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Through ensemble-based data assimilation, we address one of the most notorious
difficulties in phase-resolved ocean wave forecast, regarding the deviation of numerical
solution from the true surface elevation due to the chaotic nature of and underrepresented
physics in the nonlinear wave models. In particular, we develop a coupled approach of
the high-order spectral (HOS) method with the ensemble Kalman filter (EnKF), through
which the measurement data can be incorporated into the simulation to improve the
forecast performance. A unique feature in this coupling is the mismatch between the
predictable zone and measurement region, which is accounted for through a special
algorithm to modify the analysis equation in EnKF. We test the performance of the new
EnKF–HOS method using both synthetic data and real radar measurements. For both
cases (though differing in details), it is shown that the new method achieves much higher
accuracy than the HOS-only method, and can retain the phase information of an irregular
wave field for an arbitrarily long forecast time with sequentially assimilated data.
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1. Introduction

Accurate prediction of ocean waves plays a significant role in the industries of shipping,
oil and gas, aquaculture, ocean renewable energy, coastal and offshore construction. In
the past few decades, both phase-averaged and phase-resolved wave models have been
developed. The phase-averaged wave models, which provide statistical descriptions in
terms of the wave spectrum, have been widely used in the operational forecast of global
and regional sea states (Booij, Ris & Holthuijsen 1999; Tolman et al. 2009). Despite their
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wide applications and success, phase-averaged models have the limitation of providing
no information on the individual deterministic waves. For example, rogue waves, which
often appear sporadically and potentially cause enormous damage to offshore structures
and ships (Broad 2006; Nikolkina et al. 2011), cannot be captured. On the other hand,
phase-resolved models can predict the evolution of individual waves, but have received
much less attention historically, partly due to the difficulty in obtaining the phase-resolved
ocean surface as initial conditions. This has now been largely ameliorated with the
recent development of sensing technologies and wave field reconstruction algorithms (e.g.
Reichert et al. 2004; Nwogu & Lyzenga 2010; Gallego et al. 2011; Nouguier, Grilli &
Guérin 2013; Lyzenga et al. 2015; Qi, Xiao & Yue 2016; Desmars et al. 2018; Qi et al.
2018a). For example, the Doppler coherent marine radars have been applied to measure
the radial surface velocity field, based on which the field of both velocity potential and
surface elevation can be reconstructed in real time (Nwogu & Lyzenga 2010; Lyzenga
et al. 2015).

Given the reconstructed surface elevation and velocity potential as initial conditions,
the evolution of the wave field can be predicted by linear or nonlinear phase-resolved
wave models. Although the linear models yield low computational cost, their prediction
horizon is severely limited (e.g. Blondel et al. 2010; Qi et al. 2017). For nonlinear models,
the Euler equations governing the free surface need to be numerically integrated. One
efficient numerical algorithm to achieve this goal, based on the high-order spectral (HOS)
method, is developed by Dommermuth & Yue (1987) and West et al. (1987), with later
variants such as Craig & Sulem (1993) and Xu & Guyenne (2009). The novelties of
these algorithms lie in the development of an efficient spectral solution of a boundary
value problem involved in the nonlinear wave equations, which is neglected in the linear
wave models with the sacrifice of accuracy. In recent years, HOS has been developed
for short-time predictions of large ocean surface, taking radar measurements as initial
conditions (Xiao 2013). However, due to the significant uncertainties involved in realistic
forecast (e.g. imperfect initial free surface due to measurement and reconstruction errors;
the effects of wind, current, etc., that are not accurately accounted for) as well as the
chaotic nature of the nonlinear evolution equations, the simulation may deviate quickly
from the true wave dynamics (Annenkov & Shrira 2001). Because of this critical difficulty,
operational phase-resolved wave forecast has been considered as a ‘hopeless adventure’ to
pursue (Janssen 2008).

The purpose of this paper, however, is to show that the dilemma faced by the
phase-resolved wave forecast can be largely addressed by data assimilation (DA), i.e. a
technique to link the model to reality by updating the model state with measurement
data (Evensen 2003, 2009; Bannister 2017). Mathematically, the principle of DA is to
minimize the error of analysis (i.e. results after combining model and measurements),
or in a Bayesian framework, to minimize the variance of the state posterior given the
measurements (Evensen 1994, 2003; Carrassi et al. 2018). Depending on formulations
and purposes, two categories of DA algorithms exist, namely the variational-based
and the Kalman-filter-based approaches. Among the limited studies to couple DA with
phase-resolved wave models, most use the variational-based method, where the purpose
is to find the optimal initial condition to minimize a cost function measuring the
distance between the model prediction and data in future times (Aragh & Nwogu
2008; Qi et al. 2018a; Fujimoto & Waseda 2020). These methods, however, are not
directly applicable to operational forecast due to their requirement of future data far
after the analysis state (in contrast to the realistic situation where data becomes available
sequentially in time). On the other hand, the Kalman-filter-based approach allows data
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to be sequentially assimilated, by updating the present state as a weighted average of
prediction and data according to the error statistics. While Kalman-filter-based approaches
have been commonly applied in phase-averaged models to improve the forecast accuracy
(Komen et al. 1996; Pinto, Bernadino & Pires Silva 2005; Emmanouil, Galanis & Kallos
2012; Almeida, Rusu & Guedes Soares 2016), their development and application for
phase-resolved wave models is still at a very early stage. The only attempt (based on
the authors’ knowledge) to couple such an approach with a phase-resolved wave model
is Yoon, Kim & Choi (2015), which, however, assumes linear propagation of the model
error covariance matrix, thus limiting its application only to wave fields of small steepness.
More robust methods based on the ensemble Kalman filter (EnKF) (i.e. with error statistics
estimated by an ensemble of model simulations), which have led to many recent successes
in the geosciences (Carrassi et al. 2018), have never been applied to phase-resolved wave
forecast. Moreover, most existing work, if not all, uses only synthetic data for the validation
of their methods, which ignores the realistic complexity that should be incorporated
into the forecast framework, such as the mismatch between the predictable zone and
measurement region, and the under-represented physics in the model.

In the present work, we develop the sequential DA capability for nonlinear wave
models, by coupling EnKF with HOS. The coupling is implemented in a straightforward
manner due to the non-intrusive nature of EnKF, i.e. the HOS code can be directly
reused without modification (Evensen 2003, 2009). The new EnKF–HOS solver is able
to handle long-term forecast of the ocean surface ensuring minimized analysis error
by combining model prediction and measurement data. The possible mismatch of the
predictable zone (spatial area theoretically predictable given the limited range of initial
conditions, which shrinks in time) and measurement region (spatial area covered by the
marine radar which moves with, say, ship speed) is accounted for by a new analysis
equation in EnKF. To improve the robustness of the algorithm (i.e. address other practical
issues such as misrepresentation of the error covariance matrix due to finite ensemble size
and underrepresented physics in the model), we apply both adaptive covariance inflation
and localization, which are techniques developed elsewhere in the EnKF community
(Anderson & Anderson 1999; Hamill & Whitaker 2005; Anderson 2007; Carrassi et al.
2018). We test the performance of the EnKF–HOS method against synthetic and realistic
radar data, which shows consistent and significant improvement in forecast accuracy over
the HOS-only method in both cases. For the former, we further characterize the effect
of parameters in EnKF on the performance. For the latter, we show that the EnKF–HOS
method can retain the wave phases for arbitrarily long forecast time, in contrast to the
HOS-only method which loses all phase information in a short time.

