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Abstract. In this paper, we improve results of Gillot, Kumar and Moreno to
estimate some exponential sums by means of q-degrees. The method consists in
applying suitable elementary transformations to see an exponential sum over a finite
field as an exponential sum over a product of subfields in order to apply Deligne bound.
In particular, we obtain new results on the spectral amplitude of some monomials.

1. Introduction. Exponential sums and bounds for them are exploited by coding
theorists and communications engineers [15]. The minimal distance of dual BCH
and other cyclic codes can be evaluated in terms of exponential sums. They are also
useful in the study of sequences with small correlations for spread-spectrum and other
communication applications. In both cases, the estimation of exponential sums is
often a key point for the construction of a good code. In this paper, we focus on the
estimation of exponential sums over finite fields for some polynomials. First, we begin
introducing the tools and known results about spectral amplitude. Then, we generalise
results of Kumar and Moreno [10] over spectral amplitude of some monomials in odd
characteristics. We define the q-degree and the principle of multivariate point of view
to be able to apply the results of Deligne [4] for exponential sums over a product of
finite fields. Thus, we obtain a bound in terms of q-degree generalising the result of
Gillot [6].

2. Spectral Amplitude. All along the paper, L denotes an extension of degree
m of a finite field K of order q and characteristic p. The Fourier coefficient of a
polynomial f (X) ∈ L[X ] at a ∈ L is by definition equal to the value of the exponential
sum:

f̂ (a) =
∑
x∈L

μL
(
f (x) + ax

)
, (1)

where μL denotes the canonical additive character of L. The maximal value that
can take the absolute value of the Fourier coefficients is often called the spectral
amplitude of f ; we will use the notation RL(f ) = maxa∈L |f̂ (a)|. A very difficult
question coming from coding theory and cryptography consists in finding polynomials
having a small spectral amplitude. If the degree, say d, of f is not divisible by
p, then the spectral amplitude of f is upper-bounded by the Carlitz-Uchiyama
bound:

RL(f ) ≤ (d − 1)
√

qm. (2)
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For each a ∈ L, applying Weil theorem to the Artin–Schreier curve y p − y = f (x) +
ax of genus g = (p−1)(d−1)

2 , there exists 2g Weil numbers ωi of absolute value
√

qm such
that Fourier coefficient of f at a in a finite extension Lr of degree r of L is given by

∑
x∈Lr

μLr

(
f (x) + ax

) = −
2g∑

i=1

ωr
i .

It follows that the bound (2) is optimal in the sense that, when a ∈ L and f (X) ∈ L[X ]
are fixed, there exists an infinite sequence of finite extensions (Lk)k∈� of the field L of
increasing degree rk such that

∣∣∣∣∣
∑
x∈Lk

μLk

(
f (x) + ax

)
∣∣∣∣∣ ∼ RLk (f ) ∼ (d − 1)

√
qmrk .

On an other side, the Parseval relation

∑
b∈L

|f̂ (b)|2 = q2m, (3)

implies that
√

qm ≤ RL(f ). There exists polynomials of spectral amplitude
√

qm, they
define generalised bent functions, see for example [11]. For remark that only a very
small number of bent functions of monomial form are known, see [7]. Moreover, if
p = 2, then for all f ∈ L[X ] is fixed

max
b∈L×

RL(b f ) ≥
√

2qm.

This fact proved by Chabaud and Vaudenay [3] is remarked as a consequence of
Sidel’nikov bound in [13]. It is not true in odd characteristic as we will see in the
next section. The goal of this paper consists in giving an upper-bound on the spectral
amplitude of monomial (i.e. polynomial of the form bxd with b ∈ L×). More precisely,
denoting by S(a, b, d) the exponential sum

∑
x∈L μL(bxd + ax), we will present a new

upper-bound on

max
b∈L×

RL(bxd) = max
a∈L

max
b∈L×

∣∣S(a, b, d)
∣∣.

If δ denotes the gcd of d and qm − 1, then by an averaging argument one can easily
prove

√
(δ − 1)qm ≤ max

b∈L×

∣∣S(0, b, d)
∣∣ ≤ max

a∈L
max
b∈L×

∣∣S(a, b, d)
∣∣.

