
JFP 13 (5): 905–923, September 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004513 Printed in the United Kingdom

905

CPS transformation of flow information

JENS PALSBERG

Department of Computer Science, Purdue University, W. Lafayette, IN 47907, USA

(e-mail: palsberg@cs.purdue.edu)

MITCHELL WAND

College of Computer Science, Northeastern University, 360 Huntington Avenue,

161CN, Boston, MA 02115, USA

(e-mail: wand@ccs.neu.edu)

Abstract

We consider the question of how a Continuation-Passing-Style (CPS) transformation changes

the flow analysis of a program. We present an algorithm that takes the least solution to the

flow constraints of a program and constructs in linear time the least solution to the flow

constraints for the CPS-transformed program. Previous studies of this question used CPS

transformations that had the effect of duplicating code, or of introducing flow sensitivity into

the analysis. Our algorithm has the property that for a program point in the original program

and the corresponding program point in the CPS-transformed program, the flow information

is the same. By carefully avoiding both duplicated code and flow-sensitive analysis, we find

that the most accurate analysis of the CPS-transformed program is neither better nor worse

than the most accurate analysis of the original. Thus a compiler that needed flow information

after CPS transformation could use the flow information from the original program to

annotate some program points, and it could use our algorithm to find the rest of the flow

information quickly, rather than having to analyze the CPS-transformed program.

Capsule Review

This paper addresses the question of whether and in which sense CPS transformation

preserves the result of control-flow analysis. The motivation of this work is that, since a

CPS transformation preserves types, it may also preserve flow information and flow types.

The main contribution of the paper is a flow-information analogue of a CPS transformation

that provably preserves flow information and flow types. The significance of this contribution

lies in the existence of a program analysis that commutes with a CPS transformation:

analyzing the result of a CPS-transformed program yields the same flow information as

CPS-transforming the flow information of this program. This example provides a new data

point as to whether analyzing a program and analyzing the CPS couterpart of this program

yield comparable results.

1 Introduction

For simply-typed λ-calculus, typability is preserved across CPS transformation. For

a CPS transformation [[·]] of call-by-value terms, Meyer & Wand (1985) have shown

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

906 J. Palsberg and M. Wand

that if A � e : t, then A* � [[e]] : (t* → o) → o, where o is a type of answers, where

t* is defined inductively:

α* = α

(s → t)* = s* → (t* → o) → o,

and where A*(x) = t* if A(x) = t. The function (·)* defines CPS transformation

of type information. In fact, for a related system, Wand (1985) showed that the

converse implication holds as well.

A series of papers (Palsberg & O’Keefe, 1995; Heintze, 1995; Palsberg, 1998;

Palsberg & Pavlopoulou, 2001) have suggested that flow analyses are analogous to

type systems. It is therefore natural to ask the question:

Is flow information preserved by a CPS transformation?

We show that for an untyped λ-calculus with constants and conditionals, a standard

notion of 0-CFA flow analysis, and a carefully-formulated definition of the CPS

translation, flow information is preserved and reflected across CPS transformation.

More precisely, we show that if ϕ is the least (most accurate) flow analysis of E,

then ϕ∗ is the least flow analysis of cps(E), where (·)∗ is a linear-time computable

transformation of flow information.

Our algorithm has the property that for a program point in the original program

and the corresponding program point in the CPS-transformed program, the flow

information is the same. Thus, the algorithm does not change the flow information;

it merely extends it to cover the new program points.

Aside from its role in answering a theoretical question, our algorithm might be

useful in a compiler that needed flow information after CPS transformation. Rather

than analyzing the CPS-transformed program, it can instead CPS-transform flow

information for the source program. Depending on the amount of flow information

actually generated, doing this transformation (in time linear in the size of the

annotation) could be faster than reanalyzing the CPS-transformed program (in time

possibly cubic in the size of the transformed program). On the other hand, for

certain typed programs, Heintze & McAllester (1997) have shown that 0-CFA flow

information can be computed in O(n2) time. For such programs, a reanalysis may

be more attractive. Experiments are needed to get a firmer grip on these issues.

There is a range of previous work on the relationship between CPS transformation

and flow analysis. In some previous work, where the studied frameworks are

somewhat different, flow analysis is not preserved across CPS transformation; see

section 5 for more detail. It is necessary to be careful in the formulation of both

the analysis and the CPS transformation to avoid the effects of code duplication or

flow-sensitivity.

In other work, independent of ours, Damian & Danvy (2000) have shown a

result that is similar to our result in section 3. They consider a different CPS

transformation and they study terms in which all intermediate results are given a

name with a let-expression.

Our formulation of the CPS transformation introduces ‘administrative redexes’

(Plotkin, 1975). In a different paper, Damian & Danvy (2001) have extended our

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 907

work by showing that least solutions to the 0-CFA constraints are preserved by

administrative reductions. Their results apply to any CPS transformation in which

the administrative reductions are linear. A consequence of their results is that

our techniques are applicable to a CPS transformation that performed linear

administrative reductions. Non-linear administrative reductions would, of course,

duplicate code, leading to a non-preservation of leastness.