The paper is organized as follows. The problem statement and detailed algorithm of the
EnKF–HOS method are introduced in § 2. The validation and benchmark of the method
against synthetic and realistic radar data are presented in § 3. We give a conclusion of the
work in § 4.

2. Mathematical formulation and methodology

2.1. Problem statement
We consider a sequence of measurements of the ocean surface in spatial regions Mj,
with j = 0, 1, 2, 3, . . . the index of time t. In general, we allow Mj to be different for
different j, reflecting a mobile system of measurement, e.g. a shipborne marine radar or
moving probes. We denote the surface elevation and surface potential, reconstructed from
the measurements in Mj, as ηm,j(x) and ψm,j(x) with x the two-dimensional (2-D) spatial
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coordinates, and assume that the error statistics associated with ηm,j(x) and ψm,j(x) is
known a priori from the inherent properties of the measurement equipment.

In addition to the measurements, we have available a wave model that is able to
simulate the evolution of the ocean surface (in particular η(x, t) and ψ(x, t)) given initial
conditions. Our purpose is to incorporate measurements ηm,j(x) and ψm,j(x) into the
model simulation sequentially (i.e. immediately as data become available in time) in
an optimal way such that the analysis of the states ηa,j(x) and ψa,j(x) (thus the overall
forecast) are most accurate.

2.2. The general EnKF–HOS coupled framework
In this study, we use HOS as the nonlinear phase-resolved wave model, coupled with the
EnKF for DA. Figure 1 shows a schematic illustration of the proposed EnKF–HOS coupled
framework. At initial time t = t0, measurements ηm,0(x) and ψm,0(x) are available,
according to which we generate ensembles of perturbed measurements, η(n)m,0(x) and

ψ
(n)
m,0(x), n = 1, 2, . . . ,N, with N the ensemble size, following the known measurement

error statistics (see details in § 2.3). A forecast step is then performed, in which an
ensemble of N HOS simulations are conducted, taking η(n)m,0(x) and ψ(n)m,0(x) as initial
conditions for each ensemble member n (§ 2.4), until t = t1 when the next measurements
become available. At t = t1, an analysis step is performed where the model forecasts
η
(n)
f ,1(x) and ψ

(n)
f ,1 (x) are combined with new perturbed measurements η

(n)
m,1(x) and

ψ
(n)
m,1(x) to generate the analysis results η(n)a,1(x) and ψ(n)a,1(x) (§ 2.5). The analysis step

ensures minimal uncertainty represented by the analysis ensembles (figure 1), which is
mathematically accomplished through the EnKF algorithm. A new ensemble of HOS
simulations are then performed taking η(n)a,1(x) and ψ(n)a,1(x) as initial conditions, and the
procedures are repeated for t = t2, t3, . . . until the desired forecast time tmax is reached.
The details of each step are introduced next in the aforementioned sections, with the
addition of an inflation/localization algorithm to improve the robustness of EnKF included
in § 2.6, and treatment of the mismatch between predictable zone and measurement region
by modifying the EnKF analysis equation in § 2.7. The full process is finally summarized
in § 2.8 with algorithm 1.

2.3. Generation of the ensemble of perturbed measurements
As described in § 2.2, ensembles of perturbed measurements are needed at t = tj, as the
initial conditions of N HOS simulations for j = 0, and the input of the analysis step for
j ≥ 1. As shown in Burgers, Jan van Leeuwen & Evensen (1998), using an ensemble of
measurements (instead of a single measurement) in the analysis step is essential to obtain
the correct ensemble variance of the analysis result. We collect and denote these ensembles
by

Sm,j =
[
s(1)m,j, s(2)m,j, . . . s

(n)
m,j, . . . s

(N−1)
m,j , s(N)m,j

]
∈ R

dj×N, (2.1)

where s represents the state variables of surface elevation η or surface potential ψ , and
S the corresponding ensemble. This simplified notation will be used hereafter when
necessary to avoid writing two separate equations for η and ψ . s(n)m,j with n = 1, 2, . . . ,N is
the nth member of the perturbed measurements. Here dj denotes the number of elements
in the measurement state vector of either η or ψ at t = tj. Without loss of generality, in this
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Wave dynamics

Forecast step Forecast step

Analysis step Analysis step

Measurements

Forecast 

Analysis

(Continuation)

Timet0 t1 t2

[η, ψ](1)
f ,1

[η, ψ](1)
m,1

[η, ψ](1)
m,0

[η, ψ](n)
m,0

[η, ψ](N)
m,0

[η, ψ](1)
m,2

[η, ψ](n)
m,1

[η, ψ](n)
m,2

[η, ψ](N)
m,1

[η, ψ](N)
m,2

[η, ψ](1)
a,1

[η, ψ](n)
a,1

[η, ψ](N)
a,1

[η, ψ](1)
a,2

[η, ψ](n)
a,2

[η, ψ](N)
a,2

[η, ψ](n)
f ,1

[η, ψ](N)
f ,1

[η, ψ](1)
f ,2

[η, ψ](n)
f ,2

[η, ψ](N)
f ,2

Figure 1. Schematic illustration of the EnKF–HOS coupled framework. The size of ellipse represents the
amount of uncertainty. We use short notations [η,ψ](n)∗,j to represent η(n)∗,j (x), ψ

(n)
∗,j (x) with ∗ = m, f , a for

measurement, forecast and analysis, and j = 0, 1, 2.

work, we use constant dj = d for j ≥ 1, and choose d0 for the convenience of specifying
the model initial condition (see details in § 3).

To generate each ensemble member s(n)m,j from measurements sm,j, we first produce η(n)m,j
from

η
(n)
m,j(x) = ηm,j(x)+ w(n)(x), (2.2)

where w(n)(x) is the random noise following a zero-mean Gaussian process with spatial
correlation function (Evensen 2003, 2009)

C(w(n)(x1),w(n)(x2)) =
⎧⎨
⎩c exp

(
−|x1 − x2|2

a2

)
, for |x1 − x2| ≤ √

3a,

0, for |x1 − x2| >
√

3a.
(2.3)

In (2.3), c is the variance of w(n)(x) and a the decorrelation length scale, both of which
practically depend on the characteristics of the measurement devices (and thus assumed
known a priori). The perturbed measurement of surface potential ψ(n)m,j is reconstructed

from η
(n)
m,j based on the linear wave theory,

ψ
(n)
m,j(x) ∼

∫
iω(k)
|k| η̃

(n)
m,j(k) exp (ik · x) dk, (2.4)

where η̃(n)m,j(k) denotes the nth member of perturbed surface elevation in Fourier space,
and ω(k) is the angular frequency corresponding to the vector wavenumber k. We use
‘∼’ instead of ‘=’ in (2.4) as the sign of the integrand relies on the wave travelling
direction (and the complex conjugate relation that has to be satisfied for modes k and −k).
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We remark that this linear construction of ψ(n)m,j(x) is the best available given the current
radar technology, since ψm,j(x) is either not directly measured or holds a linear relation
with ηm,j(x) (Stredulinsky & Thornhill 2011; Hilmer & Thornhill 2015; Lyzenga et al.
2015). The additional error introduced by (2.4), however, can be remedied by the EnKF
algorithm as will be shown in § 3.

