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ON THE COHEN-MACAULAYFICATION OF CERTAIN
BUCHSBAUM RINGS
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§1. Introduction

Let A be a Noetherian local ring of dimension d and with maximal
ideal m. Then A is called Buchsbaum if every system of parameters is a
weak sequence. This is equivalent to the condition that, for every para-
meter ideal g, the difference ¢,(A/q) — e,(g) is an invariant I(A) of A not
depending on the choice of q. (See Section 2 for the detail.) The concept
of Buchsbaum rings was introduced by Stiickrad and Vogel [8], and the
theory of Buchsbaum singularities is now developing (c.f. [6], [7], [9], [10],
and [12]).

Recently the author and Shimoda [1] have discovered that certain
Buchsbaum rings are characterized by the behaviour of the Rees algebras
of parameter ideals. The purpose of our paper is to ask for another cri-
terion of such kind of Buchsbaum rings.

Together with that of [1] our result is stated as follows.

TuEOREM (1.1). Let Q(A) be the total quotient ring of A. Then the
following conditions are equivalent.

(1) A is a Buchsbaum ring and H:(A) = (0) for i + 1, d.

(2) The Rees algebra R(qQ) = P20 ¢’ is a Cohen-Macaulay ring for
every parameter ideal q of A.

(8) There is a Cohen-Macaulay intermediate ring B beiween A and
Q(A) such that (a) B is of finite type as an A-module, (b) dim B, =d for
every maximal ideal n of B, and (c) mB C A.

In this case, if d = 2, B is uniquely determined and H}(A) = BJA.
Here Hi(*) denotes the local cohomology functor. The equivalence of the
statements (1) and (2) is the main result of [1]. The last assertion and
the equivalence of the statements (1) and (3) are new results of the present
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paper, which we prove in Section 2.

Section 3 is devoted to some examples. We will give, in case the ring
A appears as the local ring at the irrelevant maximal ideal of an affine
semigroup ring, a criterion for A to satisfy the conditions of Theorem
(1.1) and an explicit description of B in terms of the corresponding semi-
group. In the final section it will be proved that for every parameter
ideal g of a local ring A which satisfies the conditions of Theorem (1.1)
the ring (G,(A))y is again a Buchsbaum local ring with I((G;(A)),) = I(A),
where G;(A) denotes the associated graded ring of A relative to ¢ and M
is the unique graded maximal ideal of G,(4). This is an application of
our main result.

Throughout this paper (4, m) will always denote a Noetherian local
ring of dimension d.

§2. Proof of Theorem (1.1)

The concept of Buchsbaum rings was given by Stiickrad and Vogel

[8].

DerFiniTION (2.1) ([8]). A local ring A is called Buchsbaum if every
system a,, a,, - - -, @, of parameters is a weak sequence, i.e.,, (a;, a,, - -, @;_)):
a,=(a,a,  --,a,.): m for every 1 <i<d. This is equivalent to the
condition that, for every parameter ideal g, the difference ¢,(A/q) — e.(q)
is an invariant I(A) of A not depending on the particular choice of q,
where e,(q) denotes the multiplicity of A relative to g. (See [8], Satz 10.
Notice that they used the term of I-rings instead of Buchsbaum rings.)
Clearly Definition (2.1) may be extended to the case of modules, and it is
a routine work to generalize the results on Buchsbaum rings given by [8]
to the case of Buchsbaum modules.

ExampLEs (2.2). (1) Every Cohen-Macaulay local ring is Buchsbaum.

(2) Letkbeafieldand A =k[|X,X,, - -, X,, Y, Y,, - -+, Y,|l/a, where
RIX,X,, -, X5, Y, Y, -+, Y,]] is a formal power series ring and a =
X, X, -, X)N Y, Y, ---,Y,). Then A is a Buchsbaum ring of dim A
= d and depth A =1. Moreover I(A) =d — 1 and Hi(A) = (0) for i ~ 1,
d. Of course, if d > 2, A is not a Cohen-Macaulay ring (c.f. [5], p. 469,
Beispiel).

