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Abstract

This paper considers the estimation and filtering of fractional random fields, of which fractional Brownian
motion and fractional Riesz-Bessel motion are important special cases. A least-squares solution to the
problem is derived by using the duality theory and covariance factorisation of fractional generalised
random fields. The minimum fractional duality order of the information random field leads to the most
general class of solutions corresponding to the largest function space where the output random field
can be approximated. The second-order properties that define the class of random fields for which the
least-squares linear estimation problem is solved in a weak-sense are also investigated in terms of the
covariance spectrum of the information random field.
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1. Introduction

Let the second-order ordinary random field {^(z) : z 6 T c Rd] be the output of a
linear system, defined in terms of the linear operator A, with random input 5?. That is,

(1.1) <3f(z) = AS?(z), VzeTC Rd.

The ordinary estimation problem considered here consists of calculating the least-
squares linear estimate of ̂ ( z ) , for each z € T, from the information provided by the
following observation model:

(1.2) JT(x) = S>(x) + JT(x), x € Tx C T,
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[2] Fractional generalised random fields 337

where J/ is a zero-mean additive noise. The covariance function Bx (x, y) =
E[3£(x)3£(y)],forx, y 6 Tx, as well as the cross-covariance function Bx&(x, z) =
/ (x , z) = £[^T(x)^(z)], for x € Tx and z 6 7\ are assumed to be known. From
the Orthogonal Projection Theorem, for each z e T , the least-squares linear estimate
K3£{z) of3/(z), based on the information provided by X in (1.2), is defined as

(1.3) m$) = K&iz) := f k(z,

where k(z, •) is the solution to the following system:

- KSC(z)) St{x)\ = 0

(1.4) <=> B9X(z,x) = KBx(z,x) = I k{z,y)Bx{y,x)dy, V x e ^ .
JTX

In applications A is known, since it defines the equation of the system studied.
Hence, the cross-covariance function between <& and 5£ can be calculated in terms
of the cross-covariance function between the signal 5? and the information random
field SC'. Furthermore, in the case where A is the identity operator, the above estimation
problem is a filtering problem, and in the case where A is a shift operator, we have an
extrapolation problem.

For each z e T, the solution k(z, •) to (1.4) usually is not in L2{JX) and therefore,
regularisation methods must be applied to solve such an equation.

A solution of the estimation problem for a general class of random fields X
whose covariance operators Rx are rational functions of positive polynomials of a
self-adjoint elliptic differential operator j£? of integer order on L2 (Kd) was detailed in
Ramm[20] (seealsoRamm[21]). A covariance operator R# in this class is defined as

Rx (f )(x) = P(Sf) Q-1 (ST)(f)(x) = f Bx (x, y)/ (y) dy

(1.5) =f \f

for every function / in the domain of Rx. Here A, dp, <!>(•, •, •) are respectively
the spectrum, the spectral measure and the spectral kernel of a self-adjoint elliptic
differential operator J£? on L2{W) of integer order s, and P() and Q() are positive
polynomials of degrees p and q, respectively. The polynomials P and Q are assumed
to satisfy the conditions

(1.6) 0 < c, < P(k) (1 + \k\2y"2 <c2, 0 < c3 < Q(k) (1 + \k\2Yql2 < c4.

This class of non-homogeneous random fields covers, as special cases, many well-
known classes in the theory of linear filtering.
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Recent advances in stochastic analysis have added a new dimension to the problem,
namely, filtering of fractal processes. These processes arise in many applications in
turbulence, geostatistics, hydrology, image compression, biological systems, financial
modelling, etc. (see, for example, Farge et al. [13], Barnsley and Hurd [7], Beran
[8], Peters [19], Frisch [14], Barabasi and Stanley [6], Innacone and Khokha [16],
Falconer [12], Anh and Heyde [3]). Two fundamental examples of fractal processes
are fractional Brownian motion (fBm), which is characterised by a spectral density of
the form

c IA.I2

(1-7) / ( X ) d

and fractional Riesz-Bessel motion (fRBm), which is characterised by a spectral
density of the form

(see Mandelbrot and Van Ness [18], Anh et al. [4], Anh et al. [1]). The component
\X\~lY with 1 < y < 3/2 models the long-range dependence of the process, while the
component (1 + |A|2)~° with or > 0 models its second-order intermittency (Anh et
al. [2]). Noting that the exponents a and y in (1.4) and (1.5) are real numbers, it is
seen that the filtering problem for fractals must be solved in the framework of Sobolev
spaces of fractional order.

In this paper, we develop a theory for estimation and filtering of a general class of
fractional generalised random fields (FGRF), of which fBm and fRBm are important
examples. The needed tools including the duality theory and covariance factorisation
of FGRFs have been obtained in Ruiz-Medina et al. [23].

Apart from offering a suitable framework for extending existing results to fractals,
the consideration of FGRFs in an estimation theory has two important advantages:
The second-order regularity properties of the random fields involved in the estimation
problem refer to a continuous scale given by the orders of the fractional Sobolev
spaces where an FGRF can be defined. The other advantage is that the duality
condition relative to a fractional Sobolev space (see Ruiz-Medina et al. [23] for the
fractional case; Anh et al. [5] for the integer case) allows us to specify the function
space where the weak-sense solution to the estimation problem is found and where
the observation of the information random field must be considered.

We first consider the fractional weak-sense interpretation of the initial equation
which represents the relationship between the input and output random fields. The
observations provided by the information random field are collected by means of
test functions in a fractional Sobolev space according to its second-order regularity
properties. The weak-sense least-squares linear estimation of the output random field

https://doi.org/10.1017/S1446788700002500 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002500
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is then calculated as the solution with minimum fractional singularity order to the
fractional generalised version of the Wiener-Hopf equation in the reproducing kernel
Hilbert space (RKHS) of the fractional dual of the information random field. The
class of random fields for which the estimation problem is solved in a weak sense
is characterised through the properties of the spectrum of the covariance operator
of the information random field. An important case is the class of random fields
whose covariance operator is a rational function of positive fractional polynomials of
a self-adjoint elliptic differential operator of fractional order on L2(T), T c Rd. This
special case provides an extension of Ramm's estimation theory.

