\alpha_{1} \neq 0$. Thus we have shown that M is simple if $f(\alpha, \beta)$ is non-degenerate, which is equivalent to \mathfrak{U} being simple.

Conversely, if $f(\alpha, \beta)$ is degenerate on A, set $C=\{\alpha \in A ; f(\alpha, A)=0\}$; then

$$
\mathfrak{R}=\left\{\left[\begin{array}{ll}
0 & \alpha \tag{7}\\
\beta & 0
\end{array}\right]: \alpha, \beta \in C\right\}
$$

is a proper ideal of \mathfrak{A} and from (4) we have for $a \in \mathfrak{N}, b \in \mathfrak{\Re}$ that $n(a, b)=0$. Next noting that $b \in \mathfrak{N}$ implies $\bar{b} \in \mathfrak{R}$, we see that $B=\mathfrak{R}_{12}+\mathfrak{R}_{13}+\mathfrak{R}_{23}$ is an ideal of M, where $\mathfrak{R}_{i j}=\left\{b_{i j}: b \in \mathfrak{N}\right\}$. For if $a \in \mathfrak{N}$, we have

$$
\begin{aligned}
e_{i} \cdot \mathfrak{R}_{i j} & =\mathfrak{N}_{i j} \cdot e_{j}=\frac{1}{2} \mathfrak{N}_{i j} \subset B, \\
e_{i} \cdot \mathfrak{R}_{i j} & =0, \quad k \neq i, k \neq j, \\
a_{i j} \cdot b_{i j} & =n(a, b)\left(e_{i}+e_{j}\right)=0, \quad \text { where } b \in \mathfrak{R}, \\
2 a_{i j} \cdot b_{j k} & =(a b)_{i k} \in B,
\end{aligned}
$$

since $a b \in \mathfrak{\Re}$. Thus B is a proper ideal of M, and this proves the first statement in the theorem.
3. Identities. In this section we prove the second statement of the main theorem. Let $X=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}+a_{12}+\bar{b}_{13}+c_{23}$ be in M; then
$X^{2}=\left[\begin{array}{ccc}\alpha_{1}{ }^{2}+n(a, a)+n(b, b) & \left(\alpha_{1}+\alpha_{2}\right) a+\bar{b} \bar{c} & \left(\alpha_{1}+\alpha_{3}\right) \bar{b}+a c \\ \left(\alpha_{1}+\alpha_{2}\right) \bar{a}+c b & \alpha_{2}{ }^{2}+n(a, a)+n(c, c) & \left(\alpha_{2}+\alpha_{3}\right) c+\bar{a} \bar{b} \\ \left(\alpha_{1}+\alpha_{3}\right) b+\bar{c} \bar{a} & \left(\alpha_{2}+\alpha_{3}\right) \bar{c}+b a & \alpha_{3}{ }^{2}+n(b, b)+n(c, c)\end{array}\right]$.
Then computing $2 X^{3}=2 X \cdot X^{2}=A_{1} e_{1}+A_{2} e_{2}+A_{3} e_{3}+f_{12}+\bar{g}_{13}+h_{23}$, we obtain

$$
\begin{align*}
\frac{1}{2} A_{1}= & \alpha_{1}{ }^{3}+\left(2 \alpha_{1}+\alpha_{3}\right) n(b, b)+\left(2 \alpha_{1}+\alpha_{2}\right) n(a, a) \tag{8}\\
& +n(b, \bar{c} \bar{a})+n(a, \bar{b} \bar{c}), \\
f_{12}= & \left(\alpha_{1}+\alpha_{2}\right)^{2} a+\left(\alpha_{1}+\alpha_{2}\right) \bar{b} \bar{c}+\left[\alpha_{1}{ }^{2}+\alpha_{2}{ }^{2}+2 n(a, a)\right. \\
& \left.+n(b, b)+n(c, c)] a+\bar{b}\left[\alpha_{2}+\alpha_{3}\right) \bar{c}+b a\right]+\left[\left(\alpha_{1}+\alpha_{3}\right) \bar{b}+a c\right] \bar{c}
\end{align*}
$$