In previous work, Palsberg (1995) has shown that 0-CFA flow information is

still valid after beta-reduction. (The proof in Palsberg (1995) contained a subtle

error; Wand & Williamson (2002) subsequently corrected the error and simplified

the proof.) Note, though, that although linear reduction preserves leastness of flow

information, general beta-reduction does not. This parallels that principality of types

need not be preserved by beta-reduction.

In the following section we give an informal account of our approach to CPS

transformation of flow information, and in section 3 we present our algorithm and

main result. In section 4 we show a preservation theorem for flow types, and finally

in section 5 we discuss related work.

2 Summary of our approach

The principal difficulty in defining a CPS transformation of flow information is that

the CPS-transformed program contains program points that have no counterparts

in the source program. Our main observation is that this task becomes manageable

when we use a variant of Plotkin’s call-by-value CPS transformation that was

introduced by Danvy & Filinski (1992). Here is a part of Danvy and Filinski’s CPS

transformation, rewritten with our notation for labeling:

[[xl]] = λPl k.kKl @Al xl

[[λlx.e]] = λPl k.kKl @Al
(
λlx.λQlm.[[e]] @BL(e)

(
λRL(e)v.mMl @Cl vVL(e)

))
[[e1 @l e2]] = λPl k.[[e1]] @BL(e1)

(
λRL(e1)v1.[[e2]] @BL(e2)

(
λRL(e2)v2.(

v
VL(e1)

1 @Gl v
VL(e2)

2

)
@Dl

(
λSl v.kKl @Al vl

)))
We label all occurrences of expressions in the source and target programs; the

function L maps a λ-term to its topmost label. The labels in the CPS-transformed

program are chosen such that the label of a λ-abstraction in the source program is

also the label of the corresponding λ-abstraction in the CPS-transformed program.

Many of the labels in the target program are obtained by applying a label trans-

former to a label in the source program. For example, Al denotes a label computed

from the label l. It is essential for our approach that we can compute Al from l,

and that we can compute l from Al . We use the notation L(e) to denote the topmost

label of e.

We will now give an informal explanation of how to compute flow information

for some of the new program points. Consider first:

[[λlx.e]] = . . .
(
λlx.λQlm. . . .

(
mMl @Cl vVL(e)

))
. . .

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

908 J. Palsberg and M. Wand

Question: Where can (λlx.λQlm. . . . (mMl @Cl vVL(e))) be applied?

To answer that, suppose we have a set σ of labels of application points that tells

us where (λlx.e) in the source program can be applied. Suppose a ∈ σ, and consider

the CPS transformation of the application point labeled a:

[[e1 @a e2]] = . . .
(
v
VL(e1)

1 @Ga v
VL(e2)

2

)
@Da (λSav. . . .) . . .

We have that v1 will hold the value of evaluating [[e1]], so (λlx.λQlm. . . .) can be

applied at the application point labeled Ga. So, in general, (λlx.λQlm. . . .) can be

applied at application points labeled with labels from the set Gσ = {Gl | l ∈ σ}.
Below, we will use notation like Gσ for other label transformers than G.

Question: Where can (λQlm. . . . (mMl @Cl vVL(e))) be applied?

From the above we have that (λQlm. . . .) can be the result of evaluating the

expression (v
VL(e1)

1 @Ga v
VL(e2)

2), so (λQlm. . . .) can be applied at application points

labeled with labels from the set Dσ .

Consider again [[λlx.e]].

Question: What are the labels of the λ-abstractions that can be applied at (mMl @Cl vVL(e))?

Consider the program point Da in [[e1 @a e2]]. The argument of the call is the

λ-abstraction (λSav. . . .), so the set of labels of the λ-abstractions that can be applied

at (mMl @Cl vVL(e)) is Sσ .

Consider next

[[e1 @a e2]] = . . .
(
v
VL(e1)

1 @Ga v
VL(e2)

2

)
@Da (λSav. . . .) . . .

Suppose we have a set π of labels of λ-abstractions that can be applied at e1 @a e2
in the source program. Due to our approach to labeling, the set of labels of

λ-abstractions that can be applied at (v
VL(e1)

1 @Ga v
VL(e2)

2) is also π.

Question: What is the set of functions that can be applied at the application labeled Da?

From

[[λlx.e]] = . . . λlx.λQlm. . . .
(
mMl @Cl vVL(e)

)
. . .

we have that the set is Qπ . Consider again [[e1 @a e2]].

Question: Where can (λSav. . . .) be applied?

As analyzed above, it is applied at points (mMl @Cl vVL(e)) and we can express the set

of labels as Cπ .

Our algorithm for CPS transformation of flow information expands the above

observations to give a flow analysis for a whole CPS-transformed program.