2. Preliminaries

In this section we introduce some definitions and results from the theory of fractional
generalised random fields developed in Ruiz-Medina et al. [23]. The second-order
regularity properties of a fractional generalised random field are studied in terms of the
regularity properties of the functions belonging to an appropriate fractional Sobolev
space via the RKHS theory. We first consider the basic definitions of function spaces
with fractional Sobolev norms.

Let Qf(Rd) be the space of infinitely differentiable functions with compact support
contained in 0^, and let S^iW) be the space of C°°-functions with rapid decay at
infinity. The duals of these spaces are respectively known as the space of distributions,
[C^(Rd)]\ and the space of tempered distributions, y'(W). The relationship between
them is given by the following inclusions:

(2.1) C£° (Rd) c y (Rd) c y (Rrf) c [Co°° (Rrf)]'.

Similarly, C~(T), with T c W, represents the space of infinitely differentiable
functions with compact support contained in T, and [ C~ (T) ]' the space of distributions
on T. In relation to these spaces the following concepts are fundamental.

DEFINITION 2.1 (Dautray and Lions [10, pages 474-475]). Restriction of a distri-
bution to an open set. Consider two open sets T and T of Rd, with T C 7", and let
F be a distribution on T'. The restriction FT of F to T is defined as follows: For all
<P e

(2.2)

where ip is the extension by 0 of <p to T.
Support of a distribution. Let F be a distribution on T, with T C Rd. The support

of F, denoted by supp F, is the complement of the largest open set 5 of T such that
the restriction of F to 5 is null.
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The continuous scale of fractional Sobolev spaces is introduced in terms of Bessel
potentials \J_S = (/ — A)~s/2 : s e R}, with / representing the identity operator
and —A being the negative Laplacian operator (see Stein [25]). The order s of such
potentials provides information about the regularity properties of the functions in these
spaces through the Fourier transform.

DEFINITION 2.2. For s e R, Hs(Rd) is the space of tempered distributions u such

that

\\& } , A fc: Û  ,

where * stands for the Fourier transform. In this space the following inner product is
considered:

(K ,V) ,= I (l + \k\2)su(k)v(k)dk,

with associated norm a \ 1/2

}K> )

REMARK 2.1. For s{ > s2 > 0, the following inclusions hold:

C£° (Rd) c 3* (Rd) c Hs> (Rd) c HS1 (Rd) c H° (Rd)

= L2 (Rd) C H~n (Rd) c H~s> (Rd) C y (Rd) C

For s eR, Hs(Rd) and H~s(Rd) are dual Hilbert spaces.

From the above definitions the following fractional Sobolev spaces on a bounded
C°°-domain T C Rd are introduced:

DEFINITION 2.3 (Triebel [26, page 310]). For s e R, HS(T) is the restriction to T
of Hs{Rd). That is,

H\T) = {/ e [C~(T)]' :3F eHs (Rd) such that/ = FT\,

where FT denotes the restriction of F to T. With the quotient norm

tf S(T) is a Hilbert space.
The space HS(T) represents the set of functions in Hs(Rd) with support contained

in T. That is,

Hs(T) = {u€ Hs (Rd) : supp u c f} =
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For s € OS, the spaces HS(T) and H~S(T) are dual Hilbert spaces. Furthermore,

HS(T) = Hs(Rd)/Hs(K" \ T)

(see Triebel [26, page 317]).

REMARK 2.2. Note that the dual space of HS(T), that is, the space H~S(J), for
s 6 1 + , is algebraically and topologically equivalent to the space S2s(Hs(T)) =
(I-A)S(HS(T)), with operator J*,, defined on domain T. The dual space of H~S(T),
that is, HS(T), s e R+, is also obtained as S-2s(H-s(T)) = (I - A)-S(H~S(T)).

From Sobolev's Embedding Theorem (see, for example, Dautray and Lions [10]),
the functions in the Sobolev space HS(T) with [s]~ > d/2, where [•]" represents
the integer part function, are continuous, and the dual space H~S(T) consists of
distributions with compact support and order [5 — d/2]~ (see Schwartz [24, page 26]).

In the following development we denote by U the space C%°(T) with the topology
defined as the intersection of the topologies associated with the Sobolev spaces of
fractional order [H"(T) : a € Q}. The space U is a countably Hilbert space. We
denote by Ua and Va the dual fractional Sobolev spaces Ha(T) and H~a{T), with
a e Q, respectively (see, for example, Triebel [26]; Dautray and Lions [10]).

Let J£?2(£2, £?, P) be the Hilbert space of real-valued zero-mean random variables
defined on the basic probability space (ft, £?, P) with finite second-order moments
and with the inner product

(2.3) (X, Y)srm = E[XY], X,Ye X\Q, sf, P).

DEFINITION 2.4. For a e Q, a random function Xa (-)from Ua into L2 (ft, A, P) is
said to be an or-generalised random field (a-GRF) if it is linear and continuous in the
mean-square sense with respect to the Ua -topology.

For a continuous linear random function X from C™(T) into J^2(fi, srf, P), that
is, for a generalised random field (GRF) X in the sense of Rozanov [22], there
always exists a continuous extension to the space Ua, for some a 6 Q (see Gel'fand
and Vilenkin [15, page 74]). Therefore, jointly with the definition of a GRF X, a
fractional a-GRF Xa is considered, for some a e Q. We refer to the minimum order
for which such an extension exists as the minimum fractional singularity order (or the
maximum fractional regularity order) of X.

REMARK 2.3. Note that the minimum fractional singularity order a of an ordinary
random field 3£ is non positive and provides information about the regularity order
of its covariance function Bx. Such an order determines the function space where
X is mean-square integrable, or equivalently where its covariance operator R% can
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be defined. Thus, if an ordinary random field S£ has minimum fractional singularity
order a, then

(2.4) (Rx(f),f) = f j Bx(z,y)f(y)f(z)dydz < oo, V/ e H"{T).