(8) For arbitrary integers d, s with d > s = 0 there exists a Buchs-
baum ring A such that dim A = d and depth A ='s (c.f. [9], Theorem 3).
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DerFINITION (2.3) ([8]). Let a be an ideal of A and @ = (), cassicara0) UD)
a primary decomposition. We put Assh, (A/a) = {p € Ass, (A/a);dim A/p =
dim A/a} and Uka) = (M,eassnasar UD)-

Since dim A,/aA, = 0 for every p € Assh, (A/a), this definition of U,(a)
does not depend on the particular choice of a primary decomposition ¢ =
Mpeassacaray @(p). We will often denote U,(a) simply by U(a).

For a moment we assume that A is a Buchsbaum ring of depth A
> 0. Let aem and suppose that dim A/eA = d — 1.

First we note

LEmMmA (2.4). a is A-regular.
This follows from the fact Ass, (A) = {p € Spec A; dim A/p = d} (c.f. [1],

(3.2) ().

Lemma (2.5). (1) Suppose d = 2 and let a, b be a part of a system
of parameters for A. Then U(aA) = aA: b = aA: m.
2) U(aA) = aU(aA).

Proof. (1) aA:b=aA: m as b is weakly regular on A/aA. On the
other hand, as U(aA)/aA = U, ((0)) and as U,,,,((0)) = [0: m] ., (cf. [1],
(3.2) (3)), we see U(aA) = aA: m. Hence the result follows.

(2) It suffices to show that U(eA) C aU(eA). If d =1, U(eA) = aA
by definition and we have nothing to prove. Suppose d = 2 and choose
bem so that a, b forms a part of ¢ system of parameters for A. Let f,
g€ U(aA). Then we may express bf = ax and bg = ay (x,y € A). On the
other hand, we have fg = az for some ze A. Hence a(b*2) = b*(fg) = a*(xy),
and so we see b’z = a(xy) as a is A-regular by (2.4). Thus zcaA: b* and
consequently ze U(aA) as U(ad) = aA: b* by (1). Therefore fg e aU(ad),
and so we have U(aA): C aU(aA) as required.

DErFINITION (2.6). Let Q(A) denote the total quotient ring of A. We
put A = {x/a; x e U(eA)} (=a"'U(aA)) in @(A). Then

(1) A is an intermediate ring between A and Q(A).

(2 A = U(aA) as A-modules, and A = End, U(aA) as A-algebras.

(8) U(aA) = aA, and mA C A.

(4) A does not depend on the choice of an element ¢ and is uniquely
determined by A.

Proof. (1) This follows from (2.5) (2).
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(2) Let f: U(aA) — A be the map defined by f(x) = x/a. Then fis a
required isomorphism. Let ye A, then yU(aA) C U(ad) clearly. We
denote by § the endomorphism of U(aA) induced by the multiplication of
y. Then it is easy to check that the map g: A — End, U(ad), g(y) = 3,
is an isomorphism of A-algebras.

(8) The first assertion is trivial. The second one follows from (2.5)
Q. .

(4) If d=1, U(@A) = aA by definition and so A = A. Thus we may
assume d > 2. Let bem such that dim A/bA = d — 1. First suppose that
a, b is a part of a system of parameters for A and let x ¢ U(aA). Then
bx = ay for some ye A by (2.5) (1). Of course, as b, o is also a part of
a system of parameters for A, we have ye U(bA) again by (2.5) (1). Thus
xf/a = y/be b'U(bA), and so we have a 'U(aA) C b'U(bA). By the sym-
metry between ¢ and b we get a 'U(ad) = b 'U(bA) as required.

Now consider the general case, and choose cem so that both {qg, c}
and {b, ¢} are parts of systems of parameters for A. Then e 'U(ad) =
¢ 'U(cA) and b 'U(bA) = ¢ 'U(cA) by the result in the special case above.
Hence we have a !U(aA) = b'U(bA), and this completes the proof of the
assertion (4).

Lemma (2.7). Suppose d = 2. Then HL(A) = A/A.

Proof. Apply the functor H:i(*) to the exact sequence 0 - A — 4 —
AJ/A—0, and we have the assertion HL(A) = A/A since depth, A =
depth, U(aA) by (2.6) (2) and since depth, U(ecA) = 2 by [1], Theorem (3.1)
(3). (Recall that HY(A/A) = A/A as A/A is a vector space over A/m.)

ProposITION (2.8). Suppose that dim A = d > 2. Then A is a Buchs-
baum A-module with I(A) = I(A) — (d — 1)-dim,,,A/A and depth, A =
min {2 < i < d/H,(4) + (0)}.