Several authors, such as Vinogradov, Davenport and Heilbronn, Hardy and
Littlewood, Hua and Vandiver, Akulinicev, Karatsuba and Carlitz, have given general
estimations on the magnitude of trigonometric sums involving binomials [12]. The
exponential sum S(0, b, d) is a Gauss sum and

∀b ∈ L×,
∣∣S(0, b, d)

∣∣ ≤ (δ − 1)
√

qm.
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In the paper Lachaud [12] generalises the inequality of Akulinicev to obtain the bound

∀a ∈ L, ∀b ∈ L×,
∣∣S(a, b, d)

∣∣ ≤ qm

√
δ
.

It is easy to verify that the fourth power moment method, used by Karatsuba [8]
in the case of a prime field, works on the extension fields as well, leading to the
estimation

∀b ∈ L×, ∀a ∈ L×,
∣∣S(a, b, d)

∣∣ ≤ (d − 1)
1
4 q

3
4 m

3. q-degree. All the previous bounds do not take in consideration an important
parameter that we will call the q-degree. Before giving a definition, let us analyse a
paradigm example to introduce this notion. It is the case where p is odd and d = 1 + qr.
The function Qb : x 	→ TrL/K (bxd) is nothing but a quadratic form whose bi-linear
associate form φb is given by

φb(x, y) = Qb(x + y) − Qb(x) − Qb(y)

= TrL/K
(
b(x + y)d − bxd − byd)

= TrL/K
(
bxyqr + bxqr

y
)
.

The general theory of quadratic forms tells us that the spectral amplitude of Qb takes
the form q(m+κ(b))/2, where κ(b) denotes the dimension of the radical of the K-space
L with respect to the bi-linear form φb (i.e. the space defined by Vb = {x ∈ L | ∀y ∈
L, φb(x, y) = 0}). In this precise case

φb(x, y) = TrL/K
(
(bx + bqr

xq2r
)yqr)

,

because the bi-linear form (x, y) 	→ TrL/K (xy) is non-degenerative, and the kernel of
Qb corresponds to the set of solutions of the linear equation

bx + bqr
xq2r = 0. (4)

Assuming b �= 0, the non-zero solutions are also the solutions for the equation
xq2r−1 = −b1−qr

in the multiplicative group of L. By the Euclidean algorithm, we
know that gcd(q2r − 1, qm − 1) = q� − 1, where � = gcd(2r, m). If there exists a pair
(x, b) ∈ L× × L× satisfying (4), then κ(b) = � and thus

max
b∈L×

RL(bxd) = q
m+�

2 .

The existence of a solution in (4) is equivalent to the fact that −1 is in the product of
two groups (L×)q2r−1 of order qm−1

q�−1 , and (L×)qr−1 of order qm−1
q�′−1

with �′ = gcd(r, m).
This product of cyclic groups has order qm−1

q�−1 × q�−1
q�′−1

, which is an odd number if and

only if both m
�

and �
�′ are odd. This case is equivalent to say −1, which is not in

the product, and thus, all the quadratic forms Qb are non-degenerative, we conclude
RL(bxd) = q

m
2 .
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PROPOSITION 3.1. Let q be odd, and let d = 1 + qr. If the dyadic valuation of r is
greater or equal to the dyadic valuation of m, then

∀b ∈ L×, RL(bxd) = q
m
2 .

Otherwise

max
b∈L×

RL(bxd) = q
m+�

2 ,

where � = gcd(2r, m).

Proof. Indeed, let us write r = 2ar′ and m = 2bm′, where m′ and r′ are odd integers,
so that

� = 2min(b,a+1) gcd(r′, m′) and �′ = 2min(b,a) gcd(r′, m′).

Whence the dyadic valuation of m
�

is equal to b − min(b, a + 1) and those of �
�′ is equal

to min(b, a + 1) − min(b, a). These valuations are equal to 0 if and only if a ≥ b. �
The above proposition generalises the result obtained by Kumar and Moreno in

the Section II of [10]. As there, it could be possible to give a complete description of
the Fourier coefficient distribution by means of quadratic Gauss sums.

By definition the q-ary weight of a positive integer d < qm, denoted by wtq(d),
is equal to sums of the digits d0 + d1 + d2 + · · · + dm−1 of the q-ary expansion of
d = d0 + d1q1 + d2q2 + · · · + dm−1qm−1. The q-degree of a polynomial f is defined as
the integer

degq(f ) = max
d∈supp (f )

{wtq(d)},

where supp (f ) = {i | ai �= 0} is the support of f (x) = ∑
i aixi. As we will see in the next

section, the q-degree of f is nothing but the degree of a certain polynomial F in several
variables, this is the explanation of the terminology q-degree used in the title.