Since a < 0, the function/ in (2.4) is a distribution and such an equation makes sense
only when Bx belongs to the space of test functions H~a(T) where the distributions
of Ha(T) are defined. Thus, the regularity order —a of the mentioned test functions
compensates the singularity order a of the corresponding distributions. Moreover, in
the case where [—a]~ > d/2, the covariance function B& of X is continuous and,
therefore, the ordinary random field 3£ is continuous in the mean-square sense.

The second-order regularity properties of an a-GRF Xa are studied in terms of the
following Hilbert spaces: The Hilbert space H(Xa) defined as the closed span in the
^2(fi)-topology of [Xa(<p) : <p e UJ, and the RKHS J f (X«), which is the closed
span in the -S?2(ft)-topology of {Ba(<t>, •) = E[Xa(<p)Xa(-)] : <f> e Ua}. The inner
product defined in the space H(Xa) is given by (2.3). Each function u in the RKHS
is defined as

(2.5) u(cj>) = E[XuXa(<p)], WcpeUa,

for a certain Xu e H(Xa). That is, we can establish an isometric isomorphism
between the spaces Jf(Xa) and H(Xa) associating to each function u € Jf (Xa) the
random variable Xu e H(Xa) defined by (2.5). Therefore, the inner product of two
functions in the RKHS is given by the inner product in Ĵ f2 (Q) of the random variables
defining such functions according to (2.5).

The covariance function Ba of the a-GRF Xa defines a continuous bilinear form on
Ha{T)®Ha(T), since from Definition 2.4 the a-GRF Xa is continuous in the mean-
square sense. From the Kernel Theorem (Gel'fand and Vilenkin [15]), Ba admits the
representation

(2.6) Ba((p, 0 ) = {(Ra<p)\ 4>)u.> <P><t>£ Ua,

where * stands for the duality between Hilbert spaces (Riesz Representation Theorem),
and Ra is the covariance operator of Xa, that is, a symmetric positive continuous linear
operator from Ua into Va.

DEFINITION 2.5. For a 6 Q, we say that the GRF

(2.7) Xa : Va -> 3?\n, sf, P)

is the dual relative to Ua (or a-dual) of the a-GRF

(2.8) Xa : Ua -+ -Sf2(fi, a/, P)

if it satisfies:
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(i) H(Xa) = H(Xa),
(ii) (Xa(4>), Xa(g))HiXm) = {<f>, g*)Ua, for <p e Ua, and g e Va, with g* being the

dual element of g with respect to the Ua -topology.

Conversely, the dual of Xa relative to Va is the a-GRF Xa.

REMARK 2.4. The a-dual GRF Xa can be interpreted as the adjoint of the inverse of
the ar-GRF Xa : Ua -*• 3?2(Q, srf, P). Therefore, as we show below, the covariance
operators of both GRFs are isomorphisms between the fractional Sobolev spaces
involved in their definitions. Indeed, the duality condition is equivalent to the existence
of a bounded inverse R~l from Va onto Ua for the covariance operator Ra. In the
abstract representation we derive in Theorem 2.3, the a-dual GRF defines the inverse
of the linear filter (2.20) relating Xa with white noise.

Similarly, associated with the a-dual GRF Xa, we also consider the spaces H{Xa)
and Jf{Xa), defined as the closed spans in the -£?2(£2)-topology of the following sets:

(2.9) {Xa(f) : / e Va} and [Ba(f, •) = E[Xa(f)Xa(-)] • f e Va},

respectively. The spaces H(Xa) and J f (Xa), and correspondingly H(Xa) and
Jtf (Xa), can be related by means of the isometric isomorphisms

(2.10) J : H(Xa) - • Jf(Xa) and f : H(Xa) -> JfT(Xa),

respectively, which are defined as follows:

Y^JY, with (JY)(4>)=EYXa(<f>), V0 e Ua,

Z^J'Z, with (J'Z)(g) = EZXa(g), Vge [£/„]*.

As Jf(Xa) c [Ua]* and Jf?(Xa) c Ua, the following operators can be considered:

(2.11) Jtr:jr(Xa)-+[Uar, with g^Jfg = g,

(2.12) J T : Jf(Xa) -^ Ua, with <f> - • JtT'Q = <p.

The composition of the operators J and Jt, and J' and JT', respectively, leads to the
introduction of the operators Sa and S'a, defined as

(2.13) Sa := JT7 : H(Xa) - • [C/J*

(2.14) s; := JT'7 ' : //(Xa) - • Ua.

The minimum fractional order a for which the dual GRF of Xa relative to Up,
with fi > a, exists is called the minimum fractional duality order of Xa. This order
determines the spaces Us, [!&]*, i/(X5), //(Xd), J f (Xa), and J f (X5) in terms of
which equations (2.10)-(2.14) are defined. In the following proposition, the bijectivity
and bicontinuity of the operators Sa and S'a are established.
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PROPOSITION 2.1. Let Xa be an a-GRF. Assume the a-GRF Xa exists. Then, the
following assertions hold:

(i) The operators S'aXa and XaS'a are the identity operators on the spaces Ua

and H(Xa), respectively. Conversely, the operators SaXa and XaSa are the identity
operators on the spaces [Us,]* and H(Xa) = H(Xa), respectively.

(ii) The operators Sa and S'a are bicontinuous.

PROOF, (i) First, we prove that Jf (Xa) = [Ua]* and J? (Xa) = Ua, as sets of
functions. By definition, Jf?(Xa) c [Ua]*. From the duality between Xa and Xa

relative to Ua, we have that, for each g e [£/„]*,

(2.15) gifp) = {g*, <p)u. = (Xa(g), Xa(tp))HlXi) = J[Xa(g)](<p), V<p € Ua,

with J(Xa(g))(-) € Jf?(Xa). Similarly, it can be proved that Jf(Xa) = Ua.
Now, again using the a-duality condition, and the definition of operators Sa and

5^, we obtain, for each <p e Ua,

{Xa(g), Xs(ip))H(Xi) = (g*, <p)Ua = (g, <p*){Ui¥ = <p(g) = [J'(Xa(<p))] (g)

(2.16) =[S's(Xs(,<p))](g),

forall^ G [Ua]*. Thus, S'a(Xa(<p)) = <p,foresich(p e Ua. Hence, S'aXa is the identity
operator on Ua.

