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In this paper we discuss a generalization of the split exceptional Jordan 
algebra M3

8(S) of the 3 X 3 hermitian matrices with elements in the split 
Cayley-Dickson algebra S (1). The generalization consists of replacing Ë by 
the non-commutative Jordan algebra 21 = 21(^4,/, 5, /) discussed in (2; 3) and 
forming the set of 3 X 3 hermitian matrices Af3

m(2l) = M with elements in the 
ra-dimensional algebra 2Ï. With the usual definition of multiplication 
X' Y = \{XY + YX), M becomes a commutative algebra and we have the 
following theorem, which shows how the structure of M is reflected by that of 21. 

THEOREM. Let 21 and M be as above, then: 
(1) M is simple if and only if 21 is simple; 
(2) if 21 is simple, then every element of M satisfies a generic minimum poly

nomial of degree three or M is power associative if and only if M is Jordan; 
(3) the bilinear form (X, Y) = trace R(X* Y) is an invariant form, which is 

non-degenerate if and only if 21 is simple. 

In §1 we develop further relations for the algebra 2Ï, which are used in §2 to 
prove the simplicity of M = M3

m(2I). Now noting that if M is Jordan, then it 
is a power associative * 'cubic" algebra, we prove in §3 the converse statement 
given above in (2) by essentially showing that Mz

m{%) C M"3
8((5). Finally in 

§4 we prove statement (3) concerning the bilinear form (X, F). We shall 
assume that the base field F is of characteristic zero since we want to consider 
trace; but it should be clear when this condition can be relaxed. 

1. Some identities for 21(21, / , s, t). In this section we discuss briefly the 
properties of the algebra 21 = 2104,/, s, t) necessary for this paper. The non-
commutative Jordan algebras in (2; 3) are constructed as follows. Let A ^ 0 
be an anti-commutative algebra with an invariant form/(a, 0) (i.e. f(aft, y) = 
f(a, £7)), and let 21 = 2104,/, s, t) denote the set of matrices 

G : ] • . 
where a, 0 Ç A and a, b £ F. For these matrices define the usual vector space 
operations co-ordinate-wise and define multiplication of two such matrices by 

Y a a~\ Yc 7 l f ac + / ( a , 8) ay + da + t0ôl 
y bjlô d]~lcP + bô + say bd+f(fi,y) } ' 
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where f(a, 0) is the invariant form on A and s, t Ç F, Thus letting 
(x, y, z) = (xy)z — x(yz) denote the associator function, 2( becomes an algebra 
with the following properties (2): 

(i) (x, y, x) = 0 for all x, y € 21, and x2 - (a + 6)x + [ab - / (a, 0)]1 = 0 
for all 

- t î ] G a, 

that is, 21 is a flexible quadratic algebra with identity element 1. Thus 
(x2, yy x) — 0, so that 21 is a non-commutative Jordan algebra. 

(ii) 21 is simple if and only if f(a, ft) is non-degenerate on A ; a proof of an 
analogous statement may be found in (3). 

Next we derive some new relations for 21, which are similar to conjugation 
in the split Cayley-Dickson algebra. For 

define 

then a straightforward computation shows that x —•> x is linear and 

(1) xx = xx = w(x), where n(x) = (a6 — /(a, /3))1, 

(2) x;y = y x, 

so that x —» x is an involution. Next define the bilinear form on 21, 

n(x, y) = %[n(x + y) — w(x) — w(y)], x, 3/ £ 2Ï. 
Then 

(3) n(x, y) = i ( x j + 3^) = è ( ^ + 5^) 

and n(x, y) is non-degenerate if and only if f(a, 13) is non-degenerate on A 
(which is equivalent to 2Ï being simple (2)). For, using (1), 

(4) n(x, y) = \[{a + c)(b + d) - f(a + 7, 0 + 8) 

- ( a J « / ( « , « ) - (cd~f(y,ô)))l 

= i[c6 + a d - / ( « , « ) - / ( 7 , / 3 ) ] l 

= K*:y + 3̂ )> 

and from the second equation we see that if n(x, y) is non-degenerate, so is 
f(a, ft). Conversely, suppose/(a, ft) is non-degenerate and n(x, y) = 0 for all 
y Ç 21. Then using the above equations with c — l , d = 5 = 7 = 0, we have 
6 = 0; similarly a = 0. Choosing 7 = 0 and 8 arbitrary yields a = 0; similarly 
/3 = 0 so that x = 0 and therefore n(x, y) is non-degenerate. Next we have 