Although the error statistics of the measurements can be fully determined by (2.3) and
(2.4), it is a common practice in EnKF to compute the error covariance matrix directly
from the ensemble (2.1) (in order to match the same procedure which has to be used for
the forecast ensemble). For this purpose, we define an operator ℭ applied on the ensemble
S (such as Sm,j) such that

ℭ(S) = S′(S′)T, (2.5)

where

S′ = 1√
N − 1

[
s(1) − s̄, s(2) − s̄, . . . , s(n) − s̄, . . . , s(N−1) − s̄, s(N) − s̄

]
, (2.6)

s̄ = 1
N

N∑
n=1

s(n). (2.7)

Therefore, applying ℭ on Sm,j,

Rs,j = ℭ(Sm,j) (2.8)

gives the error covariance matrix of the measurements.

2.4. Nonlinear wave model by HOS

Given the initial condition s(n)m,j for each ensemble member n, the evolution of s(n)(x, t)
is solved by integrating the surface wave equations in Zakharov form (Zakharov 1968),
formulated as

∂η(x, t)
∂t

+ ∂ψ(x, t)
∂x

· ∂η(x, t)
∂x

−
[

1 + ∂η(x, t)
∂x

· ∂η(x, t)
∂x

]
φz(x, t) = 0, (2.9)

∂ψ(x, t)
∂t

+ 1
2
∂ψ(x, t)
∂x

· ∂ψ(x, t)
∂x

+ η(x, t)− 1
2

[
1 + ∂η(x, t)

∂x
· ∂η(x, t)

∂x

]
φz(x, t)2 = 0,

(2.10)

where φz(x, t) ≡ ∂φ/∂z|z=η(x, t) is the surface vertical velocity with φ(x, z, t) being the
velocity potential of the flow field, and ψ(x, t) = φ(x, η, t). In (2.9) and (2.10), we have
assumed, for simplicity, that the time and mass units are chosen so that the gravitational
acceleration and fluid density are unity (e.g. Dommermuth & Yue 1987).

The key procedure in HOS is to solve for φz(x, t) given ψ(x, t) and η(x, t), formulated
as a boundary value problem for φ(x, z, t). This is achieved through a pseudo-spectral
method in combination with a mode-coupling approach, with details included in multiple
papers such as Dommermuth & Yue (1987) and Pan, Liu & Yue (2018).
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2.5. DA scheme by EnKF
Equations (2.9) and (2.10) are integrated in time for each ensemble member to provide the
ensemble of forecasts at t = tj (for j ≥ 1):

Sf ,j =
[
s(1)f ,j , s(2)f ,j , . . . s

(n)
f ,j , . . . s

(N−1)
f ,j , s(N)f ,j

]
∈ R

L×N, (2.11)

where L is the number of elements in the forecast state vector and s(n)f ,j (x) ≡ s(n)f (x, tj) is
the nth member of the ensembles of model forecast results. The error covariance matrix of
the model forecast can be computed by applying the operator ℭ on Sf ,j:

Qs,j = ℭ(Sf ,j). (2.12)

An analysis step is then performed, which combines the ensembles of model forecasts
and perturbed measurements to produce the optimal analysis results (Carrassi et al. 2018):

Sa,j
L×N

= Sf ,j
L×N

+ K s,j
L×d

[Sm,j
d×N

− Gj
d×L

Sf ,j
L×N

], (2.13)

where

K s,j = Qs,jG
T
j

[
GjQs,jG

T
j + Rs,j

]−1
(2.14)

is the optimal Kalman gain matrix of the state (for s = η or s = ψ). Here Gj is a linear
operator, which maps a state vector from the model space to the measurement space: R

L →
R

d. In the present study, Gj is constructed by considering a linear interpolation (or Fourier
interpolation (Grafakos 2008)) from the space of model forecast, i.e. s(n)f ,j , to the space of

measurements, i.e. s(n)m,j.
While we have now completed the formal introduction of the EnKF–HOS algorithm

(and all steps associated with figure 1), additional procedures are needed to improve the
robustness of EnKF and address the possible mismatch between the predictable zone and
measurement region. These will be discussed, respectively, in §§ 2.6 and 2.7, with the
former leading to a (heuristic but effective) correction of Sf ,j and Qs,j before (2.13) and
(2.14) are applied, and the latter a modification of (2.13) when the mismatch occurs.

2.6. Adaptive inflation and localization
With N → ∞ and exact representation of physics by (2.9) and (2.10), it is expected that
(2.11) and (2.12) capture the accurate statistics of the model states and (2.13) provides the
true optimal analysis. However, due to the finite ensemble size and the underrepresented
physics in (2.9) and (2.10), errors associated with statistics computed by (2.12) may lead to
suboptimal analysis and even (classical) filter divergence (Evensen 2003, 2009; Carrassi
et al. 2018). These errors have been investigated by numerous previous studies (Hansen
2002; Evensen 2003; Lorenc 2003; Hamill & Whitaker 2005; Houtekamer et al. 2005;
Evensen 2009; Carrassi et al. 2018), which are characterized by (i) underestimates of the
ensemble variance in Qs,j and (ii) spurious correlations in Qs,j over long spatial distances.
To remedy this situation, adaptive inflation and localization (respectively, for error (i) and
(ii)) are usually applied as common practices in EnKF to correct Sf ,j and Qs,j before they
are used in (2.13) and (2.14).

In this work, we apply the adaptive inflation algorithm (Anderson & Anderson 1999;
Anderson 2007) in our EnKF–HOS framework. Specifically, each ensemble member in
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Time

Position

Boundary of the computational domain

P(t) from t = tj–1 to t = tj

tj

Pj
Uj

tj–1

0 xc xrX

Figure 2. The spatial–temporal predictable zone (red) for a case of unidirectional waves which are assumed
to travel from left to right, with initial data in [0,X] at t = tj−1. The boundary of the computational domain is
indicated by the purple vertical lines. The left and right boundary moves with speed cmax

g and cmin
g , respectively.

At t = tj, the spatial predictable zone Pj (yellow) is located in [xc, xr] = [cmax
g (tj − tj−1),X + cmin

g (tj − tj−1)]
(or in [xc,X] within the computational domain), and the unpredictable zone Uj (orange) is located in [0, xc].