Conversely, for each Y e H(Xa) = H(Xa), Y defines an element <py of JF(Xa) =
Ua by <pY(g) = (S'aY)(g) = J'Y(g) = EYXa(g), for all g e [Ua]*. Then, we have

{Xa(g), Xa(S'aY))H(Xa) = (Xa(g), Xa(<pY))H(Xa) = (g, <p*Y

(2.17) = E[Xa(g)Y] = (Xa(g), Y)H(Xa).

Hence, (Xa(S'aY) - Y) is orthogonal in H(Xa) to the range Xa([Ua]*) of Xa. As
Xa([Ua]*) is dense in H(Xa) = H(Xa), we obtain that XaS'a is the identity operator
onH(Xa).

Similarly, it is deduced that SaXa and Xa Sa are the identity operators on the spaces
[Us]* and H(Xa) = H(Xa), respectively.

(ii) By definition, the operators J from H(Xa) onto Jf{Xa), and J' from H(Xa)
onto Jf{Xa) are bicontinuous. Therefore, we must only prove that the operators J T
from Jif{Xa) onto [Ua]*, and J T ' from Jf(Xa) onto Ua are bicontinuous.

Let {<pn }neH c Ua be a sequence convergent in the topology of Ua: <pn -> || • || Ua <p e Ua.
Then, from the mean-square continuity of Xa and from (i),

Xa(<pn) -> || • WHIXM?) <» J'Xa(<pn) - •

(2-18) o \X'\\<Pn)
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Conversely, if {̂ n}n€N is a sequence convergent in JF{Xa), n̂—»• II
we obtain, from (2.18),

(2.19) xa (JTVO-HI • n«(x,,xfi(jrv), that is, xa

Equation (2.19) implies, under the duality condition,

0 = (lim Xa {Jt"(pH - Jf'<p), Xa(g)\

= lim (Xs (Jf'<pn - Jt'ip), Xa (g)\ = lim (jT<pn - . * > , £ %

Thus, Jf'<Pn -*• II • II Vi-^'f- The bicontinuity of J ^ can be similarly proved. •

The covariance factorisation of Xa can be obtained in terms of the operators Sa

and S'a.

THEOREM 2.2. Let Xa be an a-GRF with minimum fractional duality order a.
Then, the covariance operator Ra ofXa and the covariance operator Ra ofXa can be
factorised, respectively, as

Ra = Sa (Si)'1, Ra = S'aSa
l.

PROOF. See Theorem 1 of Ruiz-Medina et al. [23]. D

The above covariance factorisation is the basis for an abstract representation of Xa

in terms of generalised white noise.

DEFINITION 2.6. A generalised random field e(-) defined on Hilbert space (//,{•, -)H)
is called a generalised white noise (GWN) relative to H if

(e(«), s(v))H(e) = (M, V)H, VM, V e H.

DEFINITION 2.7. A generalised random field X defined on a Hilbert space (#,(•, -)w)
is said to have a (weak-sense) abstract representation if there exists an isomorphism
L.H^-H such that

(XL(u), XL(v))HiX) = (u, v)H, VM, V e H,

that is, if e = XL is a GWN relative to H. This abstract representation is written as

X(Lu) = e(u), Vu € H.

https://doi.org/10.1017/S1446788700002500 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002500


346 J. M. Angulo, M. D. Ruiz-Medina and V. V. Anh [11]

THEOREM 2.3. Assuming the existence of the a-dual GRF Xa of the a-GRF Xa,
with a being the minimum fractional duality order ofXa, the restriction Xa to Ua

ofXa has a weak-sense abstract representation, which is unique except for isometric
isomorphisms.

PROOF. Let [Yn}neN and {<pn}n£N be two orthonormal bases of the spaces H(Xa) =
H(X&) and £4, respectively, noting that H(Xa) and £4 are separable Hilbert spaces.
We define the isometric isomorphism

by
<Pk -*• S<pk = Yk, V/fc € N .

Then, considering the isomorphism L on £4 defined as L := S'&J, with 5^ being the
operator defined above, we obtain, from Proposition 2.1,

(XSL(4>), X ( )H(Xi)

= {S(<t>), S(<p))H(Xi) = {<J>, f ) U a , y<l>,(pe Ua.

Let us now assume that

with Z-i, L2 being isomorphisms on £4 and £5,1, £5,2 being GWNs relative to Ua.
Then, with V = L~XL2,

= (xa
The above abstract representation is written as

(2.20) Xa(L<p) = ea(4>), V<t>eUa.

Then

(Xa(L</>), Xa(Lr/r))H(Xi) = (es(4>), ea{f))H{Xi) = (4>, f)Ua , Vcf>, f € Us.

Since

where ̂ 5 is the inverse oftheBessel potential c/L5 (defined as ^_a = (/—A)~"/2,I =
identity operator, A = Laplacian operator), we also obtain the following interpretation
of the representation (2.20):

(2.21) Xa(L<f>) = eLHT)Sa(<t>), V<t>eUa,
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where eL2(T)(-) is a GWN relative to L2(T). The right hand side of (2.21) represents
the weak-sense derivative of fractional order a of a GWN in L2(T).

In a similar fashion, the condition of Theorem 2.2 also implies a unique abstract
representation for the a-dual GRF Xa:

(2.22) Xa(Lg)=h(g), V* €[%]*,

with L = RaLI{Ua], Ra being the covariance operator of Xa, L being the isomorphism
defining the abstract representation of Xa, and /[tfe]. : [ Ua]* -*• Ua being the isometric
isomorphism defined by the Riesz representation theorem.

Similar to (2.21), we can also write (2.22) alternatively as

(2.23) Xa{Lg) = ~eLHT)S-a{g), Vg e [Ua]* •

The right hand side of (2.23) is interpreted as weak-sense fractional integration of a
GWN relative to L2(T).