3 Main result

We will work with an initial Σ-algebra Lab of labels where Σis:

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 909

. . . , l, a, . . . : Lab (an infinite collection of constant label symbols)

A,B, C, D, F, G,H1, H2, J, K,M,

N1, N2, P , Q, R, S , T ,U, V ,W ,X, Y , Z : Lab → Lab.

We apologize that there is no mnemonic significance to the names of the unary

operations. We will write the application of, say, A to l as Al . Notice that since Lab is

an initial Σ-algebra, the unary operations have ranges that are mutually disjoint and

disjoint from the set of constant label symbols. Furthermore, initiality also implies

that the operations are injective, so that we can, for example, recover l from Al .

Our example language is defined by the grammar:

e ::= xl | ql | λlx.e | e1 @l e2 | e0 →l e1, e2.

We use q to range over a set of first-order constants that includes true, false.

The construct e0 →l e1, e2 is a conditional expression that branches depending on

whether e0 evaluates to true or false. A program is a closed expression. We use E

to range over programs. The labels are used solely to identify occurrences of terms;

they do not influence the evaluation of a program.

We use the function L which maps a λ-term to its topmost label:

L(xl) = l

L(λlx.e) = l

L(e1 @l e2) = l

L(e0 →l e1, e2) = l

L(ql) = l.

We study the following 0-CFA-style flow analysis. Given a program E, we let

Flow(E) denote the powerset of the set of labels of λ-abstractions occurring in E.

Moreover, we let FlowDom(E) denote the union of the set of labels of occurrences

of subterms of E, and the set

{Ul | lis the label of a λ-abstraction in E}.

If l is the label of a λ-abstraction in E, then we use Ul as an implicit label of the

variable bound by that λ-abstraction. An alternative would be to use the name of

the variable as a label; we prefer to keep the name and the label separate.

A flow analysis of E is a total mapping

ϕ : FlowDom(E) → Flow(E)

such that

• for each xl occurring in E and bound by a λ-abstraction labeled l′, we have

ϕ(Ul′) = ϕ(l);

• for each λlx.e occurring in E, we have l ∈ ϕ(l);

• for each e1 @l′ e2 and each λlx.e occurring in E, we have that if l ∈ ϕ(L(e1)) then

ϕ(L(e2)) ⊆ ϕ(Ul)

ϕ(L(e)) ⊆ ϕ(l′);

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

910 J. Palsberg and M. Wand

• for each e0 →l e1, e2 occurring in E, we have

ϕ(L(e1)) ⊆ ϕ(l)

ϕ(L(e2)) ⊆ ϕ(l).

Notice that there are no constraints for constants. The domain FlowDom(E) →
Flow(E) is ordered by the pointwise ordering of functions induced by set inclusion.

We denote this ordering by ⊆. For a given program E, there is a ⊆-least flow analysis

which can be computed in O(n3) time where n is the size of the program (Palsberg &

Schwartzbach, 1994). The set of flow analyses of E is denoted by FlowAnalysis(E).

For example, for the program λ1x.true2, we have

FlowDom(E) = {1, 2}
Flow(E) = {∅, {1}}

and two flow analyses ϕ,ϕ′ where:

ϕ(1) = {1} ϕ′(1) = {1}
ϕ(2) = ∅ ϕ′(2) = {1}.

and ϕ ⊆ ϕ′. Notice that the constraint on λ-abstractions forces both ϕ and ϕ′ to

map the label 1 to the set {1}.
Notice that the constraint for a variable occurrence is an equality rather the

inclusion ϕ(Ul′) ⊆ ϕ(l). Both choices lead to the same ⊆-least flow analysis for a

given program, see Appendix C. We have chosen the equality constraint because it

enables a simple proof of Theorem 2 (see below).

The function cps transforms a whole program E to a CPS target term:

cps(E) = λXL(E)k.[[E]] @BL(E)
(
λRL(E)v.kYL(E) @ZL(E) vVL(E)

)
[[xl]] = λPl k.kKl @Al xl

[[λlx.e]] = λPl k.kKl @Al
(
λlx.λQlm.[[e]] @BL(e)

(
λRL(e)v.mMl @Cl vVL(e)

))
[[e1 @l e2]] = λPl k.[[e1]] @BL(e1)

(
λRL(e1)v1.[[e2]] @BL(e2)

(
λRL(e2)v2.(

v
VL(e1)

1 @Gl v
VL(e2)

2

)
@Dl

(
λSl v.kKl @Al vl

)))
[[e0 →l e1, e2]] = λPl k.

(
λJlm.[[e0]] @BL(e0)

(
λRL(e0)w.wVL(e0) →Fl

[[e1]] @BL(e1)
(
λRL(e1)v1.m

H1
l @N1

l v
VL(e1)

1

)
,

[[e2]] @BL(e2)
(
λRL(e2)v2.m

H2
l @N2

l v
VL(e2)

2

)))
@Wl (λTl v.kKl @Al vl)

[[ql]] = λPl k.kKl @Al ql .

Notice that the CPS translation does not duplicate contexts across conditional

expressions, as is sometimes done by CPS transformations used in compilers (Appel,

1992; Danvy et al., 1996).