(2.11) is linearly inflated before the subsequent computation, i.e.

s(n),inf
f ,j = √

λj(s
(n)
f ,j − s̄f ,j)+ s̄f ,j, n = 1, 2, . . . ,N, (2.15)

where λj ≥ 1 is referred to as the covariance inflation factor. The purpose of (2.15) is to
amplify the underestimated ensemble variance in Qs,j, especially when s̄f ,j is far from
sm,j, therefore, to avoid ignorance of Sm,j in (2.13) (i.e. filter divergence) due to the
overconfidence in the forecast. The appropriate value of λj can be determined at each
t = tj through the adaptive inflation algorithm (Anderson 2007), which considers λj as
an additional state variable maximizing a posterior distribution p(λj|ηm,j). The detailed
algorithm is presented in Appendix A.

After obtaining the inflated Qs,j, a localization scheme is applied, which removes the
spurious correlation by performing the Schur product (i.e. element-wise matrix product)
between Qs,j and a local-correlation function µ (Carrassi et al. 2018),

Qloc
s,j = µ ◦ Qs,j, (2.16)

with µ defined as the Gaspari–Cohn function (see Appendix B for details).

2.7. Interplay between predictable zone and measurement region
The predictable zone is a spatiotemporal zone where the wave field is computationally
tractable given an observation of the field in a limited space at a specific time instant
(Naaijen, Trulsen & Blondel-Couprie 2014; Köllisch et al. 2018; Qi et al. 2018b).
Depending on the wave travelling direction, the boundary of the spatial predictable zone
moves in time with speed cmax

g or cmin
g , which are the maximum and minimum group

speeds within all wave modes of interest (see figure 2 for an example of predictable zone
P(t) and unpredictable zone U(t) for a unidirectional wave field starting with initial data
in [0,X]).

In practice, for a forecast from tj−1 to tj, the predictable zone P(t) at t = tj only
constitutes a subregion of the computational domain (see caption of figure 2), and there
is no guarantee that the measurement region Mj overlaps with the predictable zone
Pj = P(tj). This requires a special treatment of the region where the measurements
are available but the forecast is untrustworthy, i.e. x ∈ (Uj ∩ Mj), where Uj = U(tj).
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To address this issue, we develop a modified analysis equation which replaces (2.13) when
considering the interplay between Pj, Uj and Mj.

We consider our computational region as a subset of Pj ∪ Mj, so that the analysis results
at all x can be determined from the prediction and/or measurements. We further partition
the forecast and analysis state vectors s(n)f ,j and s(n)a,j (in the computational domain), as well

as the measurement state vector s(n)m,j (in Mj), according to

S∗,j ∈ R
L×N =

[
SP

∗,j ∈ R
LP×N

SU
∗,j ∈ R

LU×N

]
, Sm,j ∈ R

d×N =
[

SP
m,j ∈ R

dP×N

SU
m,j ∈ R

dU×N

]
, (2.17a,b)

where ∗ = f , a. The variables with superscript U (P) represent the part of state vectors for
which x ∈ Uj (x ∈ Pj), with associated number of elements LU and dU (LP and dP ) for
s(n)∗,j and s(n)m,j. The modified analysis equation is formulated as

SP
a,j

LP×N

= SP
f ,j

LP×N

+ KP
s,j

LP×dP
[ SP

m,j
dP×N

− GP
j

dP×LP
SP

f ,j
LP×N

], (2.18a)

SU
a,j

LU×N

= H j
LU×d

Sm,j
d×N

, (2.18b)

where KP
s,j = K s,j(1 : LP , 1 : dP) and GP

s,j = Gs,j(1 : dP , 1 : LP) are submatrices of K s,j
and Gs,j associated with x ∈ Pj in both measurement and forecast (analysis) spaces, H j is
a linear operator which maps a state vector from measurement space to unpredictable zone
in the analysis space: R

d → R
LU

(based on linear/Fourier interpolation).
By implementing (2.18a), SU

f ,j is discarded in the analysis to compute SP
a,j; and by

(2.18b), SU
a,j is determined only from the measurements Sm,j without involving SU

f ,j.
Therefore, the modified EnKF analysis equation provides the minimum analysis error
when considering the interplay among Pj, Uj and Mj.

2.8. Pseudocode and computational cost
Finally, we provide a pseudocode for the complete EnKF–HOS coupled algorithm in
algorithm 1. For an ensemble forecast by HOS, the algorithm takes O(NLlogL) operations
for each time step �t. For the analysis step at t = tj, the algorithm has a computational
complexity of O(dLN) for (2.13) and O(dL2)+ O(d3)+ O(d2L) for (2.14) (if Gaussian
elimination is used for the inverse). Therefore, the average computational complexity for
one time step is O(NLlogL)+ O(dL2)/(τ/�t) (for L >∼ N and L >∼ d), with τ the DA
interval.

3. Numerical results

To test the performance of the EnKF–HOS algorithm, we apply it on a series of cases
with both synthetic and real ocean wave fields. For the former, we use a reference HOS
simulation to generate the true wave field, on top of which we superpose random errors
to generate the synthetic noisy measurements. For the latter, we use real data collected
by a shipborne Doppler coherent marine radar (Nwogu & Lyzenga 2010; Lyzenga et al.
2015). The adaptive inflation and localization algorithms are only applied for the latter
case, where the under-represented physics in (2.9) and (2.10) significantly influences the
model statistics. The perturbed measurement ensemble (2.1) are generated with parameters
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Algorithm 1 Algorithm for the EnKF–HOS method.

1: Input: ηm,0, ψm,0 (initial measurements), tmax (final computational time), N
(ensemble size), T = {t1, t2, t3 . . .} (time instants of DA), λ̄0 and σ 2

0 (initial guess
of the inflation factor, see Appendix A)

2: Begin
3: initialize:
4: t = t0, j = 0
5: Generate Sm,0 with (2.1) ∼ (2.4).
6: time loop:
7: while t ≤ tmax do
8: j = j + 1.
9: Solve (2.9) and (2.10) until t = tj to obtain Sf ,j.

10: read ηm,j (measurements)
11: Generate Sm,j with (2.1) ∼ (2.4).
12: Calculate Rs,j with (2.8).
13: Perform adaptive inflation with (2.15) and calculate Qs,j with (2.12).
14: Perform covariance localization on Qs,j with (2.16).
15: Calculate Sa,j with (2.13) (or (2.18a) when considering Pj, Uj and Mj).
16: Output s̄a,j (ensemble mean of Sa,j).
17: Sf ,j = Sa,j.
18: end
19: end

c = 0.0025σ 2
η (where ση is the standard deviation of the surface elevation field) and

a = λ0/8 (where λ0 is the fundamental wavelength in the computational domain) in
(2.3) in all cases unless otherwise specified. We remark that these choices may not
reflect the true error statistics of the radar measurement, which unfortunately has not
been characterized yet. In all HOS computations, we use a nonlinearity order M = 4 to
solve (2.9) and (2.10) considering sufficiently deep water. The results from EnKF–HOS
simulations are compared with HOS-only simulations (both taking noisy measurements
as initial conditions) to demonstrate the advantage of the new EnKF–HOS method.