The abstract representation (2.21) can be equivalently expressed as

*s(0) = Bom ['a (L~l<t>)] , V0 6 Ua.

The generalised covariance function Ba of the a-GRF Xa then takes the form

Bi(4>, <p) = E [Xa(<P)Xa(<p)] = [S&L-\4>\ S*L-\<p))LHT)

Consequently, the covariance operator Ra of Xa is given by

(2.24) Ra = [SaL-1]* [SaL~l] .

In a similar fashion, the covariance operator Rs of Xa is given by

(2.25) Ra = [^aL-lY[y_aL-1].

In view of the above definitions and Proposition 2.1, the following table sum-
marises the fundamental Hilbert spaces involved in the development of the fractional
generalised framework.

Hilbert
space

H"{T)
Jf(Xa)
H(Xa)

Inner
product

(0. 9)lI'(T) = (^o(0), <*a(<P))LHT)
{«. i > W ) = E [XUXV]

{X,Y)H(XII) = E[XY]

Dual
space

H-"{T)
J?(Xa)
H(Xa)

Isomorphic mapping (~)
Isometric mapping (=)

Ha(T) ~ JnXa)
Jf(Xa) ~ H~a(T)
H(Xa) = Jf(Xa)
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REMARK 2.5. Note that in the above table we have assumed that the GRF Xa has
minimum fractional duality order a . In the case where the minimum fractional duality
order a is larger than a, this table can be directly rewritten in terms of the restriction
Xi of Xa to the space H*(T).

We now outline some fundamental results about the spectral representation of self-
adjoint operators defined on a separable Hilbert space H (see, for example, Dautray
and Lions [11]). These results are needed in Section 4.

For a compact and self-adjoint operator A defined on a separable Hilbert space H,
the Hilbert-Schmidt Theorem provides a decomposition of the space H into a direct
sum of the eigenspaces Vk, k e N, corresponding to its eigenvalues kk e R, k e N
(including the eigenspace Vo associated with the eigenvalue 0):

Furthermore,

AM = £A-*/>*(«) =£**<«.«*)*«*, WueH,

with Auk = kkuk, uk e Vk, Vk € N, and

(2.26) / =

where we denote by Pk the projection operator into the eigenspace Vk, by (•,•>// the
inner product in the space H, and by / the identity operator.

For each A. e R, the following spaces and operators are defined:

(2.27) Gi

(2.28) Ek = orthogonal projection onto Gk.

A family {Exhen of orthogonal projections in a separable Hilbert space H is
called a spectral family (or a resolution of the identity) if it satisfies the following
conditions:

(i) E\ • E^ = Einf(x,ft)-

(ii) For all A. 6 R, Ek+0 - Ex.
(iii) limx__00 Ex = 0, l i n u ^ Ek = I.

Clearly, {E^heR defined in (2.28) is a spectral family. In this case, as A is a compact
and self-adjoint operator, a (A) is a bounded set in R, and there exist constants a, b e R
such that Ex = 0 for A. < a, and Ek = I for A. > b. Furthermore, the discontinuities
of the function A. ->• Ek are the eigenvalues kk, Ekt — Ekk_0 = Pk, VJfc 6 N, and in the
sense of distributions in R with values in Jif(H), the derivative of Ek can be identified
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with a measure dEk defined by

(see Dautray and Lions [11, page 112]).
The following result establishes the spectral representation! of a self-adjoint op-

erator A on H as well as the spectral representation of certain functions of such an
operator:

THEOREM 2.4. Let H be a separable complex Hilbert space.

(i) There exists a bijective mapping a from the set of spectral families in H onto
the set of self-adjoint operators on H.

(ii) Let A be the self-adjoint operator associated with a spectral family [Ek}k^
{under the mapping a). Then, we have that the domain of A" is

(2.29) D(An) = \x e H : I \2nd(Ekx,x) < ool , n > 1,

and for x € D(An),y e H,

(2.30) {A"x,y)H= f Xnd(Ekx,y),

(2.31) P"*H 2
W = / A2" </(£.*, * ) .

./-00

(iii) If Pn(X) is a polynomial of degree n, then Pn (A) is defined as

(2.32) {Pn(A)x,y)H= f Pn(k)d(Ekx,y), Vx € D(A"), Vy € H.
J—oo

(iv) Iff is a continuous function on R, then

(2.33) (f(A)x,y)H = f f(k)d(Ekx,y), Vx € D(f(A)), Vy € H.

The integrals appearing in (2.29)-(2.33) are understoodas improper operator Stieltjes
integrals which converge strongly.

PROOF. See Dautray and Lions[ll,pagesll9andl26]. •

In addition, the next theorem provides a functional calculus for functions of self-
adjoint operators which are not necessarily bounded.
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THEOREM 2.5. Let Abe a self-adjoint operator in the separable complex Hilbert
space H.

(i) Iff is the complex conjugate function for f, then

D(f(A)) = D(f(A)),

andforallx,yeD(f(A)),

(f(A)x,y)H=(x*,f(A)y*).

(ii) IfxeD(f(A)),yeD(g(A)),then

(f(A)x,g(A)y)H = f f(k)g(k)d(Ekx,y).

(iii) ForaeCx e D(f(A)),

(af)(A)x=af(A)x.

Forx € D(f (A)) n D(g(A)), we have

(f+g)(A)x=f(A)x+g(A)x.

(iv) Ifx e D(f(A)), then the condition f (A)x e D(g(A)) is equivalent to the
condition x 6 D[(gof)(A)] (where (gof)(k) = g(k)f (k),) and we have

[g(A)f(A)]x = (gof)(A)x.