All the CPS terms that can result from the CPS transformation can be generated

from the following grammar:

Simple ::= xl | ql | λlx.Tail

Tail ::= Simple | Tail @l Simple | Simple →l Tail,Tail.

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 911

The grammar can also generate terms that are not the result of the CPS transform-

ation. While tighter grammars can be constructed, we hope that our grammar may

help build intuition about the structure of CPS terms.

The labeling of occurrences of subterms in cps(E) follows three guidelines. For

every occurrence in E of a subterm e with label l, we have:

• [[e]] = λPl k.e′, where L(e′) is either Al′ , Bl′ , or Wl′ , and each occurrence of k is

labeled Kl;

• [[e]] occurs in cps(E) as part of a subterm [[e]]@BL(e) (λRL(e)v. . . .), where the

body of λRL(e) is labeled with one of Zl′ , Cl′ , Bl′ , Dl′ , Fl′ , N
1
l′ , N

2
l′ , and the

single occurrence of v is labeled VL(e); and

• there is a subterm kKl @Al e′, where L(e′) = l.

The result of using the guidelines is that:

• [[e]] is a λ-abstraction with label PL(e) which will be applied at an application

point labeled BL(e) and

• [[e]] will take an argument (a continuation) with label RL(e) which will be

applied at an application point labeled AL(e).

In the setting of simply-typed λ-calculus, these consequences can be stated in a

particularly succinct way, see Theorem 4. The use of the guidelines also enables

succinct proofs, particularly of Lemma 6.

Note that:

FlowDom(E) ⊆ FlowDom(cps(E))

Flow(E) ⊆ Flow(cps(E)).

If all occurrences of subterms of E are labeled distinctly, then the same is true of

cps(E). We will henceforth assume that the occurrences of subterms of E are labeled

distinctly and only with constant label symbols.

The function (·)* transforms flow information for a program E to flow information

for the program cps(E):

(·)* : (FlowDom(E) → Flow(E)) → (FlowDom(cps(E)) → Flow(cps(E))).

We will present the definition of ϕ* in table form.

• For the whole program E, where L(E) = l:

a ϕ*(a)

Xl {Xl}
Yl ∅
Zl ∅
UXl ∅

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

912 J. Palsberg and M. Wand

• For all labels l of occurrences of subterms of E:

a ϕ*(a)

l ϕ(l)

Pl {Pl}
Kl {Rl}
Rl {Rl}
Vl ϕ(l)

Al ∅
Bl ∅
UPl {Rl}
URl ϕ(l)

• For λlx.e occurring in E:

a ϕ*(a)

Cl ∅
Ql {Ql}
Ml {Sl′ | e1 @l′ e2 occurs in E and l ∈ ϕ(L(e1))}
UQl {Sl′ | e1 @l′ e2 occurs in E and l ∈ ϕ(L(e1))}
Ul ϕ(Ul)

• For e1 @l e2 occurring in E:

a ϕ*(a)

Dl ∅
Sl {Sl}
Gl {Ql′ | l′ ∈ ϕ(L(e1))}
USl ϕ(l)

• For e0 →l e1, e2 occurring in E:

a ϕ*(a)

Jl {Jl}
UJl {Tl}
Fl ∅
H1
l {Tl}

H2
l {Tl}

N1
l ∅

N2
l ∅

Wl ∅
Tl {Tl}
UTl ϕ(l)

Informal justification of the cases of l, Ul , Ml , UQl , Gl , Vl in the definition of ϕ*

were given, explicitly or implicitly, in section 2. We will now provide some intuition

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 913

for the other cases. First notice that if L(E) = l, then

cps(E) = λXl k.[[E]] @Bl (λRl v.kYl @Zl vVl).

We are interested in the flow analysis of cps(E) in an empty context, so (λXl) is

never applied, and therefore

ϕ*(Yl) = ϕ*(Zl) = ϕ*(UXl) = ∅.

The initial continuation is (λRl v.kYl @Zl vVl), and since the flow information for the

result of applying it is the empty set, that is, ϕ*(Zl) = ∅, we have that (1) the

flow information for the result of applying any continuation is the empty set, so

ϕ*(Al) = ϕ*(Wl) = ∅; and (2) the flow information for the body of any continuation

is the empty set, so for all a ∈ {Cl, Bl , Dl , Fl , N1
l , N

2
l }, we have ϕ*(a) = ∅.

For the λ-abstractions occurring in cps(E), with labels Xl, Pl , Rl , Ql , Sl , Jl , Tl , we

have that for any label a in that list, ϕ*(a) = {a}.
Suppose L(e) = l. We have that [[e]] occurs in cps(E) as part of a subterm

[[e]] @Bl (λRl v. . . .),

and that

[[e]] = λPl k. . . .,

so the unique argument supplied to the λ-abstraction with label Pl is another

λ-abstraction with label Rl , hence ϕ*(UPl) = {Rl}. Notice that cps(E) contains the

redex

(λJlm. . . .) @Wl (λTl),

so ϕ*(UJl) = {Tl}. Finally, the cases of Kl,URl ,Ml, USl , UTl , H
1
l , H

2
l follow easily

from cases we have already explained.