3.1. Synthetic cases
We consider the synthetic cases where the true solution of a wave field (ηtrue(x, t)
and ψ true(x, t)) is generated by a single reference HOS simulation starting from the
(exact) initial condition. The (noisy) measurements of surface elevation are generated by
superposing random error on the true solution,

ηm,j(x) = ηtrue(x, tj)+ v(x), j = 0, 1, 2 . . . , (3.1)

where v(x) is a random field, which represents the measurement error and shares the same
distribution as w(n) (see (2.2) and (2.3)). For simplicity in generating the initial model
ensemble, we use ηm,0 ∈ R

L in (3.1) (i.e. d0 = L in (2.1)), and ηm,j ∈ R
d for j ≥ 1 with d

specified in each case below. Similar to ψ(n)m,j(x), ψm,0(x) is generated based on the linear
wave theory,

ψm,0(x) ∼
∫

iω(k)
|k| η̃m,0(k) exp (ik · x) dk, (3.2)
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where η̃m,0(k) denotes the measurement of surface elevation in Fourier space at t = 0.
Although the linear relation (3.2) may introduce initial error in ψm,0(x), the EnKF
algorithm ensures the sequential reduction of the error with the increase of time.

Depending on how the true solution is generated, we further classify the synthetic cases
into idealistic and realistic cases. In the idealistic case, the true solution is taken from
an HOS simulation with periodic boundary conditions, so that the entire computational
domain is predictable. In the realistic case, we consider the true solution as a patch in
the boundless ocean (practically taken from a patch in a much larger domain where the
HOS simulation is conducted), and the interplay between Mj and Pj discussed in § 2.7 is
critical. Correspondingly, we apply the modified EnKF analysis equation (2.18) only in the
realistic cases.

To quantify the performance of EnKF–HOS and HOS-only methods, we define an error
metric

ε(t;A) =

∫
A

| ηtrue(x, t)− ηsim(x, t) |2 dA

2σ 2
ηA

, (3.3)

where A is a region of interest based on which the spatial average is performed (here we
use A to represent both the region and its area), ηsim(x, t) represents the simulation results
obtained from EnKF–HOS (the ensemble average in this case) or the HOS-only method,
and ση is the standard deviation of, say, ηtrue in A. It can be shown that the definition (3.3)
yields ε(t;A) = 1 − ρA(ηtrue, ηsim), with

ρA(ηa, ηb) =

∫
A
ηa(x, t)ηb(x, t)dA

σ 2
ηA

, (3.4)

being the correlation coefficient between ηa and ηb (in this case ηtrue and ηsim). Therefore,
ε(t;A) = 1 corresponds to the case that all phase information is lost in the simulation.

In the following, we show results for idealistic and realistic cases of synthetic irregular
wave fields. Preliminary results validating the EnKF–HOS method for Stokes waves in the
idealistic setting can be found in Wang & Pan (2020).

3.1.1. Results for idealistic cases
We consider idealistic cases with both 2-D (with one horizontal direction x) and
three-dimensional (3-D) (with two horizontal directions x = (x, y)) wave fields. The true
solutions for both situations are obtained from reference simulations starting from initial
conditions prescribed by a realization of the JONSWAP spectrum S(ω), with a spreading
function D(θ) for the 3-D case (where ω and θ are the angular frequency and angle with
respect to the positive x direction).

For the 2-D wave field, we use an initial spectrum S(ω) with global steepness
kpHs/2 = 0.11, peak wavenumber kp = 16k0 with k0 the fundamental wavenumber in the
computational domain and enhancement factor γ = 3.3. In the (reference, EnKF–HOS
and HOS-only) simulations, L = 256 grid points are used in spatial domain [0, 2π). The
noisy measurements sm,j are generated through (3.1) and (3.2), with a comparison between
sm,0(x) and strue(x, t0) shown in figure 3.

Both EnKF–HOS and HOS-only simulations start from initial measurements sm,0(x). In
the EnKF–HOS method, the ensemble size is set to be N = 100, and measurements at
d = 2 locations of x/(2π) = 100/256 and 170/256 are assimilated into the model
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Figure 3. Plots of (a) ηtrue(x, t0) (—–) and ηm,0(x) (– – –, red); (b) ψ true(x, t0) (—–) and ψm,0(x) (– – –, red).

(assuming from measurements of two buoys) with a constant DA interval τ = tj − tj−1 =
Tp/16, where Tp = 2π/

√
kp from the dispersion relation.

The error ε(t;A) with A = [0, 2π) obtained from EnKF–HOS and HOS-only
simulations are shown in figure 4. For the HOS-only method, i.e. without DA, ε(t;A)
increases in time from the initial value ε(0;A) ≈ 0.05, and reaches O(1) at t/Tp ≈ 100.
In contrast, ε(t;A) from the EnKF–HOS simulation keeps decreasing, and becomes
several orders of magnitude smaller than that from the HOS-only method (and two orders
of magnitude smaller than the measurement error) at the end of the simulation. For
visualization of the wave fields, figure 5 shows snapshots of ηtrue(x) and ηsim(x) (with
EnKF–HOS and HOS-only methods) at three time instants of t/Tp = 5, 45 and 95, which
indicates the much better agreement with ηtrue(x) when DA is applied. Notably, at and
after t/Tp = 45, the EnKF–HOS solution is not visually distinguishable from ηtrue(x).

The influence of the parameter c (reflecting the measurement error) on the results from
both methods are summarized in table 1. We present the critical time instants t∗ when
ε(t∗;A) reaches O(1) in the HOS-only method, i.e. when the simulation completely loses
the phase information. As expected, all cases lose phase information for sufficiently long
time, and the critical time t∗ decreases with the increase of c. In contrast, for EnKF–HOS
method, the error ε(t;A) decreases with time and reaches O(10−3) at t = 100Tp in all
cases.

We further investigate the effects of EnKF parameters on the performance, including
DA interval τ , the ensemble size N and the number of DA locations d. The errors ε(t;A)
obtained with different parameter values are plotted in figure 6 (for τ from Tp/16 to Tp/2),
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t/Tp

ε(
t; 

A)

0 20 40 60 80 100

10–3

10–2

10–1

100

Figure 4. Error ε(t;A) with A = [0, 2π) from EnKF–HOS (– – –, red) and HOS-only (—–) methods, for
the 2-D idealistic case.

figure 7 (for N from 40 to 100) and figure 8 (for d from 1 to 4). In the tested ranges,
the performance of EnKF–HOS is generally better (i.e. faster decrease of ε(t;A) with an
increase of t) for smaller τ , larger N and larger d. In addition, for τ = Tp/2 as shown
in figure 6, ε(t;A) slowly increases with time, indicating a situation that the assimilated
data is not sufficient to counteract the deviation of HOS simulation from the true solution
(due to the chaotic nature of (2.9) and (2.10)). It is also found that when N = 20, the error
increases with time, mainly due to the filter divergence caused by insufficient ensemble
size to capture the error statistics.