4. Multivariate point of view. The principle of the multivariate method detailed
in [6, 10], applied to a single-variable polynomial f (X) ∈ L[X ], consists in transforming
the exponential sum

S(f, L) =
∑
x∈L

μL
(
f (x)

)
(5)

in an exponential involving several variables. This is done by choosing an arbitrary
basis {β1, β2, . . . , βm} of L over K .

S(f, L) =
∑

x1,x2,...,xm∈K

μL
(
f (x1β1 + · · · + xmβm)

)

=
∑

x1,x2,...,xm∈K

μK
(
F(x1, x2, . . . , xm)

)

= S(F, Km),
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where μK is the canonical additive character of K and F is the multivariate polynomial
associate to f . The polynomial F is obtained by reduction modulo the ideal I =
(Xq

1 − X1, . . . , Xq
m − Xm) of the partial development of the trace operator

F(x1, . . . , xm) = TrL/K
(
f (x1β1 + · · · + xmβm)

)
mod I. (6)

We use the Deligne bound, stated in [4], to evaluate S(F, Km).

THEOREM 4.1. Let Q be a polynomial in n variables with degree d over K. Let Qd

be the homogeneous part of degree d of Q. Let ψ : K → �∗ be a non-trivial additive
character over K. Assume that

(i) d is prime to the characteristic of K;
(ii) the homogeneous part Qd defines a smooth hypersurface H0 in �n−1(K).

Then
∣∣∣∣∣∣

∑
x1,...,xn∈K

ψ(Q(x1, . . . , xn))

∣∣∣∣∣∣
≤ (d − 1)nqn/2. (7)

In most of the cases the homogeneous part of higher degree of F rises from the
exponents with greatest q-ary weight in the support of f . Of course, the degree of F is
nothing but the q-degree of the polynomial f . In order to study the singularities of the
hypersurface defined by F , we substitute x1β

qi−1

1 + · · · + xmβ
qi−1

m by yi in F to obtain an
other multivariate polynomial

φ(y1, . . . , ym) = F(x1, . . . , xm). (8)

According to

∂F
∂xj

(x1, . . . , xm) =
m∑

i=1

∂φ

∂yi
(y1, . . . , ym) × ∂yi

∂xj
(9)

and noting that the previous transformation is invertible, explicitly xi = λiy1 +
λ

q
i y2 + · · · + λ

qm−1

i ym, where (λi)1≤i≤m is the trace-dual basis of (βi)1≤i≤m (i.e.
TrL/K (βiλj) = δij (the Kronecker symbol), the study of singularities of F is reduced
to those of φ.

In [6], a bound for S(f, L) in terms of the q-ary weight for specific cases of degree
of f is given, let us state this result with our notations in the following theorem:

THEOREM 4.2. Let f be a one-variable polynomial defined over L, such that f (x) =
bxd + g(x), where d is the only exponent in the support of f with q-ary weight equal to
degq(f ). Assume that d = 1 + drqr with (p, dr) �= 1, then

|S(f, L)| ≤ (
wtq(d) − 1

)mqm/2.

Proof. See [6]. �

5. A new exponential sum bound. In this section, the study of singularities of
φ(y1, . . . , ym) lead us to the characterisation of the exponents for which the multivariate
method applies, generalising Theorem 4.2.
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LEMMA 5.1. Let φ be the transformed polynomial associated to a monomial f (x) =
bxd. If d has more than two digits in its q-ary expansion or if d = dkqk + dlql with dk �= 1
and dl �= 1, then φ is singular.

Proof. For a monomial f (x) = bxd of degree d = d0 + d1q + · · · + dm−1qm−1, we
have

F(x1, . . . , xm) =
m∑

k=1

bqk−1(
x1β

qk−1

1 + · · · + xmβqk−1

m

)d
,

φ(y1, . . . , ym) =
m∑

k=1

bqk−1
yd0

k yd1
k+1 . . . ydm−1

k+m−1,

where the indexes are calculated by modulo m. In both cases (1 : 0 . . . : 0) is a singular
point of φ. �

LEMMA 5.2. Let φ be the transformed polynomial of f (x) = bxd. Assume that r
and m are co-prime, d = d0 + drqr with d0 = 1 or dr = 1. Then all the components of
singularity of φ are different from zero.