(v) V f e -^o. with JVQ being the class of functions which are measurable with
respect to dk(Ekx,x), for all x e H, and D(f(A)) is dense in H, then the adjoint
[f (A)]'off (A) satisfies

\f(A)]'=f(A);

f (A) is then normal (andself-adjoint whenever f =f).
(vi) Iff ^ 0 almost everywhere with respect to the measure {ax}xsli, then[f(A)]~l

exists and

PROOF. See Dautray and Lions [11, page 140]. D

The projection operator Ek of the spectral family of a self-adjoint operator A on
a separable Hilbert space H can be represented as an integral operator with kernel
£•(-, •, k) defined as follows (see, for example, Ramm [21, pages 145-148]):

(2.34) E(z , y , k ) = [
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where <J> is the generalised spectral kernel and p(-) is the spectral measure associated
with A. Then, for a Borel measurable function F, F(A) can be represented as an
integral operator with kernel

(2.35) F(A)(y,z)= I F(A)<I>(y,z,

3. Estimation of fractional generalised random fields

We consider the ordinary least-squares linear estimation problem introduced in
Section 1. The duality condition relative to a fractional Sobolev space (see Defini-
tion 2.5) leads to a fractional weak-sense solution to this problem. More specifically,
we study the minimum fractional duality order of the fractional generalised ordinary
random field defined by the information random field X. This order allows us to
determine the fractional Sobolev space where the inverse of the covariance operator
of X can be defined as a bounded operator. Hence, the solution with minimum
fractional singularity order belongs to the dual of such a fractional Sobolev space,
and its singularity order coincides with the minimum fractional duality order of the
information random field.

As commented in the Introduction, the approach of Ramm [21] is applied to a class
of ordinary random fields with covariance operators in the class 8% defined by (1.5). In
particular, this class satisfies the duality condition introduced in Definition 2.5, since
each element of !% defines an isomorphism between the fractional Sobolev spaces
H-to-'MCT) and H("-")s'2(T) (see Ramm [21, Theorem 1, page 12]). That is, the
minimum fractional duality order of the corresponding generalised ordinary random
field is a = (q — p)s/2 (see Remark 2.4), which coincides with the singularity order
of the solution calculated by using this approach.

Furthermore, although the fractional generalised approach we present here is con-
cerned with the regularisation of least-squares linear estimation problems of systems
involving second-order ordinary random fields (see Remark 2.3), this approach also
provides a solution for the case where the system involves random fields with positive
minimum fractional singularity order, that is, improper random fields.

Let 5? and <& be two zero-mean second-order random fields related by the following
equation in the mean-square sense:

(3.1) (Ay)(z) = &(x), Vz € T c R",

where A is a known operator which can be linear or non-linear. Assuming that 5?
and 9 have minimum fractional singularity orders y e Q and /J € Q, respectively,
we can consider the associated fractional generalised ordinary random fields S*Y on
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HY(T) = UY and %onHp{T) = Up. The fractional generalised version of (3.1) is
then given by

(3.2) 9j,(4>) = J7y(A'(t>), V<f> e Up,

where A'represents the adjoint operator of A, defined from l^into Ur. The estimation
problem in this fractional generalised framework then consists of calculating the least-
squares linear estimate of the fractional generalised output #£ from the information
provided by the fractional generalised version of (1.2) given by

(3.3) %-a(cp) = Sy(<p) + jr9is>), Vcp € Ua,

where jVe denotes the fractional generalised ordinary random field defined by the
observation noise Jf with minimum fractional singularity order 9 € Q, and a €
Q represents the minimum fractional singularity order of the ordinary information
random field X defining the fractional generalised ordinary random field SCa on
Ha(T) = Ua. Note that a can be taken to be the maximum between y and 0. In
fact, if 3£a has minimum fractional duality order a > a, then the information used
in the calculation of the solution to the estimation problem in a fractional generalised
framework is provided by the observation of 3£a on Us, that is, the useful information
is represented by the restriction to Ua of SEa given by

(3.4) %-a(<p) = S*y(<p) + ^Ke(<p), V<p € Us.

We also assume that the covariance function B^. of ^ and the cross-covariance
function BXi9f between 3Cs and $£ are known. The least-squares linear estimate

%(<t>) = %a(K'4>), V</> € Up,

of $£ is then obtained by minimising the least-squares error

(3.5) e(K'4>) :=

for all 4> e Up, where K' is a linear operator defined from Up into Us, and represents
the adjoint of the integral operator K with kernel k(-, •) defined as in (1.3). Hence,
the solution k(-, •) to the least-squares linear estimation problem can be found in the
space Vp ® Ua. If A is a differential operator, then /J < y, and if A is an integral
operator, then y < p. In the case when A is a shift operator, we have the extrapolation
problem, and when A is the identity operator, we have the filtering problem.
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The covariance functions BXa of SEa and Byy of J ^ , and the cross-covariance
function BXi9f between 3Ea and S^Y are given by the following expressions:

Byy (V, yjr) = [[Ryr (<p)Y, f)Ur V?>, f e Uy,

(3-6) = [< ^ t ) ^ p a , p fi,

where RXi : Ua -+ [Ua]* = Va, Ryy : Uy -+ [Uy]*, and Rx.yy : Uy -+ [Ua]* = Va

denote the covariance operators associated, respectively, with the covariance functions
BXi, Byy and BXi<?y.

REMARK 3.1. Note that in the case where RXi e 3$, k(z, •) belongs to Ua, for each
z e T, with a = -[(q - p)s/2] for certain s e N and q > p > 0.

The least-squares error s associated with K', for each <p e Up, is calculated from
(3.5) and is given by

(3.7) e(K'4>) =

= BXi{K\<t>), K1\<t>)) + Byy{A'<t>, A'4>) - 2BXiyy(K'(<f>), A'<

= {[RxAK'WVT, K'(<t>))Ua + {[Ryy(A'<t>)V, A\<j>))Vy

From the Orthogonal Projection Theorem, K' minimising e must satisfy, for <f> e Up,

E \{%{<t>) - ara(.K'<l>)
or equivalently,

(3.8) B^Xi(cf>, <p) = ByyXi {A'4>, cp) = BXi(K'4>, (p),

for all <p e Ua. From (3.6), (3.8) can be rewritten as

(3.9) RXiyy {A'cf>) (cp) = RXi(K'cj>)(<p), V .̂ € Ua.