One last definition: if ψ ∈ FlowDom(cps(E)) → Flow(cps(E)), then we let ψE
denote the restriction of ψ to FlowDom(E).

Both (·)* and (·)E can be computed in linear time. While this is immediate in the

case of (·)E , let us consider how it can be done in the case of (·)*. We can assume that

the labels in E are presented as numbers from an interval 1..n, and that we are given

the flow information ϕ ∈ FlowAnalysis(E) as an array over 1..n of linked lists of

labels. We also require each entry in the array to contain information about the

form of the syntax tree node the label stems from, and the labels of the immediate

descendants in the syntax tree. We will represent ϕ* as a two-dimensional array over

1..n and the 32 kinds of derived labels that we use in the definition of ϕ*. (The two-

dimensional array can easily be flattened to a one-dimensional array, if so desired.)

We fill the two-dimensional array during a single traversal of the representation of

ϕ. The main problem in computing ϕ* is to compute ϕ*(Ml) (which is equal to

ϕ*(UQl)), for an occurrence of λlx.e in E. This can be done by, for each label of

an occurrence of an application e1 @l′ e2, finding the entry ϕ(L(e1)), and for each

element of the list for ϕ(L(e1)), extending the list for Ml with Sl′ . This requires an

amount of work which for each application e1 @l′ e2 is linear in the size of ϕ(L(e1)),

so the total amount of work is linear in the size of ϕ.

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

914 J. Palsberg and M. Wand

We now present our main results.

Theorem 1 (Main Result)

If ϕ ∈ FlowAnalysis(E), then ϕ* ∈ FlowAnalysis(cps(E)). Moreover, if ψ ∈
FlowAnalysis(cps(E)), then ψE ∈ FlowAnalysis(E).

Proof

See Appendix A. �

Based on Theorem 1, we will from now on consider the two mappings (·)* and

(·)E to have the functionalities:

(·)* : FlowAnalysis(E) → FlowAnalysis(cps(E))

(·)E : FlowAnalysis(cps(E)) → FlowAnalysis(E),

and we will ignore that both were originally defined on larger domains.

The following theorem states two basic relationships between (·)* and (·)E . The first

part of the theorem says that (·)* followed by (·)E is the identity on FlowAnalysis(E).

The second part of the theorem says that if we (1) analyze cps(E), (2) restrict the

result to the source term E using (·)E , and then (3) build an analysis of cps(E)

using (·)*, then we get a result that is at least as good as the initial analysis

of cps(E). The reason is that (·)* chooses the best solution for the labels in

FlowDom(cps(E)) \ FlowDom(E).

Theorem 2

If ϕ ∈ FlowAnalysis(E), then (ϕ*)E = ϕ. Moreover, if ψ ∈ FlowAnalysis(cps(E)),

then (ψE)* ⊆ ψ.

Proof

See Appendix B. �

Both (·)* and (·)E are monotone functions, and since they satisfy Theorem 2, it

is an immediate consequence that they form a Galois connection, that is, for all

ϕ ∈ FlowAnalysis(E), and for all ψ ∈ FlowAnalysis(cps(E)), we have ϕ* ⊆ ψ if and

only if ϕ ⊆ ψE .

Theorem 3 (Main Result)

If ϕ is the least flow analysis of a program E, and ψ is the least flow analysis of

cps(E), then ϕ* = ψ and ϕ = ψE .

Proof

From ϕ being least we have ϕ ⊆ ψE . From ψ being least we have ψ ⊆ ϕ*. Since (·)*
and (·)E form a Galois connection, ϕ ⊆ ψE implies ϕ* ⊆ ψ. Hence ϕ* = ψ. From

that and Theorem 2 we have ψE = (ϕ*)E = ϕ. �

4 Flow types

We have shown that 0-CFA-style flow information can be maintained by CPS

transformation. This parallels the classical result that typability with simple types

can be maintained by CPS transformation. We will now show that typability with

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 915

flow types can be maintained by CPS transformation. Flow types have been studied

by Tang & Jouvelot (1994), Heintze (1995), Wells et al. (1997), and others. The idea

is that if an expression has the flow type

s
π→
σ
t

then π is a set of labels of λ-abstractions to which the expression can evaluate, and

σ is a set of labels of application points where those λ-abstractions can be applied.

We will consider flow types, in the style of Wells et al. (1997), generated by the

grammar:

t ::= α | t π→
σ
t,

where α ranges over a set of base types that includes boolean, and where π, σ range

over finite subsets of Lab. Among the types is a distinguished type o of answers. A

type environment is a partial function with finite domain which maps λ-variables to

types. We use the notation A[x : τ] to denote an environment which maps x to τ,

and maps y, where y 	= x, to A(y). A type judgment has the form A � e : t, and it

means that in the type environment A, the expression e has type t. Formally, this

holds when it is derivable by a finite derivation-tree using the rules below, taken

from Wells et al. (1997).