Proof. For d = d0 + drqr, from now let d0 = 1 (the result remains true for the
symmetric case dr = 1) to obtain φ(y1, . . . , ym) = ∑m

i=1 bqi−1
yiy

dr
i+r and

∂φ

∂yj
(y1, . . . , ym) = bqj−1

ydr
j+r + drbqj−1−r

yj−ry
dr−1
j .

Assume that P is a singularity of φ with yj = 0. Replacing yj by 0 in the partial derivative
∂φ

∂yj
(P), we obtain yj+r = 0. Now replacing yj+r by 0 in the partial derivative ∂φ

∂yj+r
(P),

we obtain yj+2r = 0. While reiterating the method, we obtain that the components
of P are null for the positions {j, j + r, j + 2r, j + 3r, . . . , j + kr}. For (m, r) = 1, the
smallest k such that kr = 0 mod m, is m, thus P has m components equal to zero. A
contradiction is obtained and a singularity of φ cannot have a component equal to
zero. �

LEMMA 5.3. For an integer d of the form d = d0 + drqr and for any b ∈ L×, we have

TrL/K (bxd) = 0

for any x ∈ L if and only if r = m/2, d0 = dr and TrL/�qr (b) = 0.

Proof. See [6]. �
THEOREM 5.1. Let f (x) = bxd + g(x) ∈ L[x] be a polynomial such that for any

b ∈ L× the q-degree of f only depends on the term bxd that is degq(f ) = wtq(d) > degq(g).
If

(i) the q-ary expansion of d has only two digits d = d0 + drqr with d0 = 1 or dr = 1,
where r is any integer coprime to m, and

(ii) dm
0 �= (−1)mdm

r mod p,
then

|S(f, L)| ≤ (
wtq(d) − 1

)mqm/2.
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Proof. Let F(x1, . . . , xm) be the transformed (6) polynomial of f (x) = bxd + g(x).
If d = d0 + drqr and (m, r) = 1, then, according to Lemma 5.3, the term TrL/K (bxd) is
not equal to zero. In the particular case m = 2, the assumption (5.1) of the theorem
also gives TrL/K (bxd) �= 0. In both cases, the homogeneous part of higher degree of the
transformed polynomial F , say Fd , only depends on the term bxd , since the q-degree
of f is wtq(d), its degree is wtq(d) = d0 + dr.

On the other hand, we can associate to Fd , the polynomial φ, as in (8). Lemma 5.1
gives us the restriction on the case where the exponent d has only two digits in its q-ary
expansion. Note that dkqk + drqr = qk(dk + drqr−k), after the reduction in (9), we just
have to study integers of the form d0 + drqr, with d0 = 1 or dr = 1.

The homogeneous polynomial Fd satisfies the condition (i) of Deligne theorem
since the second assumption implies that wtq(d) is prime to the field characteristic p.
Using the simple form of d = d0 + drqr,

φ(y1, . . . , ym) =
m∑

k=1

bqk−1
yd0

k ydr
k+r.

Since the degree of the homogeneous form of φ is prime to the characteristic of L,
the singularities of φ correspond exactly to the non-zero solutions of partial derivative
system

∂φ

∂yi
(y1, . . . , ym) = 0, ∀i, 1 ≤ i ≤ m. (10)

According to Lemma 5.2, we may assume that for all i, yi �= 0. Multiplying the ith
equation by yi, we obtain a new system

yi
∂φ

∂yi
(y1, . . . , ym) = d0bqi−1

yd0
i ydr

i+r + drbqi−r−1
yd0

i−ry
dr
i = 0,

∀i, 1 ≤ i ≤ m. (11)

Changing yd0
i ydr

i+r by zi, we obtain

yi
∂φ

∂yi
(y1, . . . , ym) = d0bqi−1

zi + drbqi−r−1
zi−r = 0,

∀i, 1 ≤ i ≤ m. (12)

The matrix of this system is

(bqj−1
di−j)1≤i,j≤m with di−j =

⎧⎪⎨
⎪⎩

d0 if i = j,
dr if i − j = r,
0 otherwise.