Now if X is to satisfy a generic minimum cubic polynomial $m_{X}(\lambda)$, we see, by comparing the elements in the $(1,1)$ position of $1, X, X^{2}$, and X^{3}, that we must have

$$
\begin{aligned}
m_{X}(\lambda)=\lambda^{3} & -\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \lambda^{2}+\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}-a \bar{a}-b \bar{b}-c \bar{c}\right) \lambda \\
& -\left(\alpha_{1} \alpha_{2} \alpha_{3}+s(a, b, c)-\alpha_{1} c \bar{c}-\alpha_{2} b \bar{b}-\alpha_{3} a \bar{a}\right) 1,
\end{aligned}
$$

where $s(a, b, c)=n(b, \bar{c} \bar{a})+n(a, \bar{b} \bar{c})$. Next since X must satisfy $m_{X}(\lambda)$, we compare the elements in the $(1,2)$ position of $1, X, X^{2}$, and X^{3} to obtain

$$
\begin{aligned}
0 & =\frac{1}{2} f_{12}-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)\left[\left(\alpha_{1}+\alpha_{2}\right) a+\bar{b} \bar{c}\right] \\
& \quad+\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}-a \bar{a}-b \bar{b}-c \bar{c}\right) a \\
= & \bar{b}(b a)-(\bar{b} b) a+(a c) \bar{c}-a(c \bar{c})
\end{aligned}
$$

for all $a, b, c \in \mathfrak{Y}$. This equation is satisfied if and only if $\bar{x}(x y)=(\bar{x} x) y$ for all $x, y \in \mathfrak{A}$; but a straightforward computation shows that the above equation holds if and only if

$$
s t \beta(\alpha \gamma)=f(\alpha, \beta) \gamma-f(\beta, \gamma) \alpha
$$

for all $\alpha, \beta, \gamma \in A$. Thus by the lemma of $\S 1 M$ is a Jordan algebra.
Finally we consider the power associativity of M. Computing

$$
X^{2} \cdot X^{2}=B_{1} e_{1}+B_{2} e_{2}+B_{3} e_{3}+\ldots
$$

we obtain

$$
\begin{aligned}
B_{1}=\left[\alpha_{1}{ }^{2}\right. & +n(a, a)+n(b, b)]^{2} \\
& +n\left[\left(\alpha_{1}+\alpha_{2}\right) a+\bar{b} \bar{c},\left(\alpha_{1}+\alpha_{2}\right) a+\bar{b} \bar{c}\right] \\
& +n\left[\left(\alpha_{1}+\alpha_{3}\right) b+\bar{c} \bar{a},\left(\alpha_{1}+\alpha_{3}\right) b+\bar{c} \bar{a}\right] \\
=\alpha_{1}^{4} & +n(a, a)^{2}+n(b, b)^{2}+2 \alpha_{1}{ }^{2} n(a, a) \\
& +2 \alpha_{1}{ }^{2} n(b, b)+2 n(a, a) n(b, b) \\
& +\left(\alpha_{1}+\alpha_{2}\right)^{2} n(a, a)+n(\bar{b} \bar{c}, \bar{b} \bar{c}) \\
& +\left(\alpha_{1}+\alpha_{3}\right)^{2} n(b, b)+n(\bar{c} \bar{a}, \bar{c} \bar{a}) \\
& +2\left(2 \alpha_{1}+\alpha_{2}+\alpha_{3}\right) n(a, \bar{b} \bar{c}),
\end{aligned}
$$

using (5) to obtain this last term. Next computing $X \cdot X^{3}=C_{1} e_{1}+C_{2} e_{2}$ $+C_{3} e_{3}+\ldots$, we obtain

$$
C_{1}=\alpha_{1}\left(\frac{1}{2} A_{1}\right)+n\left(a, \frac{1}{2} f_{12}\right)+n\left(b, \frac{1}{2} g_{13}\right),
$$

where A_{1} and f_{12} are given by (8) and (9) and

$$
\begin{aligned}
g_{13}= & \left(\alpha_{1}+\alpha_{3}\right)^{2} b+\left(\alpha_{1}+\alpha_{3}\right) \bar{c} \bar{a} \\
& +\left[\alpha_{1}{ }^{2}+\alpha_{3}{ }^{2}+n(a, a)+2 n(b, b)+n(c, c)\right] b \\
& +\left[\left(\alpha_{2}+\alpha_{3}\right) \bar{c}+b a\right] \bar{a}+\bar{c}\left[\left(\alpha_{1}+\alpha_{2}\right) \bar{a}+c b\right] .
\end{aligned}
$$