That is,

(3.10) RXiyy (A'cp) = RXi(K'<p),

for each <p € Up. Assuming that condition (3.10) holds, the partial derivative
de(K'<f> + i-3?)/dt- is equal to zero for £ = 0, with § a small real number, and
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j£? a linear operator defined from Ufi into £4. That is,

(3.11) e({K' + §JSf)(0)) = BXi{K'<t>, K'4>)

(A>, A'4>)
, A'0).

Then,

(3.12) WK + W =2{[Rxt(K'4>)r,Sr*)(k-2(S>4>,[Rxt*MW)u,

and (3.12) is null for $ = 0 if condition (3.10) holds. Similarly, from (3.8), the
following adjoint equation is obtained for operator K:

(3.13) KRXM = ARyyXi(<p), VV € Us.

This equation provides a fractional generalised version of (1.4) defining k(-, •) in the
ordinary case. Note that the adjoint equation of (1.4) is also used to calculate fc(-, •) in
the ordinary case (see, for example, Ramm [21]). Therefore, in the remainder of this
section, we consider condition (3.10) or, equivalently the adjoint condition (3.13). In
particular, assuming any of these conditions, the least squares error e is given by

(3.14) e(AT'0) = ( [ K ^ ( A » r , A'(

Note that by definition of K', and since Jfi&a) = (t/«, (•, -)BXi), we have

for all <p e Up.
The following result shows that under the existence of the a-dual GRF 3C& of 3£a,

with %u defined on V5, (3.10) has a unique solution in the RKHS of 3E& which solves
the estimation problem in a fractional generalised framework.

THEOREM 3.1. Let 3£a be a zero-mean fractional linear functional of the informa-
tion random field SC with generalised covariance function BXa(-, •). Assume that 3Ca

has minimum fractional duality order a. Then, the estimation problem has a unique
solution in the RKHS of the a-dual %& defined by

(3.15) K'(d>) = R
V

https://doi.org/10.1017/S1446788700002500 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002500


[20] Fractional generalised random fields 355

where Rj^. is the covariance operator of 3ts> defined from Vs, into [/„, and Rx^r is
the covariance operator associated with the cross-covariancefunction B%iyy between
SCa and yY, defined from UY into V&. Moreover,

(3.16) K(fp) = AR^^RjtM' *<P e v*>

which provides a weak-sense solution to the corresponding ordinary estimation prob-
lem.

PROOF. From the covariance factorisation of 3^& and %„ (see Theorem 2.2), we
obtain

(3.17) i

for all cp € Us,- Similarly,

for all 4> € [ Ua\*. From the duality between ^ and ^ and (3.17), we get, for each
<p€ (4, that

for all 0 e f/5. Thus

RXi<p = R-£t<p, V<p 6 £/a.

Similarly,

These equations give that R^R^i and R^R^ are the identity operators on [/„ and
[14]* respectively. In other words, the existence of the a-dual GRF !%„ of %*u implies
the existence of the inverse covariance operator /?^J. of the restriction to Ua of RXa

and R^. = Rj^.. Therefore, for each </> e Up, (3.15) provides a solution to (3.10) in
the RKHS of &«, Jff(Stra).

Similarly, (3.16) provides a solution to (3.13). Since k(-, •) € Vfi® £/„, hence, for
each z € T, k(z, •) € 14. In the ordinary case, a < 0 (see Remark 2.3); in particular,
in the case where a < 0, k(z, •) = ^ ( 0 is a distribution, with positive singularity order
a. Therefore, Ĵ O) must be defined in the weak sense. Moreover, in the case where
[—/}]" > d/2, a weak-sense definition of fcz(-) on V^ can be obtained as follows:

(3.18) K(<p)(z) = / k.(y)<p(y) dy = k,{9) = AR*rXiR&tifp){i), *<P 6 Vs.
JT
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Indeed, from Sobolev's Embedding Theorem, the weak-sense equality in (3.16) with
respect to the (/^-topology becomes a strong-sense equality in view of the continuity
of the functions belonging to the space Vfi. •

4. Random fields with fractional covariance spectrum

In the previous section, the minimum fractional duality order a of the information
random field Xa, which defines the fractional Sobolev space where this covariance
operator is an isomorphism, determines the minimum fractional singularity order of
the fractional weak-sense solution K'. Furthermore, the duality order a also specifies
the functional space Ua where the covariance operator of the information random field
is factorised. Thus, the duality condition identifies the second-order properties of the
class of random fields for which the estimation problem is solved. In this section we
describe such properties in terms of the associated covariance spectrum and RKHS.

From Proposition 2.1, the operators L = S'aJ andL = So*//^]. are isomorphisms
on Ua and [£&]*, respectively. Therefore, the operators JaL~x : Ua -*• L2(T) and
J-sJL~x : Va -> L2(T), respectively associated with Rxa (see (2.24)) and R&. (see
(2.25)), are bicontinuous. Then, there exist positive constants C\, C2, C\, and Q such
that

(4.1) C, 11011ft < W^L-'^WLHT) < GIMIft, Vtf> € Ua,

(4.2) C . I M U < WS-aL-Hvnmr) < c2\\<p\\Vi, v<p e vs.

These equations are next expressed in terms of the spectra of /?£-. and /?£-., respec-
tively.

From the symmetry property of the covariance function B #., Rxi is also a self-
adjoint operator in L2(T). Then, we can consider its representation in terms of a
spectral family {£^}X£A in L2(T), with A being the spectrum of R^a (see Section 2):

(4.3) (RXt<p, f) = f kd(Ek<p, x/r) = [ ^(A)f(X)rfp(A), V<p, xj, € Us,
JA JA

where p(-) denotes the spectral measure of RXi and

(4.4) ipikWik) = Y\JviMfa^)dz\ \jr(y)<t>j(y,x)dy\.