(5) n(xy,z) = n(zx,y). 
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For, letting (x, y, z) denote the association function, we have, using (3), 

2n(xy, z) — 2n(zx, y) = (y, x, z) + (3;, x, z) = 0, 

since for any x, y, z £ 21 we have 

(x,y,z) = -(z,y,x), 

= (*,y,x) 

= (zy)x — z(yx) 

since 21 is flexible, 
since x + x = (a + b)l Ç IF, 

= x(;y, 2) — (x3>)s 
= - ( x , 3;, z). 

We shall need the following lemma. 

LEMMA. Let A 9^ 0 be an anti-commutative algebra with a non-degenerate 
invariant form f(a, £) swcA ^a / /or all a, 13, y ë 4̂ 

^(0-7) = / ( a ,0 )Y - / ( f t « ) « . 

77&ew 21 = 21(̂ 4, / , 5, J) is a s£/i£ Cayley-Dickson algebra &or a "spliC quaternion 
associative algebra Q . i n ei/fer rase M"3

8(S) and M3
4(Q) are Jordan algebras 

and if F is algebraically closed, we may consider E D O and therefore M3
8((£) 

2) Af3
4(0) as Jordan algebras. 

Proof. Since 21 is flexible, we first show that x2y = x(xy) so that 2( is 
alternative. Thus for x, y £ 21 as in the first part of this section we have 

X L (a + b)P 62+/(a,/3)J 
and 

x2y 

Also 

#(:ry) = 

V(a2 + f(a, ft) + (a + b)f(a, Ô) [a' + f(a, P)]y + (a + b)da 
+ s {a + 6)05 

c(a + i)0 + [62 + / ( « , 0)]« d(62 + / (* , 0)) + (a + 6)/(0, 7) 
+ /(a + 0)0:7 

a(ac + / ( « , 6) 
+ / (a , e/3 + bô + tay) 

a (ay + da + s fiô) 
+ (bd+f(0,y))a 

+ s/3(c(3 + bd + lay) 
(ac + / (a , 5))0+ J(c j8 + bd + toy) i (M + f(/3, 7)) 

+ /a(a7 + da + <r/3<5) + /(/3, ay + da + ^<5) 

and using the hypothesis we obtain the desired equality. 

Now since f(a, (3) is non-degenerate, 21 is simple and therefore is the split 
Cayley-Dickson algebra S, or an associative algebra. In the latter case we let 

-t a € 21 
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and compute the 2 X 2 matr ix (#, y, z) = 0 in 21. From the (1, 1) position in 
this matr ix we obtain tf(/3ô, n) — sf(y\, a) = 0. If st j* 0, then since the 
elements in A in this expression are arbi t rary , we have by choosing a = 0 
(or \x = 0) t ha t /(/ft, JU) = 0 (or f(y\, a) = 0), which implies t ha t A2 = 0 by 
the non-degeneracy of / (a , /?). Bu t by hypothesis this y ie lds / (a , ff)y = / ( 0 , 7)0:, 
and consequently the dimension of A is one; the same result holds if st = 0. 
T h u s for /(/3, ft=M0we have A = 0F , and Q = 8t(/3F,/, 5, /) is asso
ciative. In both of these cases 7kf3

8( S) and l f 3
4 ( Q ) are Jordan algebras. 

Next for A = 13F and F algebraically closed, we can find a £ A such t h a t 
f(a, a) =• 1 ; and consequently the map 

au a12 al _^ Van aX2~\ 
a2ia a22 J [_a21 a22j 

is an isomorphism of Q onto the 2 X 2 matr ix algebra over F, which may be 
regarded as the "spl i t" quaternion algebra (4, pp. 135 and 162). Now we may 
regard 6 D Q as follows. Since / is non-degenerate and symmetric , there 
exists a t A (where S = 21(^4,/, s, /)) with / ( a , a) 9e 0; assume t h a t / ( a , a) = 1. 
Wi th this a t A, we see tha t Q is isomorphic to 21 (aF,f, s, t) and therefore 
consider t h a t S D O by this isomorphism; consequently M3

8((£) 3 Af 3
4 (D). 