A[x : t] � x : t (1)

A[x : s] � e : t

A � λlx.e : s
π→
σ
t

(l ∈ π) (2)

A � e1 : s
π→
σ
t A � e2 : s

A � e1 @l e2 : t
(l ∈ σ) (3)

A � e0 : boolean A � e1 : t A � e2 : t

A � e0 →l e1, e2 : t
(4)

A � ql : boolean (5)

If σ ⊆ Lab, then we write Aσ = {Al | l ∈ σ}, and similarly for other unary

operations on Lab. We can now define a CPS transformation of flow types:

α* = α(
s
π→
σ
t
)*

= s*
π→
Gσ

(
t*

Sσ→
Cπ
o

)
Qπ→
Dσ
o.

Define also A*(x) = t* if A(x) = t.

Theorem 4

If A � e : t, then A* � [[e]] : (t*
{RL(e)}
–−→
{AL(e)}

o)
{PL(e)}
–−→
{BL(e)}

o.

Proof

By induction on the structure of the derivation of A � e : t. �

Notice that Theorem 4 corresponds to the first half of Theorem 1. We do not

have counterparts to the rest of our results for the untyped case.

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

916 J. Palsberg and M. Wand

5 Related work

Nielson (1982) showed for an imperative language that an analysis based on a

continuation semantics can be more precise than an analysis based on a direct

semantics. Similarly, Muylaert-Filho & Burn (1993) showed for a call-by-name

language that CPS transformation can improve an analysis.

Sabry & Felleisen (1994) concluded that the gain in precision in these examples is

solely due to the duplication of the analysis of continuations. For example, at a call

site and at a conditional the continuation may be duplicated for each possible path,

thereby enabling separate analysis for each copy. Thus a flow-insensitive analysis

of the transformed program corresponds to a flow-sensitive analysis of the original.

One contribution of the current paper is an attempt to separate the consequences

of the CPS transformation from those of this duplication.

Sabry & Felleisen (1994) gave an example in which a CPS transformation decreased

the precision of an analysis. They studied a CPS transformation for a call-by-value

language, together with a flow analysis. Their example program is:

(let (a1 (f 1)) (let (a2 (f 2)) a2))

where f is bound to λx.x. After their CPS transformation, the program becomes:

(f 1 (λa1.(f 2 (λa2.(k a2)))))

where f is bound to λx.λk1.(k1 x), and k is bound to a continuation. Before

CPS transformation the analysis finds that a1 is constant (= 1), while after CPS

transformation the analysis fails to find that information.

However, the analysis of Sabry and Felleisen is an operational abstract interpret-

ation of a program:

• For the source program, the analysis first reaches the call site (f 1), and at

this point x gets bound to 1, and thus a1 gets bound to 1. When the analysis

later reaches the call site (f 2), the new value for x becomes a merge of the

old value 1 and the new value 2. The value of a1 is unchanged.

• For the CPS program, the analysis first performs the call

(f 1 (λa1.(f 2 (λa2.(k a2)))))

where x gets bound to 1 and k1 gets bound to (λa1.(f 2 (λa2.(k a2)))). A little

later, the analysis performs the call (f 2 (λa2.(k a2))), the new value for x

becomes a merge of 1 and 2, and the new value for k1 becomes a set consisting

of both (λa1.(f 2 (λa2.(k a2)))) and (λa2.(k a2)). Finally, when the analysis in the

end performs the call (k1 x), the analysis applies each of the two continuations

to the value of x and merges the results. During that final call, both a1 and a2

get bound to the merge of 1 and 2.

Sabry and Felleisen state that ‘the loss of information is due to the confusion of

distinct procedure returns’ (Sabry & Felleisen, 1994). For example, the two calls (f 1)

and (f 2) become confused in the CPS program.

Our results suggest a different explanation, namely that the operational nature of

the Sabry–Felleisen analysis introduced flow-sensitivity into the analysis. We instead

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 917

use a monovariant, constraint-based flow analysis, and we get the same result for

corresponding program points in the two programs. If the analysis is monovariant,

then there is exactly one flow variable for each occurrence of an expression in the

program. There is no notion of ‘getting to (f 1) before getting to (f 2).’ In the source

program above, there is one flow variable for x and one flow variable for a1, and in

the least solution of the constraints, both will be assigned a merge of 1 and 2. Thus,

‘confusion of distinct procedure returns’ happens both when we use a monovariant

flow analysis on the source program and when we use it on the CPS program.

Our result supports the conclusion of Sabry and Felleisen that the improvement

in analysis in the transformed program is due to the duplication of program points.

Our result shows that using a CPS transformation that does not duplicate program

points leads to no improvement in the analysis.