Proof. This follows at once from (2.6) (2), (2.7), and [1], Theorem (3.1).

Proof of Theorem (1.1). (1)=> @) If d <1, A is a Cohen-Macaulay
ring and we have nothing to prove. Suppose d = 2. Then we have depth A
> 0. Thus let B= A, and B has the required properties (a), (b), and (c)
(c.f. (2.6) and (2.8)). ’

(8) = (1) Notice that B is a Cohen-Macaulay A-module of dimension
d. Hence, if d <1, A itself is a Cohen-Macaulay ring. Thus we may
assume d = 2. Consider the exact sequence 0 - A — B— B/A— 0 of A-
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modules. Then, applying the functor H:(*) to it, we have HL(A) = B/A
and Hi(A) = (0) for i # 1, d as m(B/A) = (0) by the property (c). Of course
mH:L(A) = (0). Thus A is a Buchsbaum ring (c.f. [9], Corollary 1.1).
Now let us prove the last assertions. It suffices to show B= A. As
B c @(A) and as B is of finite type as an A-module, we may choose a
non-zerodivisor ¢ of A so that aBC A. If ¢ is a unit of A, B= A and
so A is a Cohen-Macaulay ring. In this case A = A by (2.7), as HL(A) =
(0). Hence B= A. Now assume that aem and let x ¢ B. Then, as mx
C A, m(ax) C aA. Hence ax € U(aA) because U(eA) = aA: m by (2.5) (1),
and this implies that x e a"'U(aA) = A. Thus BC A. Now consider the
exact sequence 0 -~ B —> A — A/B — 0 of A-modules, and we have A/B =
(0) since depth, B = depth, A = d > 2 and since m(A/B) = (0). Therefore
we have B = A as claimed. This completes the proof of Theorem (1.1).

DerFINITION (2.9). We call A the Cohen-Macaulayfication of A in case
A satisfies the conditions of Theorem (1.1) and dim A = d = 2.

ExampLE (2.11). Consider the example given by (2.2) (2) and suppose
that d > 2. Then A = kX, X,, - -+, X, D k[|Y,, Yo, - -+, Y,[l, and A coin-
cides with the normalization of A in @Q(A). This example shows that A
is not necessarily a local ring.

§3. Affine semigroup rings

In this section let 2 be a field, S a finitely generated (additive) sub-
monoid of N”, and L the subgroup of H = Z" generated by S. We put
d = rank, L. Let k[H] denote the group algebra of H over k and let X*
denote the image of a € H in k[H]. For every subset V of H we put k[V]
= > .cr BX% Of course k[S] coincides with the monoid algebra of S over
k and may be considered an H-graded subring of k[H] (c.f. [2], Introduc-
tion). We put

S ={aeL;taecS for some integer ¢ > 0} .

S is called the normalization of S. It is known that k[S] coincides with
the normalization of the ring k[S] (c.f. [3], § 1). For simplicity we assume
that S = L N N*. (Recall that S, in general, is isomorphic to a monoid
of this form. See [3], §2.)

We put F;, = {(a;, @, - -+, a,)€S;a, =0 and S;=S— F, for 1 <i< n.
Let L, denote the subgroup of L generated by F; (1 <i < n). We assume

https://doi.org/10.1017/50027763000019073 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019073

112 SHIRO.GOTO

that L, = L, for i = j. Let S = 72,8, Then S is again a finitely gener-
ated submonoid of S containing S (c.f. [2], Proof of Lemma 3.3.8), and it
is known that k[S] is again a Cohen-Macaulay ring of dimension d (c.f.
[2], Conclusion of the proof of 3.3.3).

The purpose of this section is to prove the following

THEOREM (3.1). Let M be the unique H-graded maximal ideal of k[S],
i.e., M = E[S\{0}], and suppose that rank, L = d = 2. Then the following
conditions are equivalent.

(1) A = k[Sly is a Buchsbaum ring.

@ (S\{op)+Scs.
In this case Hi(A) = (0) for i + 1, d and I(A) = (d — 1)-#(§\S). Moreover
A = K[S),.

Proof. (2)= (1) Let B = K[S],, and B has the properties required
in (1.1) (8). Thus A is a Buchsbaum ring. Moreover the last assertions
also follow from (1.1) (c.f. [5], Satz 2).