Up to the norm factor
∏m

j=1 bqj−1
, the determinant of the previous matrix is

∏
ζ m=1

(d0 + drζ
r).

If (−d0/dr) is not a m-th root of unity modulo p, the system (12) has only one solution
(0, . . . , 0). According to Lemma 5.2 this solution is not admissible since the singularity
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Figure 1. The value of 1
q maxb∈L× RL(bxd), where L has order q2 and q ≤ 100.

of φ cannot have a null component. Thus, under the conditions of the theorem, the solu-
tion of (10) is trivial and φ is always smooth. Theorem 4.1 can be applied to the poly-
nomial F of degree wtq(d) = d0 + dr to obtain the bound in terms of the q-degree of f :

|S(f, L)| = |S(F, Km)| ≤ (
d0 + dr − 1

)mqm/2.

�
6. Numerical results and final remarks. If we apply Theorem 5.1 in the case of

q-degree equal to 2, we recovered the theorem given Kumar and Moreno [10], but this
is also a consequence of Proposition 3.1. In particular, the bound is optimal.

In order to check the interest of the bound given in Theorem 5.1 in the case
q-degree equals to 3, we computed the true spectral amplitude of all the monomials
bxd over a quadratic extension for the finite field of odd order q ≤ 100 with degree
d = 2 + q. Note that (d, q2 − 1) = 1 or 3 according to q ≡ 2 mod 3 or q ≡ 1 mod 3,
in particular S(0, b, d) ≤ 2q. For a such d, the conditions of the main theorem are
fulfilled if and only if (p, 3) = 1, and in that case our bound claims

1
q

max
b∈L×

RL(bxd) ≤ 4. (13)

The values are plotted in the graphic of Figure 1.. The numerical experiments show
that the bound seems very good for all q ≡ 2 mod 3 but two times too large in the
case q �≡ 2 mod 3. This last point is a probable consequence of the cancellation of
Weil numbers. It is interesting to note that these exponential sums can be described by
means of the norm NL/K from L onto K ,

∑
x∈L

μL(ax + bxNL/K (x)). (14)
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As it has been pointed out by Katz, one can use a trick of Deligne [5] (4.5 of Sommes
trig.) to reduce to the split case in which L is no longer the quadratic extension of
K , rather it is the product K × K , with trace function (x, y) 	→ x + y, and the norm
(x, y) 	→ N((x, y)) = xy. In an appropriate extension field E the sum (14) becomes

∑
x,y∈E

μE(a(x + y) + b(x + y)xy),

and again Deligne’s theorem applies as soon as p �= 3 to show that the sum depends on
four Weil numbers. Using a remark by Blache, one can avoid Deligne result to estimate
the above sum, in the case [L : K ] = 2, as follows. Let N be an non-quadratic residue of
K , and let ω ∈ L such that ω2 = N. Using the basis {1, ω} to decompose a = u + ωv,
b = s + ωt and the elements of L as x + ωy, we have

TrL/K ((u + ωv)(x + ωy)) = 2ux − 2Nvy,

TrL/K ((s + ωt)(x + ωy)q+2) = 2(sx − Nty)(x2 − Ny2).

In particular, denoting by ψ the composition of the character μK by the multiplication
by 2,

S(a, 1, q + 2) =
∑

x,y∈K

ψ(ux − vNy + x3 − Nxy2)

=
∑
x∈K

ψ(x3 + ux)
∑
y∈K

ψ(−vNy − Nxy2).

Using a classical result on character sum with quadratic argument (see [14] Theorem
5.33), we can express the inner sum in terms of a quadratic Gauss sum GK (ψ, ν)
involving the quadratic character of K

= GK (ν, ψ)ν(−N)
∑

x∈K×
ψ(x3 + ux + Nv2

4x
)ν(x) + qδ0(v).

Since the last hybrid sum is a sum of 3 or 4 Weil’s numbers, according to whether v = 0
or not, we get the previous estimation (13). All the other sums S(a, b, d) are estimated
in a similar way.

Numerically, the case q ≡ 0 mod 3 and q ≡ 1 mod 3 seem very similar, and it
will be nice to know when and how to avoid the technical hypothesis (ii) of Theorem
5.1 to obtain a more general bound independent of the characteristic of p. Similar
transformations using the works of Adolphson and Sperber [1] are probably a way to
get answers, but we reserve this approach for future researches.
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