While our CPS transformation preserves 0-CFA flow information, the situation

is different for binding-time analysis. Damian & Danvy (2000) showed that CPS

transformation does lead to improved binding-time information for a standard

notion of binding-time analysis. Notably, the improvement is not due to the

duplication of program points. Damian and Danvy also showed that for an enhanced

binding-time analysis, CPS transformation does not lead to improved binding-time

information.

6 Concluding remarks

It seems to be straightforward to extend our result to a language with more features.

Our experience is a good sign of that: we first proved our result for the language

without conditional expressions, while codifying and using the three guidelines for

the labeling of occurrences of subexpressions, and we then used the guidelines to

extend the result to conditional expressions. We found that the statement and proof

of Lemma 6 needed no change at all, and the proofs of the other lemmas could be

extended easily to cover the new cases.

Future work may include extending our results to polyvariant flow analysis,

and investigations of whether flow information is preserved by call-by-name CPS

transformations.

Acknowledgments

Thanks to Fritz Henglein and Didier Rémy for helpful discussions. Thanks to Bob

Muller and Joe Wells for the LATEX macro for formatting
π→
σ

. Palsberg was supported

by a National Science Foundation Faculty Early Career Development Award, CCR-

9734265. Wand was supported in part by the National Science Foundation under

grants CCR-9629801 and CCR-9804115.

Appendix A: Proof of Theorem 1

Theorem 1 follows immediately from Lemmas 5 and 7. The proof of Lemma 7 uses

Lemma 6. Lemma 6 is also used in Appendix B.

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

918 J. Palsberg and M. Wand

Lemma 5

If ϕ ∈ FlowAnalysis(E), then ϕ* ∈ FlowAnalysis(cps(E)).

Proof

We proceed by case analysis on the expressions in cps(E). Consider first an expression

in cps(E) of the form xl , bound by a λ-abstraction labeled l′. There are two

cases. If � ∈ FlowDom(E), then ϕ(Ul′) = ϕ(l), and from the definition of ϕ* we

have ϕ*(Ul′) = ϕ(Ul′) and ϕ*(l) = ϕ(l), so we conclude ϕ*(Ul′) = ϕ*(l). If l 	∈
FlowDom(E), then a straightforward case analysis of l shows that ϕ*(Ul′) = ϕ*(l).

Consider next the eight forms of λ-abstractions in cps(E). For λax.e, where

a ∈ {Xl, Pl , Rl , Ql , Sl , Jl , Tl}, it is immediate from the definition of ϕ* that a ∈ {a} =

ϕ*(a). The remaining case is

[[λlx.e]] = . . . (λlx. . . .)

By assumption we have l ∈ ϕ(l), and from the definition of ϕ* we have ϕ*(l) = ϕ(l),

so we conclude l ∈ ϕ*(l).

Consider next the eight forms of applications in cps(E):

kYL(E) @ZL(E) vVL(E) (6)

(λPl k.e′) @Bl (λRl) (7)

kKl @Al e′ (8)

[[e1 @l′ e2]] = . . . v1
VL(e1) @Gl′ v2

VL(e2) . . . (9)

[[e1 @l′ e2]] = . . .
(
v1
VL(e1) @Gl′ v

VL(e2)

2

)
@Dl′ (λSl′) . . . (10)

[[λlx.e′]] = . . . mMl @Cl vVL(e′) . . .) (11)

[[e0 →l e1, e2]] = . . . (λJlm.e′) @Wl (λTl) (12)

[[e0 →l e1, e2]] = . . . mH
i
l @Ni

l v
VL(ei)

i . . . , i ∈ {1, 2}. (13)

We consider each of them in turn:

• (6) We have ϕ*(YL(E)) = ∅, so ϕ* has the desired property.

• (7) We have ϕ*(Pl) = {Pl}. A case analysis of the possibilities for the body

e′ shows that L(e′) is of the form Aa, Ba, or Wa, hence ϕ*(L(e′)) = ∅. We

conclude ϕ*(Rl) = {Rl} = ϕ*(UPl) and ϕ*(L(e′)) = ∅ = ϕ*(Bl).

• (8) We have ϕ*(Kl) = {Rl}. A case analysis of the possibilities for the body,

say e′′, of the λ-abstraction with label Rl shows that L(e′′) is of the form

Za, Ba, Ca, Da, Fa, N
1
a , or N2

a , hence ψ*(L(e′′)) = ∅. Notice that the argument

e′ has the property L(e′) = l. We conclude ϕ*(l) = ϕ(l) = ϕ*(URl) and

ϕ*(L(e′′)) = ∅ = ϕ*(Al).

• (9) We have ϕ*(VL(e1)) = ϕ(L(e1)). Suppose l ∈ ϕ*(VL(e1)) and suppose that

in cps(E) we have (λlx.λQl) and that in E we have (λlx.e). From ϕ ∈
FlowAnalysis(E) and l ∈ ϕ(L(e1)) we have ϕ(L(e2)) ⊆ ϕ(Ul). We conclude

ϕ*(VL(e2)) = ϕ(L(e2)) ⊆ ϕ(Ul) = ϕ*(Ul) and ϕ*(Ql) = {Ql} ⊆ {Qa | a ∈
ϕ(L(e1))} = ϕ*(Gl′).