2. S i m p l i c i t y of M. Let 

« 1 0 3 « 2 "ft h 62 j 
a3 « 2 a i F = 63 02 * 1 

|_/&2 ai a3_ b2 6l &J 
be 3 X 3 hermitian matrices in M, where au bt £ 21, au fit £ F, and where 
x —» x is the involution in 4̂ defined in §1. The commutat ive multiplication in 
M i s given by X- Y = %{XY + FX) and the resulting 3 X 3 matr ix is formally 
the same as obtained in M 3

8 ( S ) . 
Next let {eij} denote the usual matr ix basis for the 3 X 3 matrices over F. 

Then d• = eUj i = 1, 2, 3, are orthogonal idempotents in M. For a £ 21 define 
for i ?é j 

Then « ^ = atj and setting 

Af^ = {an :a e 2l| 

we have the Peirce decomposition relative to the et given by 

M = ei F 0 e2 F 0 ez F 0 M12 0 Afi3 0 M2Z. 

From this we see t h a t if the dimension of A is n (so t h a t the dimension of 
$1 is m = 2 (w + 1)), then the dimension of M is 

3 + 3[2(» + l ) ] = 3[2(» + 1) + 1]. 
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For a, b G 31 the multiplication of the basis elements of M is given by 

ek-atJ = 0, k ^ i, k jéjj 

2aij'bj]c = (ab)ik, i 9e j 9e k 9e i. 

Next we consider the simplicity of M. Assume t h a t / ( a , /3) is non-degenerate 
and therefore n(a, b) is non-degenerate on M. Suppose B is a non-zero ideal of 
M containing the non-zero element 

X = «i ei + a2 e2 + az ez + a i 2 + bn + cn. 

Now e\-X = a\e\ + Ja i 2 + §613 € -B; therefore (ei-X)-e2 = i a i 2 £ £ and 
(e i -X)-e 3 = J613 6 B. T h u s since e r X € B} a\ ei Ç 22. Similarly a2 ^2 and 
a 3 e3 are in 2?. Now suppose t h a t some at 9* 0, say «1 9^ 0. Then d £ B and 
therefore 

M12 = evMu CB, 
Mn = evMu C B, 

M2Z = M 2 i -Mi3 = Mn-Mn C 5 . 

Next since n(a, b) is non-degenerate on 21, there exists a Ç 31 with w(a) 7̂  0 
and therefore n(a)(e2 + e3) = a23

2 G .M23 C B. T h u s e2 + e3 £ 23; similarly 
ei + e2 (: B. Since <?i G 2?, e2 and e3 are in B so t h a t 2? = M. 

We now show t h a t there exists X £ B with some a* 5^ 0. Suppose 
F = a i 2 + 6i3 + C23 G -S with, say, a i 2 ^ 0, the other cases being similar. 
Then (e\- Y)-e2 = i # i 2 Ç 2?. Now since n(a, b) is non-degenerate on 31, there 
exists b Ç 31 with n(a, b) ^ 0 and therefore 

0 7^ w(û, b)(ei + g2) = ai2'bi2 £ 2?. 

T h u s X = ei + e2 G 23 is the desired element with a i 9^ 0. T h u s we have shown 
t h a t M is simple if / ( a , 0) is non-degenerate, which is equivalent to 3Ï being 
simple. 

Conversely, if f(a, j3) is degenerate on A, set C = {a £ A ; / ( « , .4) = 0} ; 
then 

(7) 91 = Uh^c) 
is a proper ideal of 31 and from (4) we have for a Ç 2Ï, b £ 9Î t h a t n{a, b) = 0. 
Next noting t h a t & £ 5ft implies 5 6 5ft, we see t h a t B = 9îi2 + 9h 3 + s)î23 is 
an ideal of M, where 31 tj = {btj :b £ 31}. For if a Ç 31, we have 

efSflij = yiij-ej = fSft^ C B, 
ew^lij = 0, k 9e i, k y£ j , 
dij-bij = w(a, &)(e* + ej) = 0, where b Ç 9Î, 

2aîj'bjk = (ab)ik G 5 , 
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since aft £ -K. T h u s B is a proper ideal of M, and this proves the first s t a tement 
in the theorem. 