(1) = (2) Applying the functor H:(*) to the exact sequence

0 —> k[S] —> E[S]—> K[S]/E[S]—> 0,

we see that Hi(k[S1/kIS]) = Hi(E[S]) for every 0 <i<d — 2. Notice
that Supp,s; (k[g]/k[S]) C {M}. For, assume the contrary and put r =
dimy g, E[S1/E[S]. Then 0 <r < d — 2 (c.f. [2], Conclusion of the proof of
3.3.3), and so H;,(k[g]/k[S]) = H7Y(k[S]) by the remark above. But this
is impossible as H3(k[S]) = H7(A) and as H:(A) is a finite-dimensional
vector space over A/m for every 0 < i < d (c.f. [5], Hilfsatz 3). Thus we
conclude Supp,s; (RIS1/EIS]) € {M}, and so Hi(k[S]) = k[S]1/k[S]. This
implies Mk[.§] C k[S] as mHL(A) = (0). Of course this is equivalent to
the condition that (S\{0}) + Sc S, and we have completed the proof of
Theorem (3.1).

CoroLLARY (3.2). Under the same situation as (3.1) suppose that (S\{0})
+Sc 8. Then A = E[S], is a Buchsbaum ring with I(A) = (d — 1)-#(S\S)
and Hi(A) = (0) for i = 1, d. In this case A coincides with the normali-
zation A = E[S], of A.

Proof. Tt suffices to show that S = S. First notice that ME[S] c k[S]
as ME[S] C E[S], and we have £,5,(k[S]/k[S]) < co. Thus the assertion
follows from the fact that k[.§] and k[S] are Cohen-Macaulay rings of
dimension d. (See [3], Theorem 1 for k[S].)
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ExampLE (3.3). Let d, r be integers with d >2 and r>1, and let T
= {{a, @, -+, 8,) e N*; >4, a, = 0modr}. For a subset I of {(a,, a,, - -+, @)
eNyg >t a0, =1}, we put S= T\I. Then S is a finitely generated sub-
monoid of N* with T'= S, and (S\{0}) + T < S. Thus, by (3.2), A=k[S],
is a d-dimensional Buchsbaum ring with I(A) = (d — 1)-#I and H:(4) =
0) for i + 1, d. Of course A = k[T], in this case.

§4. The associated graded rings G,(A)

In what follows we suppose that A is a Buchsbaum ring of dim A = d
> 2 and with H}(A) = (0) for i+ 1, d. Let ¢ = (a,, a,, - - -, a,) be a parameter
ideal of A. We denote by G (A) the associated graded ring @y, q'/¢*"’
of A relative to q. The purpose of this section is to prove the following

THEOREM (3.1). Let M be the unique graded maximal ideal of G,(A).
Then (G(A))y is again a Buchsbaum ring of dimension d and with I((G,(A))x)
= I(A). Moreover (G,(A)), satisfies the conditions of (1.1).

For this purpose we need some notations and a few lemmas. Let A
be the Cohen-Macaulayfication of A, and § = gA. We denote by R (resp.
R) the graded ring @izo @' (resp. @iz d?), and by G;(A) the associated
graded ring @z, §°/@'*" of A relative to g. Recall that G,(A) = R/gR and
G;(A) = R/aR.

Let X be an indeterminate over A. Then we may identify the Rees
ring R (resp. R) with the graded subring 3., ¢'X" (resp. D=0 X" of A[X]
(resp. A[X]) canonically. Of course, under these identifications, R is a
graded subring of R. Notice that gR C R as

(?“1 C qi (e qi

for every integer i > 0 (c.f. (2.6) (3)). We put E = R/R, F = GR/qR, and
E =3, E,.

For a given graded R-module U= @,.; U,, we denote by U(1) the
graded R-module whose underlying R-module is the same as that of U
and whose graduation is given by [UQ1)], = U,,, (ne Z).

LEMMA (4.2). F = E’(1) as graded R-modules.

Proof. Let x e F and assume that x = ¢ mod gR for some ce gR. We
express ¢ = > -, ¢,X" (c; € A). Then ¢, e §**' for every i >0 as ce GR by
the assumption, and so we have cX¢ R. Let cX denote the residue class
of ¢cX in E = R/R. Then c¢Xe E’(1), and it is easy to check that the map
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f: F—> E'(1), f(x) = cX, is well-defined. Of course f is an isomorphism
of graded R-modules.