Finally, we compare the EnKF–HOS algorithm with the explicit Kalman filter method
developed by Yoon et al. (2015), where the evolution of the wave field is solved by (2.9) and
(2.10) while the propagation of the covariance matrix is linearized. To manifest the contrast
between the two approaches, we use as an initial condition a JONSWAP spectrum with a
greater global steepness kpHs/2 = 0.15, yet keeping all other parameters the same as the
main 2-D idealistic case. Figure 9 compares the errors ε(t;A) with A = [0, 2π) from the
EnKF–HOS method and the explicit Kalman filter method. Although both errors decrease
with time, the EnKF–HOS method shows a faster decreasing rate, with ε(100TP;A)
approximately one order of magnitude smaller than that from the explicit Kalman filter
method.

For the 3-D wave field, we use the same initial spectrum S(ω) as in the main 2-D
idealistic case, with a direction spreading function

D(θ) =
⎧⎨
⎩

2
β

cos2
(

π

β
θ

)
, for − β

2
< θ <

β

2
,

0, otherwise,
(3.5)

where β = π/6 is the spreading angle. The (reference, EnKF–HOS and HOS-only)
simulations are conducted with L = 64 × 64 grid points. In the EnKF–HOS method,
N = 100 ensemble members are used, and data from d = 10 locations (randomly selected
with uniform distribution) are assimilated with interval τ = Tp/16.

Figure 10 shows the error ε(t;A) (with A = [0, 2π)× [0, 2π)) obtained from the
EnKF–HOS and HOS-only methods. Similar to the 2-D case, we see that ε(t;A) from
the EnKF–HOS method decreases with time, and becomes several orders of magnitude
smaller than that from the HOS-only method (with the latter increasing with time).
A closer scrutiny for error on a snapshot can be obtained by defining a local spatial error
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Figure 5. Surface elevations ηtrue(x) (◦, blue), ηsim(x) with EnKF–HOS (– – –, red) and HOS-only (—–)
methods, at (a) t/Tp = 5, (b) t/Tp = 50 and (c) t/Tp = 95.

at a time instant t:

e(x; t) = | ηtrue(x, t)− ηsim(x, t) |
ση

. (3.6)

Three snapshots at e(x; t) for t/Tp = 5, 50 and 95 are shown in figure 11, demonstrating
the much smaller error achieved using the EnKF–HOS method especially for large t, i.e.
the superior performance of including DA in the simulation.
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t∗ ε(100Tp;A) with EnKF–HOS

c = 0.0004σ 2
η 150Tp 1.65 × 10−3

c = 0.0025σ 2
η 100Tp 6.21 × 10−3

c = 0.0100σ 2
η 70Tp 7.28 × 10−3

c = 0.0400σ 2
η 40Tp 9.02 × 10−3

Table 1. Values of t∗ in HOS-only method and ε(100Tp;A) in EnKF–HOS method for different values of c.

t/Tp

ε(
t; 

A)

0 20 40 60 80 100

10–3

10–2

10–1

100

Figure 6. Error ε(t;A) with A = [0, 2π) from EnKF–HOS method for τ = Tp/16 (– – –, red), τ = Tp/8 (�,
brown), τ = Tp/4 (◦, magenta) and τ = Tp/2 (—–, blue). Other parameter values are kept the same as the
main 2-D idealistic case.

t/Tp

ε(
t; 

A)

0 20 40 60 80 100

10–3

10–2

10–1

100

Figure 7. Error ε(t;A) with A = [0, 2π) from EnKF–HOS method for N = 20 (�), N = 40 (—–, brown),
N = 70 (◦, blue) and N = 100 (– – –, red). Other parameter values are kept the same as the main 2-D idealistic
case.

3.1.2. Results for realistic cases
We consider ηtrue(x) for the realistic case taken from a subregion R with quarter edge
length of a periodic computational domain W , i.e. a patch in the ocean (see figure 12a).
The reference simulation in W is performed with 256 × 256 grid points, with all other
parameters kept the same as the 3-D idealistic reference simulation. The EnKF–HOS and
HOS-only simulations are conducted over R = [0, 2π)× [0, 2π) with L = 64 × 64 grid
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t/Tp

ε(
t; 

A)

0 20 40 60 80 100

10–3

10–2

10–1

100

Figure 8. Error ε(t;A) with A = [0, 2π) from EnKF–HOS method for d = 1 at x/(2π) =
100/256 (—–, magenta), d = 2 at x/(2π) = 100/256 and 170/256 (– – –, red) and d = 4 at
x/(2π) = 100/256, 135/256, 170/256 and 205/256 (◦, blue). Other parameter values are kept the same as the
main 2-D idealistic case.

0 20 40 60 80 100
10–4

10–3

10–2

10–1

100

t/Tp

ε(
t; 

A)

Figure 9. Error ε(t;A) with A = [0, 2π) from EnKF–HOS method (– – –, red) and the explicit Kalman
filter method by Yoon et al. (2015) (—–, blue).

0 20 40 60 80 100
10–3

10–2

10–1

t/Tp

ε(
t; 

A)

Figure 10. Error ε(t;A) with A = [0, 2π)× [0, 2π) from EnKF–HOS (– – –, red) and HOS-only (—–)
methods, for the 3-D idealistic case.
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Figure 11. Local spatial error e(x; t) obtained with EnKF–HOS (a,c,e) and HOS-only (b,d, f ) methods at
(a,b) t/Tp = 5, (c,d) t/Tp = 50 and (e, f ) t/Tp = 95 for the 3-D idealistic case.

points, starting from initial noisy measurements. For j ≥ 1, We further consider a practical
situation where the measurements are obtained from a marine radar and only available in
Mj = Bc ∩ R, where B = {x|x > π,π/2 < y < 3π/2} (say a structure of interest located
within B preventing the surrounding measurements, see figure 12b). We use d = 2176
(locating on every computational grid point in Mj) and an assimilation interval τ = Tp/4.

In this case, the use of modified EnKF analysis (2.18) is critical due to the interplay
between Mj, Pj and Uj. In particular, the left, upper/lower bounds of P(t)moves (towards
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Figure 12. Schematic illustration of spatial domains: (a) periodic computational domain W for the reference
simulation and subregion R for EnKF–HOS and HOS-only simulations; (b) computational region R with
measurement zone Mj marked by blue, region B = {x|x > π,π/2 < y < 3π/2} with no data available by
yellow, predictable zone Pj by checker board, and unpredictable zone Uj by downward diagonal stripes.

right, down/up), respectively, with speeds cmax
g,x and cmax

g,y , i.e. the maximum group speeds
up in the x and y directions (corresponding to the group speed of mode k = (1, 1)). After
applying the modified EnKF analysis equation (2.18), which takes into consideration of
Mj, Pj and Uj (see a sketch in figure 12b), Pj is recovered to fill in R due to the DA.
In contrast, in the HOS-only method, P(t) ≡ P∗(t) keeps shrinking and vanishes for
sufficient time. We consider two error metrics ε(t;R) and ε(t;P∗(t)), which are plotted in
figure 13 for both EnKF–HOS and HOS-only methods. For HOS-only simulation, ε(t;R)
increases rapidly in time and reaches O(1) at t/Tp ∼ O(3). This is resulted from the
chaotic nature of (2.9) and (2.10), as well as the larger error in U(t). For EnKF–HOS
simulation, ε(t;R) decreases with time and reaches a constant level of O(0.002) after
t/Tp ∼ O(3). The further reduction of the error is prohibited due to the region U(t),
because ε(t;U(t)) has a lower bound from the measurement error. The general trend of
ε(t;P∗(t)) is similar to ε(t;R), but the magnitude of ε(t;P∗(t)) is smaller than that of
ε(t;R) for both methods. In particular, the growth rate of ε(t;P∗(t)) for the HOS-only
method is comparable to those in 2-D/3-D idealistic cases. This is due to the removal of
U(t) from A in the computation of the error.