3. I d e n t i t i e s . In this section we prove the second s ta tement of the main 

theorem. Le t X = ai e\ + a2 e2 + o:3 e3 + a i 2 + 6 i 3 + c2Z be in M; then 

Vai2 + n(ay a) + n(b, b) (ai + a2)a + bc («i + a3)6 + ac 
X2 = (ai + «2)â + £ft <*22 + w(a, a) + n(c, c) (a2 + a3)c + d 6 

L (o : i+ a3)ft + c â (o:2 + a3)c + fta a3
2 + n(ft, ft) + n(c, c )J 

Then comput ing 2X 3 = 2 X - Z 2 = ^ i a + A2 e2 + Az ez + / 1 2 + l i s + ^23, 
we obtain 

(8) \Ax = «13 + (2ai + a 8 )» ( i , W + (2a! + a*)n(a, a) 
+ w(ft, c a) + n(a, b c), 

(9) /12 = («i + a2)2a + (oi + a2)6 c + [o^2 + o:2
2 + 2»(a, a) 

+ »(&, ft) + w(c, c)]a + 6[a2 + a3)c + fta] + [(ai + o:3)6 + ac]c. 

Now if X is to satisfy a generic minimum cubic polynomial % ( \ ) , we see, by 
comparing the elements in the (1 ,1) position of 1, X, X2, and X 3 , t h a t we 
mus t have 

% ( \ ) = X3 — («i + a2 + o:3)X
2 + (ai a2 + 0:10:3 + OL2 a% — ad — bb — ce)\ 

— («i o:2 0:3 + s (a, ft, c) — 0:1 cc — a2 bb — o-3 a â ) l , 

where s (a, ft, c) = n(b, c d) + w(a, 6 c). Next since X must satisfy rax(X), we 
compare the elements in the (1, 2) position of 1, X, X2, and X 3 to obtain 

0 = è/12 - («1 + «2 + «3)[(0:1 + a2)a + be] 
+ («1 0:2 + ai a3 + o:2 as — aâ — bb — cc)a 

= 6 (fta) — (6ft)a + (ac)c — a (of) 

for all a, b, c £ 2Ï. This equation is satisfied if and only if x(xy) = (xx)y for 
all x, y G SI; bu t a straightforward computat ion shows tha t the above equation 
holds if and only if 

stP(ay) = f(a,0)y - f(P, y)a 

for all a, P,y £ A. T h u s by the lemma of §1 I f is a Jordan algebra. 
Finally we consider the power associativity of M. Computing 

X2-X2 = Biei + B2e2 + Bzes + . . . , 
we obtain 

Bx = [ai
2 + n(a,a) + n(b, ft)]2 

+ n[(ai + a2)a + 6 c, (ax + o:2)a + 6 c] 
+ w[(ai + o:3)ft + câ, (ai + o:3)ft + c a ] 

= axA + w(a, a ) 2 + w(ft, ft)2 + 2ai2w(a, a) 
+ 2ai2w(ft, ft) + 2»(a, a )«(J , ft) 
+ (0:1 + a2)

2n(a, a) + n(b c, b e) 
+ (ai + az)

2n{b, ft) + » ( c ô , c â ) 
+ 2(2ai + 0:2 + az)n(a, be), 
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using (5) to obtain this last te rm. Next comput ing X-Xz = Ci £i + C2 £2 
+ C% e% + . . . , we obtain 

Ci = ai(%Ai) + nia, I/12) + »(6, | g i 8 ) , 

where ^41 and /12 are given by (8) and (9) and 

gu = («1 + az)2b + (ai + a 3 ) c â 
+ W + «32 + n(a, a) + 2n(6, b) + n(c, c)]b 
+ [(«2 + a8)c + ba]d + c[(ai + <*2)a + cb]. 

Expanding the formula for C\, we obtain 

Ci = ai[a:i3 + (2a 1 + a2)n(a, a) + (2a 1 + ad)n(b, b) + n(b, c à) + n(a, b c)] 
+ \n{a, (ai + a2)

2a + (ai + a2)b c 
+ [ai2 + OÙ22 + 2»(a , a) + w(6, 6) + w(c, c)]a 

+ 6[(a2 + az)c + Ja] + [(ai + a3)5 + ac]c) 
+ J«(6 , (ai + oiz)2b + (ai + a3)c â 
+ W + as2 + n(a, a) + 2n(b, b) + n(c, c)]b 
+ [(a2 + az)c + ba]â + c[(ai + a2)d + cb]). 