CoROLLARY (4.3). There is an exact sequence

0—> E'(Q]) —> G,(A) —> G;(A) — E—> 0
of graded R-modules.

Proof. Consider the following commutative diagram

0—>gR—>GR—>F—>0

0 > R > R >E—>0

of graded R-modules with exact rows, where all the i’s denote inclusion
maps. Then j =0 as gR — R. Thus, identifying G,(A) = R/qR and G;(4)
= R/qﬁ. and using (4.2), we get the required exact sequence by virtue of
the snake lemma.

Let V be an A-module. We denote A (resp. V) by A* (resp. V*) if
we regard A (resp. V) as a graded ring (resp. a graded A*-module) trivially,
ie., [A*], = A (vesp. [V*],=V) and [A*], = (0) (resp. [V*], = (0)) for n +
0. Let p: R— A be the canonical projection. Then, as p: R — A* is a
homomorphism of graded rings, we may consider V* via p a graded R-
module, which we shall denote by ,V. Let N be the unique graded maximal
ideal of R, i.e., N=mR + R,. For every graded R-module U and for
every integer i, we denote by Hi(U) the i-th local cohomology module of
U relative to N, which we consider a graded R-module. Recall that, for
a non-zero graded R-module U of finite type, U is a Cohen-Macaulay R-
module of dimension r if and only if U, is a Cohen-Macaulay R,-module
of dimension r (c.f. [4], Theorem). Of course the latter is equivalent to
the condition that HY(U) = (0) for i £ r.

LemMmA (4.4). (1) E is a Cohen-Macaulay R-module of dimension d.

| (A14) G =1)
HYE) =
@ Hi ){© (-1, d).

Proof. (1) As E = R/R by definition it suffices to show that both of
R and R are Cohen-Macaulay R-modules of dimension d + 1. For R this
follows from (1.1), since A is a Buchsbaum ring with H:(A) = (0) for i # 1,
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d by our standard assumption. For R first recall that a,, a,, - - -, a, is an
A-sequence, as a,,a,, -+, -+, @, is a system of parameters for A and as
A is a Cohen-Macaulay A-module of dimension d. Hence R is a Cohen-
Macaulay R-module of dimension d + 1 as a,, e, + a,.X, - - -, a; + @,_,X, ¢, X
is an R-sequence (c.f,, for example, [11]. Theorem 2.5). (Of course R is of
finite type as an R-module. This follows from the facts that B = RA and
that A is of finite type as an A-module.)

(2) As N,(A/A) = (0) (cf. (2.6) (8). Notice that p(N) = m.), we have
HY(,(A/A)) = (A/A) and Hj(,(A/A)) = (0) for i > 0. On the other hand
Hi(E) = (0) for i #+ d, because E is a Cohen-Macaulay R-module of dimen-
sion d by (1). Hence, applying the functor H}(*) to the exact sequence

0—> E'—> E—> (A/A)—> 0 (Here we identify E/E’' = ,(A/A).), we
have the assertion.

Proof of Theorem (4.1). First we split the exact sequence given by
(4.3) into two short exact sequences

0— E'1l)—> GA)—> U—0,

0—> U—> Gy(A) — E—0.

Then it follows from the second sequence that U is a Cohen-Macaulay R-
module of dimension d because E and G;(A) are Cohen-Macaulay R-modules
of dimension d. (See (4.4) (1) for E. For G;(A), recall that G;(4) is a
polynomial ring with d variables over A/ as § is generated by an A-
sequence a,, a,, - -+, @, of length d.) Hence, applying the functor Hj(*) to
the first short exact sequence. we see by (4.4) (2) that

o mrieeean | BADID) G=1)
*) HN(GQ(A))_{(O) ioLa.

Because Hj(G,(A)) = Hi(G(A)) as graded G;,(A)-modules, we have by [9],
Corollary 1.1 that (G,(A)), is a Buchsbaum local ring. Notice that

I(G(A)x) = (d — 1)-dimg, s, Hi(G(A))  (by [5], Satz 2)

= (d — 1)-dim,,, A/A (by (*)
= (d — 1)-dim,,, H,(A) (by (2.7)
= I(A) (by [5], Satz 2).

This completes the proof of Theorem (4.1).

COROLLARY (4.5) (to the proof).
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LA =1

Hi(G(A)) = {(0) @+14d).
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