To further understand the error characteristics, we plot the local spatial error e(x; t)
at t/Tp = 2.875, 4.875 and 7.25 for both methods in figure 14. While the spatial error
generally increases in time for the HOS-only method, e(x; t) from the EnKF–HOS method
is significantly smaller and exhibits a heterogeneous spatial distribution. Within Uj, e(x; t)
is relatively high with the same order of the measurement error. In Pj, e(x; t) decreases
with time and becomes significantly lower than that in Uj. Remarkably, this also applies
to the region where measurements are not available (i.e. Mc ∩ R) as the waves in this
region travel from upstream locations where DA is performed. This result is of practical
importance as it shows that the wave forecast at a location of interest in the ocean (say
the location of an offshore structure) can be made accurate through DA in the upstream
region.

3.2. Results with real radar measurements
In this section, we test the performance of the EnKF–HOS method with real radar
measurements of the ocean wave field. The measurements are obtained from a shipborne
X-band (9.4 GHz) Doppler coherent marine radar off the coast of Southern California.
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t; 
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Figure 13. The error metric ε(t;R) obtained from EnKF–HOS (◦, red) and HOS-only (—–) methods; and
ε(t;P∗(t)) obtained from EnKF–HOS (�, blue) and HOS-only (– – –, magenta) methods, for the 3-D realistic
case.

We consider a patch from the radar-scanned area as our initial domain of interest R0, which
covers a 480 m × 480 m area resolved on a 64 × 64 grid (figure 15). The starting time of
computation is 2013-09-13T01 : 00 : 13Z, with a global wave steepness kpHs/2 = 0.027
from the initial radar data. The direction of waves is determined for each mode (travelling
at its phase speed) by finding the direction which correlates better with two sequential
snapshots of surface elevation (which gives consistent direction for almost all the modes).
In both EnKF–HOS and HOS-only simulations, we rescale the computational domain Rj
to [0, 2π)× [0, 2π) and use L = 64 × 64 grid points. For EnKF, we use d = 64 × 64,
which covers the whole patch, and set the DA interval the same as radar data collection
interval, which fluctuates in time around Tp/4 = 2.82 s. The ensemble size is set to
be N = 100. For adaptive inflation, we use λ̄0 = 1 in the prior distribution of λ0 (see
Appendix A) to sequentially determine λj in (2.15), which is applied at each t = tj together
with the localization (2.16).

A critical issue in this case is the movement of Mj in time due to the ship speed (around
0.2 m s−1), which results in a mismatch between Mj and the computational region Rj−1 at
each t = tj. To address this issue, we shift the computational region from Rj−1 to Rj which
matches Mj. In the EnKF–HOS method, we further partition Rj into Pj and Uj (using the
predictable zone calculated from Rj−1) and apply the modified analysis equation (2.18)
accordingly. In the HOS-only method, we use Fourier periodic extension (Grafakos 2008)
to obtain the wave field covering Rj.

Since the true solution is not available in this case, we directly use ρA(ηm,j, η
sim) (see

(3.4)) as the metric to evaluate the performance. Figure 16 plots ρA(ηm,j, η
sim) with A =

Rj and A = P∗(t) (for which the shrinking speed is still taken as the group speed of
mode k = (1, 1)) obtained from EnKF–HOS and HOS-only methods. While all time series
start from 1 at t = t0, ρRj(ηm,j, η

sim) and ρP∗(t)(ηm,j, η
sim) from the HOS-only simulation

quickly approach O(0.25) and O(0.40) within one peak period Tp, indicating the (almost)
complete loss of the phase information. This is much faster than any synthetic case, mainly
due to the under-resolved physics in (2.9) and (2.10) with respect to the real ocean (which
includes extra physical effects of current, wind, etc.). Furthermore, ρRj(ηm,j, η

sim) from
the HOS-only method is lower in comparison with that reported in Lyzenga et al. (2015)
(approximately 0.5 ∼ 0.75 after 10TP, which we have confirmed using our code). This is
mainly due to the different region used in Lyzenga et al. (2015), which may feature less

918 A19-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.340


G. Wang and Y. Pan

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

x/2π x/2π

y/
2
π

y/
2
π

y/
2
π

(a) (b)

(c) (d)

(e) ( f )

Figure 14. Local spatial error e(x; t) obtained from (a,c,e) EnKF–HOS and (b,d, f ) HOS-only methods for the
3-D realistic case, at (a,b) t/Tp = 2.875, (c,d) t/Tp = 4.875 and (e, f ) t/Tp = 7.25. The regions bounded by
the black dash lines represent P∗(t) with the HOS-only method.

significant effects of current and wind, as well as smaller radar error due to its smaller
distance from the ship. In contrast to results from the HOS-only method, the correlation
ρRj(ηm,j, η

sim) and ρP∗(t)(ηm,j, η
sim) from EnKF–HOS remain at O(0.75) (with the latter

slightly greater than the former), retaining the phase information for arbitrarily long time.
Figure 17 further plots the snapshots of ηm,j(x) and ηsim(x, t) at two cross-sections of
y/(2π) = 1/3 and 2/3 for both methods at three time instants of t/Tp = 1, 5 and 9. It can
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Figure 15. Initial surface elevation ηm,0(x)/Hs (with Hs = 1.70 m) measured by radar at t = t0,
i.e. 2013-09-13T01 : 00 : 13Z.
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Figure 16. Time series of ρRj (ηm,j, η
sim) from EnKF–HOS (– – –, red) and HOS-only (—–) methods; and

ρP∗(t)(ηm,j, η
sim) from EnKF–HOS (◦, blue) and HOS-only (�, brown) methods.

be visually observed that the EnKF–HOS results are (on average) much closer to ηm,j(x)
for all cases.