Here, j = I,... , Nx < oo represent the indexes of the eigenvalues A, < A of Rx.,
* means the duality between the fractional Sobolev spaces Us and V̂  with respect to
L2(T), and, for each A. € A, [4>j (•, k)}j£NOi c Ua and {0*(-, k)}j£N<M c Va are dual
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Riesz bases with respect to L2{T). Such bases provide the following representation
of the spectral kernel <!>(•, •, A.) of RXi:

(see Ramm [21, pages 145-147]). Note that (4.4) can also be interpreted as the inner
product in L2(T) of the functions

Wi r f i

= 5Z / ?(*)#(z- *)d z *i (y. *)•

*W(y) = X! [J f'Wj (z- X) rfzJ #&. X>-
(4.5)

In addition, from Proposition 2.1 and Theorem 2.2, R^ is a bounded function of
RXi. Hence, it can also be represented in terms of <J> and p as

(4.6) (R&W, rfr)= I \-x4>{\)jr(X)dp(\), V0, f € Va.
JA

From (4.3) and (4.6), equations (4.1) and (4.2) can be respectively written as

(4.7) C, f (1 + \\\2)a\4>(k)\2dk < f \k\\4>(k)\2dp(X)
JR" JA

<c2 f
(4.8) C, / (1 + W2)-«|£(A.)|2<tt < /" IX

<c2

for </> € C4 and ^ € V5, where 4> and ^ stand for the Fourier transforms of <j) and <p,
respectively, and, where for each A. € A, \<f>\2 = </>(/>* and |^|2 = ipy* are defined as
in (4.4).

As a consequence, we have the following result:

THEOREM 4.1. Under conditions of Theorem 3.1, the following assertions hold:

(i) <f> € Us if and only if(R#.<p, </>) < co, that is, if and only if(f>& &
Respectively, <p € V& ifandonlyif{R^.(p, <p) < oo, that is, ifandonlyif<p €
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(ii) In the case where l£a = JaL~^ and J?a~
l = [J_aL~x]' are self-adjoint, the

following equivalences hold:

./A
(4.9) <peHa(T) = Ua& / (1 + \X\2)\v(\)\2dp* < oo,

/A

(4.10) ^ € #-*(D = V& o / ( I + |A|2)|^(A)|2<//^-.r(A) < oo.
•/A

(iii) /n addition, in the case where ±£a commutes with the Bessel potential of
order a, we obtain

/(
JA

(4.11) <p € ^ ( T ) O / ( I + W2)>|£(A)|2<fafc < oo.

PROOF, (i) From (4.7) and (4.8),

<t> e « f i (D <> (/?AT>. <j>) <oo, (pe H*(T) <& {R^tp, <p) < oo.

The second part of (i) is derived from Proposition 2.1 (i), since

(4.12) (RxA<P),<l>) = BxA<P,

for all (p € Ua, and

(4-13)

for all <p € Va.
(ii) As Jfa and [Sfa

1]' = 5£a
x are bicontinuous operators from Ua into L2(T) and

from Va into L2(T), respectively, the following inequalities hold:

f 2 5 - 2 f 2 - 2

<iv2 / (l + iApri^wi2^,

(4.15) AT, / (1 + |A|2)-"|f (X)|2^ < /" | A r 2 | ^ W | 2 ^ ^ W
JR" JA

= / |A|2 |^(X)| 2

JA

<A^2

for <p € H°(T), and yr e H~a(T), with A ĵ, Ar
2, Â i and Â 2 being positive constants,

and with p#. and p^r'y being the spectral measures associated with Sfa and [Sff*]',
respectively. The assertion (ii) is straightforward from (4.14) and (4.15).

(iii) The right hand side of (4.11) is finite if and only if <p belongs to the domain
of _Ŝ f; in the case where J?a commutes with the Bessel potential of order a, this is
equivalent to <p e HSfi(T). •
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Note that the assumption in (iii) is not equivalent to the assumption that S^& be a
function of the Bessel potential of order a (see Dautray and Lions [11, page 145]).

In the following corollary we specify an important class of random fields for which
the estimation problem is solved by applying Theorem 3.1.

COROLLARY 4.2. For each fi e Q, we consider the set &p of real-valued, positive
and continuous functions Fp satisfying

(4.16) C < F,(X)(1 + |A.|2//2 < C, C, C > 0,

and define the following class 3ip, ^ e Q , ofcovariance operators:

(4.17) RpeSfi & Rf, = Fp(S?a), for some Ffi € &fi,

where J£?5 is a self-adjoint elliptic fractional differential operator of order a on L2 (T).
Then the estimation problem is solved as in Theorem 3.1 for this class of information
random fields.

PROOF. If J2j is a self-adjoint elliptic fractional differential operator of order a on
L2(T), then J% satisfies condition (4.11). Clearly, Rp is an isomorphism from V^/i
into Ufii/2. Thus, if X^ii represents a fractional generalised information random
field with covariance operator Rp satisfying condition (4.17), then its /Ja/2-dual
Xpaii exists. Therefore, Theorem 3.1 provides a solution to the estimation problem
in a fractional generalised framework for this class of information random fields. •

In particular, the estimation problem is solved in Ramm [21] for the case where JS^
is a self-adjoint elliptic differential operator of integer order on L2(T), and

with P(X) and Q(k) being positive polynomials of respective orders p and q satisfying

o < c, < P(X)(i + \x\2y/2 < c2,

(4.18) 0 < c3 < (2(1)(1 + |A.|2)-"/2 < c4,

for some positive constants cuc2, c3 and c4. That is, fi = q — p, and a e N.

5. Final comments

In this paper we have considered the problem of estimating on a bounded domain
T c Rd the output random field of a stochastic equation from the information provided
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by the observation of the input random field with additive noise on T. In the case where
the fractional generalised information random field has minimum fractional duality
order a, the information used in the estimation is provided by the test functions in
the space Ua. Furthermore, if the sample information is provided by a closed subset
Ul

a of test functions in Ua, then the useful information for the estimation is given
in terms of the test functions in U! = ^/_(a_a)([/j). The weak-sense solution to the
estimation problem is then derived in a similar way to the case considered in this paper
by defining K' as a linear operator from Up into (//. In particular, the situation where
the ordinary information random field is observed in a subdomain T C T is included
in the above mentioned case with U[ = H"(T'). Finally, we note that if the interest
is in approximating the fractional generalised output random field in a subspace U,
instead of the whole space Up, the estimation function &(•, •) will be found in a wider
class, with operator K' being defined from U into Us, the space of regularisation of
the information.
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