Now if M is power associative, we mus t have B\ = C\\ and using (5) on Ci, 
this yields 

n(a, a)n(b, b) + n{c â, c a) + n(b c,b c) 
= \n{c, c)n{a, a) + \n{c, c)n(b, b) 

+ \n{a, (ac)c) + \n(b, c(cb)) + n{a, b(ba)). 

for all a, b, c £ A. T h u s set t ing c = 0 and using (5), 

n(a, a) nib, b) = n(a,b(âb)) = n(âb, âb) = w(a&, aô). 

B u t using (1) this equat ion yields 

/ ( 0 f / ( Y , « ) « - / ( « , 0)7 + std(ay)) = 0 

for all a, £, 7, ô Ç A ; and since / ( a , 0) is non-degenerate , we have by the 
lemma of §1 t h a t M is Jordan . 

4. C o n c e r n i n g i n v a r i a n t f o r m s . LetR(X) denote the mapping F —» F - X 
and let (X, F) = trace R(X-Y); then we shall show in this section t h a t 
iX, F) is an invar iant form (i.e. iX-Y,Z) = (X, Y-Z)), which is non-
degenerate if and only if / ( a , 0) is non-degenerate. Le t zi, . . . , z2(n+i) be a 
basis for 21; then e\, e2, e3, (2^)12, (2^)13, 0^)23, j = 1, . . • , 2(w + 1) is a basis 
for If. Let 

X = a i ^i + a2 e2 + a 3 ez + (#3)12 + (â2)i3 + («1)23 

be in M, where ak = ^akj z$ 6 21 with akj Ç F. Then to compute t race R(X) 
we have 
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eiR(X) =axei + ...t 
e2R{X) = a2e2 + . . . , 

ezR(X) = a8e8 + . . . , 

(zj)12R(X) = J(«i + «*)(*,)» + . . . , 
(Zj)lzR(X) = J ( a i + ««)(*,)is + . . . , 

(zjURiX) = *(«« + «3)^)23 + . . . , 

where . . . denotes elements that make no contribution to the diagonal of the 
matrix of R(X). Thus if / denotes the 2(n + 1) X 2(w + 1) identity matrix, 
we have 

trace R (X) = trace 

Oil 

OL2 

« 3 

i(ai + «2)/ 
i (a i + as) / 

K<*2 + «3)/. 

= [2(» + l) + l](ai + «2 + aa). 

Next for X, F as in (6) we can show that 

X- F = (ai ft + n(a2, 62) + n(az, bz))ex 

+ (a2 ft + »(ai, ii) + w(a8, fts))^ 
+ (a3 03 + n(a2, b2) + n(ai, bx))ez + 

so that 

(X, F) = trace i?(X-F) 

= [2(« + 1) + l][ai 0i + a2 02 + a3 03 + 2n(au fti) + 2w(a2, b2) 

+ 2»(a,, ft,)]. 

From this equation we see that if / (a , 0) is non-degenerate, so is (X, Y). For 
suppose that (X, Y) = 0 for all Y £ M; then for 0i = 1 and the rest zero we 
obtain a\ = 0; similarly a2 = «3 = 0. Next for fti arbitrary and ft2 = bz = 0 
we obtain n(ai, fti) = 0, and since n(a, ft) is non-degenerate when /(a , 0) is 
non-degenerate, then a\ = 0; similarly a2 = #3 = 0- Thus X = 0. Conversely, 
i f / (a , 0) is degenerate, then for fti, ft2, ft3 G 9Î, the ideal given in (7), and for 
0i = 02 = 03 = 0 we see from the above formula that the element Y is such 
that (X} Y) = 0 for all X G M. 

Next we shall show that (X- F, Z) = (Xy Y-Z), that is 

For 
trace R[(X-Y)Z - X-(Y-Z)] = 0. 

71 01-+ 72^2 + 73^3 + (03)l2 + (C2)l3 + (0l)2 
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a lengthy computation yields 

trace R[(X-Y)-Z] - trace R[X- (Y-Z)] 

= 2(2(» + 1) + l)[n(az 62 + 63 dv ci) _ 
+ n(âi 63 + 61 â3, c2) + n(â2 61 + 62 ôi, c3) 
— n{cz 62 + 63 c2, ai) — »(ci 63 + 61 c3, a2) 
— n(c2bi + biCi,az)] 
= 0, 

using (5) in the form n(xy, z) = n(yz, x). Thus (X, F) is an invariant form 
on M. 
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