We finally test the effect of parameter λ̄0 on the performance of EnKF–HOS. In general,
the value of λ̄0 can be considered as a control of the extent to which the inflation is applied.
For larger values of λ̄0, it is expected that the ensemble variance of (2.11) is amplified to
a greater extent, and more weights are assigned to measurements when the analysis (2.18)
is applied. Physically, larger values of λ̄0 may be chosen if the model is associated with
significant under-represented physics (thus severely underestimates the variance in (2.11)).
To elucidate this effect of λ̄0, we test another value of λ̄0 = 2, and compare the resulting
ρRj(ηm,j, η

sim) with that from λ̄0 = 1 in figure 18. Indeed, the result for λ̄0 = 2 shows a
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Figure 17. Snapshots of ηm,j(x) (—◦—, blue) and ηsim(x, t) from EnKF–HOS (– – –, red) and HOS-only
(—–) methods, at two cross-sections (a,c,e) y/(2π) = 1/3 and (b,d, f ) y/(2π) = 2/3, and time instants
(a,b) t/Tp = 1,(c,d) t/Tp = 5 and (e, f ) t/Tp = 9.
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Figure 18. Time series of ρRj (ηm,j, η
sim) with λ̄0 = 1.0 (– – –, red) and λ̄0 = 2.0 (—–, brown).

higher correlation with the measurement, with ρRj above O(0.8) for all time. We note that
the higher value of ρRj does not imply the closeness of ηsim to ηtrue, since the relation
between ηm,j and ηtrue is not known in this case.
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4. Conclusions

In this paper, we develop the ensemble-based DA capability for phase-resolved wave
forecast, resulting in a new EnKF–HOS method. A unique consideration in EnKF–HOS
is the treatment of the interplay between predictable and measurement zones, which is
successfully accounted for through a modified analysis equation. The performance of the
EnKF–HOS method is extensively tested and compared with the (traditional) HOS-only
method using both synthetic wave fields and real radar data. In all cases, significant
advantages are demonstrated by using the EnKF–HOS method, namely the dramatic
reduction of forecast error and retaining the phase information for an arbitrarily long time
with DA of radar data. In contrast, the phase information is lost within one peak period
in the HOS-only method when considering the real ocean waves. The parameters involved
in the EnKF–HOS method are carefully benchmarked, including the ensemble size, DA
interval, number of DA locations and the inflation factor. The developed EnKF–HOS
algorithm is intrinsically parallel and very suitable for implementation on a graphics
processing unit (GPU), a compact device that can be conveniently installed in the offshore
environment (our ongoing work). Finally, the accuracy of the EnKF–HOS method can be
further improved given deeper knowledge about the radar measurement error, which we
recommend as one of the next essential focuses for the remote sensing community.
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Appendix A. Adaptive inflation

We apply the adaptive inflation algorithm developed by Anderson (2007) to determine the
values of λj in (2.15). The algorithm is applied at each t = tj (for j ≥ 1), and we shall drop
the subscript j on other variables in the following description for simplicity.

The key idea in adaptive inflation is to consider λ as an additional state variable and
update its value through Bayes’ theorem given the measurements

p (λ|ηm(x)) ∼ p(λ)p(ηm(x)|λ), (A1)

where p(λ) is the (given) prior distribution and p(ηm(x)|λ) is the likelihood function. In
principle, our purpose is to find the optimal λwhich maximizes the posterior p(λ|ηm(x)) =
p(λ|ηm(1), . . . , ηm(d)). Intuitively, the inflation (2.15) using such an optimal λ provides
sufficient variance of the forecast ensemble to cover the measurements, and thus avoid the
overconfidence in the forecast when analysis is performed.

By assuming independent measurement errors, it can be shown that the full
Bayes’ problem (A1) is equivalent to the sequential problem (which saves significant
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computational cost, see Anderson (2007) for details)

p (λ|ηm(1)) = p (ηm(1)|λ) p (λ) /Z1, (A2)

p (λ|ηm(1), ηm(2), . . . , ηm(i)) = p (ηm(i)|λ) p (λ|ηm(1), ηm(2), . . . , ηm(i − 1)) /Zi,
(A3)

where (A3) is applied sequentially for i = 2, . . . , d, and Zi are the normalization factors
(which do not play a role in the computation).

In computing (A2) and (A3), we use a Gaussian prior distribution,

p(λ) = N (λ̄0, σ
2
0 ), (A4)

with mean λ̄0 and variance σ 2
0 (say λ̄0 = 1 and σ 2

0 = cλ̄2
0/H

2
s at j = 1, with the situation

of j > 1 discussed at the end of Appendix A). The key computations in (A2) and (A3) are
the likelihood functions p(ηm(i)|λ) for i = 1, 2, . . . , d, which will be discussed below.

Given a value of λ, a member in the forecast ensemble at measurement location i
is denoted by [Gη(n),inf

f ](i) with η(n),inf
f given by (2.15). This ensemble is assumed to

have a Gaussian distribution consistent with the EnKF framework, with mean [Gη̄f ](i)
and variance σf (i)2 = λ[GQηGT](i, i) (note that only σf (i)2 is affected by the inflation).
Let D = ηm(i)− [Gη̄f ](i) be the distance between the mean forecast and measurement at
location i, which is drawn from a zero-mean Gaussian random variable D with variance
θ2

i = σf (i)2 + Rη(i, i) (here we consider the summation of two independent Gaussian
random variables and assume that both the measurement and forecast are unbiased). It
follows that

p (ηm(i)|λ) = p (D = D|λ) = 1√
2πθi

exp

(
−D2

2θ2
i

)
. (A5)

Therefore, the posterior distribution in each equation of (A2) and (A3) can be formulated
as

p (λ|ηm(1), . . . , ηm(i)) = 1
2πθiσi−1

exp

(
− D2

2θ2
i

− (λ− λ̄i−1)
2

2σ 2
i−1

)/
Zi. (A6)

The formulation (and sequential computation) of (A6) for i = 1, 2, . . . , d require each
posterior p(λ|ηm(1), . . . , ηm(i)) in (A2) and (A3) (and thus the prior for the next
sequential equation) to be approximated by Gaussian distribution G(λ) ∼ N (λ̄i, σ

2
i ).

We follow Anderson (2007) to set the λ̄i as the mode of p(λ|ηm(1), . . . , ηm(i)), and
compute σi by considering Γ = p(λ̄i|ηm(1), . . . , ηm(i))/p(λ̄i + σi|ηm(1), . . . , ηm(i)) =
G(λ̄i)/G(λ̄i + σi), i.e. the same decay rate of the distribution, which gives σ 2

i =
−(σ 2

i−1/2) lnΓ .
Finally, we use λ = λ̄d in (2.15) for inflation at t = tj, and set N (λ̄d, σ

2
d ) computed at

time t = tj as the prior p(λ) at t = tj+1. The computations of (A2) and (A3) are repeated,
which completes the full algorithm to determine λ by adaptive inflation at each tj.
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Figure 19. Gaspari–Cohn correlation function µ(r) used in the localization.

Appendix B. Gaspari–Cohn function

The local-correlation function µ in the localization equation (2.16) is defined as the
Gaspari–Cohn function (Gaspari & Cohn 1999), given by

[µ]ij =

⎧⎪⎨
⎪⎩

1 − 5
3 r2 + 5

8 r3 + 1
2 r4 − 1

4 r5, for 0 ≤ r < 1,
4 − 5r + 5

3 r2 + 5
8 r3 − 1

2 r4 + 1
12 r5 − 2

3r , for 1 ≤ r < 2,
0, for r ≥ 2,

(B1)

where r = |xi − xj|/(
√

3a/2), with a taking the same value as in (2.3). A plot of µ(r) is
provided in figure 19.
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