Expanding the formula for C_{1}, we obtain

$$
\begin{aligned}
C_{1}=\alpha_{1}\left[\alpha_{1}{ }^{3}\right. & \left.+\left(2 \alpha_{1}+\alpha_{2}\right) n(a, a)+\left(2 \alpha_{1}+\alpha_{3}\right) n(b, b)+n(b, \bar{c} \bar{a})+n(a, \bar{b} \bar{c})\right] \\
& +\frac{1}{2} n\left(a,\left(\alpha_{1}+\alpha_{2}\right)^{2} a+\left(\alpha_{1}+\alpha_{2}\right) \bar{b} \bar{c}\right. \\
& +\left[\alpha_{1}{ }^{2}+\alpha_{2}{ }^{2}+2 n(a, a)+n(b, b)+n(c, c)\right] a \\
& \left.+\bar{b}\left[\left(\alpha_{2}+\alpha_{3}\right) \bar{c}+b a\right]+\left[\left(\alpha_{1}+\alpha_{3}\right) \bar{b}+a c\right] \bar{c}\right) \\
& +\frac{1}{2} n\left(b,\left(\alpha_{1}+\alpha_{3}\right)^{2} b+\left(\alpha_{1}+\alpha_{3}\right) \bar{c} \bar{a}\right. \\
& +\left[\alpha_{1}{ }^{2}+\alpha_{3}{ }^{2}+n(a, a)+2 n(b, b)+n(c, c)\right] b \\
& \left.+\left[\left(\alpha_{2}+\alpha_{3}\right) \bar{c}+b a\right] \bar{a}+\bar{c}\left[\left(\alpha_{1}+\alpha_{2}\right) \bar{a}+c b\right]\right) .
\end{aligned}
$$

Now if M is power associative, we must have $B_{1}=C_{1}$; and using (5) on C_{1}, this yields

$$
\begin{aligned}
& n(a, a) n(b, b)+n(\bar{c} \bar{a}, \bar{c} \bar{a})+n(\bar{b} \bar{c}, \bar{b} \bar{c}) \\
& =\frac{1}{2} n(c, c) n(a, a)+\frac{1}{2} n(c, c) n(b, b) \\
& \quad+\frac{1}{2} n(a,(a c) \bar{c})+\frac{1}{2} n(b, \bar{c}(c b))+n(a, \bar{b}(b a))
\end{aligned}
$$

for all $a, b, c \in A$. Thus setting $c=0$ and using (5),

$$
n(a, a) n(b, b)=n(a, \bar{b}(\bar{a} \bar{b}))=n(\bar{a} \bar{b}, \bar{a} \bar{b})=n(a b, a b)
$$

But using (1) this equation yields

$$
f(\beta, f(\gamma, \delta) \alpha-f(\alpha, \delta) \gamma+s t \delta(\alpha \gamma))=0
$$

for all $\alpha, \beta, \gamma, \delta \in A$; and since $f(\alpha, \beta)$ is non-degenerate, we have by the lemma of $\S 1$ that M is Jordan.
4. Concerning invariant forms. Let $R(X)$ denote the mapping $Y \rightarrow Y \cdot X$ and let $(X, Y)=$ trace $R(X \cdot Y)$; then we shall show in this section that (X, Y) is an invariant form (i.e. $(X \cdot Y, Z)=(X, Y \cdot Z)$), which is nondegenerate if and only if $f(\alpha, \beta)$ is non-degenerate. Let $z_{1}, \ldots, z_{2(n+1)}$ be a basis for \mathfrak{Y}; then $e_{1}, e_{2}, e_{3},\left(z_{j}\right)_{12},\left(z_{j}\right)_{13},\left(z_{j}\right)_{23}, j=1, \ldots, 2(n+1)$ is a basis for M. Let

$$
X=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}+\left(a_{3}\right)_{12}+\left(\bar{a}_{2}\right)_{13}+\left(a_{1}\right)_{23}
$$

be in M, where $a_{k}=\sum a_{k j} z_{j} \in \mathfrak{Y}$ with $a_{k j} \in F$. Then to compute trace $R(X)$ we have

$$
\begin{aligned}
& e_{1} R(X)=\alpha_{1} e_{1}+\ldots, \\
& e_{2} R(X)=\alpha_{2} e_{2}+\ldots, \\
& e_{3} R(X)=\alpha_{3} e_{3}+\ldots, \\
& \left(z_{j}\right)_{12} R(X)=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)\left(z_{j}\right)_{12}+\ldots, \\
& \left(z_{j}\right)_{13} R(X)=\frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right)\left(z_{j}\right)_{13}+\ldots, \\
& \left(z_{j}\right)_{23} R(X)=\frac{1}{2}\left(\alpha_{2}+\alpha_{3}\right)\left(z_{j}\right)_{23}+\ldots,
\end{aligned}
$$

where . . . denotes elements that make no contribution to the diagonal of the matrix of $R(X)$. Thus if I denotes the $2(n+1) \times 2(n+1)$ identity matrix, we have

$$
\begin{aligned}
\operatorname{trace} R(X) & =\operatorname{trace}\left[\begin{array}{llllll}
\alpha_{1} & & & & & * \\
& \alpha_{2} & & & & \\
& & \alpha_{3} & & \\
& & & \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right) I & & \frac{1}{2}\left(\alpha_{1}+\alpha_{3}\right) I \\
& & * & & & \frac{1}{2}\left(\alpha_{2}+\alpha_{3}\right) I
\end{array}\right] \\
& =[2(n+1)+1]\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) .
\end{aligned}
$$

Next for X, Y as in (6) we can show that

$$
\begin{aligned}
X \cdot Y= & \left(\alpha_{1} \beta_{1}+n\left(a_{2}, b_{2}\right)+n\left(a_{3}, b_{3}\right)\right) e_{1} \\
& +\left(\alpha_{2} \beta_{2}+n\left(a_{1}, b_{1}\right)+n\left(a_{3}, b_{3}\right)\right) e_{2} \\
& +\left(\alpha_{3} \beta_{3}+n\left(a_{2}, b_{2}\right)+n\left(a_{1}, b_{1}\right)\right) e_{3}+\ldots
\end{aligned}
$$

so that

$$
\left.\begin{array}{rl}
(X, Y) & =\operatorname{trace} R(X \cdot Y) \\
& =[2(n+1)+1]\left[\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+2 n\left(a_{1}, b_{1}\right)\right.
\end{array}\right)+2 n\left(a_{2}, b_{2}\right) .
$$

From this equation we see that if $f(\alpha, \beta)$ is non-degenerate, so is (X, Y). For suppose that $(X, Y)=0$ for all $Y \in M$; then for $\beta_{1}=1$ and the rest zero we obtain $\alpha_{1}=0$; similarly $\alpha_{2}=\alpha_{3}=0$. Next for b_{1} arbitrary and $b_{2}=b_{3}=0$ we obtain $n\left(a_{1}, b_{1}\right)=0$, and since $n(a, b)$ is non-degenerate when $f(\alpha, \beta)$ is non-degenerate, then $a_{1}=0$; similarly $a_{2}=a_{3}=0$. Thus $X=0$. Conversely, if $f(\alpha, \beta)$ is degenerate, then for $b_{1}, b_{2}, b_{3} \in \mathfrak{N}$, the ideal given in (7), and for $\beta_{1}=\beta_{2}=\beta_{3}=0$ we see from the above formula that the element Y is such that $(X, Y)=0$ for all $X \in M$.

Next we shall show that $(X \cdot Y, Z)=(X, Y \cdot Z)$, that is

$$
\operatorname{trace} R[(X \cdot Y) Z-X \cdot(Y \cdot Z)]=0
$$

For

$$
Z=\gamma_{1} e_{1}+\gamma_{2} e_{2}+\gamma_{3} e_{3}+\left(c_{3}\right)_{12}+\left(\bar{c}_{2}\right)_{13}+\left(c_{1}\right)_{23}
$$

a lengthy computation yields

$$
\begin{aligned}
& \operatorname{trace} R[(X \cdot Y) \cdot Z]-\operatorname{trace} R[X \cdot(Y \cdot Z)] \\
&=2(2(n+1)+1)\left[n\left(\bar{a}_{3} \bar{b}_{2}+\bar{b}_{3} \bar{a}_{2}, c_{1}\right)\right. \\
&+n\left(\bar{a}_{1} \bar{b}_{3}+\bar{b}_{1} \bar{a}_{3}, c_{2}\right)+n\left(\bar{a}_{2} \bar{b}_{1}+\bar{b}_{2} \bar{a}_{1}, c_{3}\right) \\
&-n\left(\bar{c}_{3} \bar{b}_{2}+\bar{b}_{3} \bar{c}_{2}, a_{1}\right)-n\left(\bar{c}_{1} \bar{b}_{3}+\bar{b}_{1} \bar{c}_{3}, a_{2}\right) \\
&\left.-n\left(\bar{c}_{2} \bar{b}_{1}+\bar{b}_{2} \bar{c}_{1}, a_{3}\right)\right] \\
&=0,
\end{aligned}
$$

using (5) in the form $n(\bar{x} y, z)=n(y \bar{z}, x)$. Thus (X, Y) is an invariant form on M.

References

1. L. J. Paige, Jordan algebras, Studies in Modern Algebra, vol. 2 (Amer. Math. Soc., 1963).
2.
3. A. Sagle, On anti-commutative algebras with an invariant form, Can. J. Math., 16 (1964), 370-378.
4. B. L. van der Waerden, Modern algebra, vol. II (New York, 1950).

University of California, Los Angeles

[^0]: Received November 13, 1964. Sponsored by the Office of Naval Research and NSF Grant GP-1453.