• (10) We have ϕ*(Gl′) = {Ql | l ∈ ϕ(L(e1))}. Suppose Ql ∈ ϕ*(Gl′), hence l ∈
ϕ(L(e1)). In cps(E) we have (λQlm.e) and we have ϕ*(L(e)) = ∅. We conclude

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 919

ϕ*(Sl′) = {Sl′ } ⊆ {Sl′ | e1 @l′ e2 occurs in E and l ∈ ϕ(L(e1))} = ϕ*(UQl) and

ϕ*(L(e)) = ∅ = ϕ*(Dl′).

• (11). We have ϕ*(Ml) = {Sl′ | e1 @l′ e2 occurs in E and l ∈ ϕ(L(e1))}. Suppose

Sl′ ∈ ϕ*(Ml). In cps(E) we have (λSl′ v.kKl′ @Al′ vl
′
). From ϕ ∈ FlowAnalysis(E)

and l ∈ ϕ(L(e1)) we have ϕ(L(e′)) ⊆ ϕ(l′). We conclude ϕ*(VL(e′)) = ϕ(L(e′)) ⊆
ϕ(l′) = ϕ*(USl′) and ϕ*(Al′) = ∅ = ϕ*(Cl).

• (12) We have ϕ*(Jl) = {Jl}. Moreover, L(e′) = BL(e0), hence ϕ*(L(e′)) = ∅. We

conclude ϕ*(Tl) = {Tl} = ϕ*(UJl) and ϕ*(L(e′)) = ∅ = ϕ*(Wl).

• (13) Suppose i ∈ {1, 2}. We have ϕ*(Hi
l) = {Tl}. The body, say e′′, of the

λ-abstraction with label Tl satisfies L(e′′) = Al , hence ϕ*(L(e′′)) = ∅. From

ϕ ∈ FlowAnalysis(E) we have ϕ(L(ei)) ⊆ ϕ(l). We conclude ϕ*(VL(ei)) =

ϕ(L(ei)) ⊆ ϕ(l) = ϕ*(UTl).

Consider finally conditionals in cps(E):

[[e0 →l e1, e2]] = . . . →Fl (. . .@BL(e1) . . .), (. . .@BL(e2) . . .) . . .

We have ϕ*(BL(ei)) = ∅ = ϕ*(Fl), where i ∈ {1, 2}. �

Lemma 6

If ψ ∈ FlowAnalysis(cps(E)), and l is a label of an occurrence of a subterm of E,

then ψ(l) ⊆ ψ(Vl).

Proof

For each l which labels an occurrence of a subterm of E, we have in cps(E) the

expressions:

[[e]] @Bl (λRl) (14)

kKl @Al e′ (15)

where L(e) = L(e′) = l. From L([[e]]) = PL(e) = Pl and (14) we have Rl ∈ ψ(Rl) ⊆
ψ(UPl). We have that kKl is bound by a λ-abstraction with label Pl , so ψ(UPl) = ψ(Kl).

From Rl ∈ ψ(UPl) = ψ(Kl) and (15) we have ψ(l) ⊆ ψ(URl). The variable occurrence

labeled Vl is bound by a λ-abstraction labeled Rl , so ψ(URl) = ψ(Vl). We conclude

ψ(l) ⊆ ψ(URl) = ψ(Vl). �

Lemma 7

If ψ ∈ FlowAnalysis(cps(E)), then ψE ∈ FlowAnalysis(E).

Proof

We proceed by case analysis on the expressions in E. Consider first an expression in

E of the form xl , bound by a λ-abstraction labeled l′. We have

[[xl]] = . . . xl . . .

where xl is bound in cps(E) by a λ-abstraction labeled l′, so we have ψ(Ul′) = ψ(l),

hence ψE(Ul′) = ψE(l).

Consider next an expression in E of the form λlx.e. We have

[[λlx.e]] = . . . (λlx. . . .) . . .

so we have l ∈ ψ(l), hence l ∈ ψE(l).

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

920 J. Palsberg and M. Wand

Consider next an expression in E of the form e1 @l′ e2. Suppose we have λlx.e in

E such that l ∈ ψE(L(e1)). We need to show:

ψE(L(e2)) ⊆ ψE(Ul)

ψE(L(e)) ⊆ ψE(l′).

We have in cps(E) the expressions:

[[e1 @l′ e2]] = . . . v1
VL(e1) @Gl′ v2

VL(e2) . . . (16)

[[e1 @l′ e2]] = . . .
(
v1
VL(e1) @Gl′ v

VL(e2)

2

)
@Dl′ (λSl′ v. . . . vl

′
. . .) . . . (17)

[[λlx.e]] = . . . mMl @Cl vVL(e) (18)

From Lemma 6 we have ψ(L(e1)) ⊆ ψ(VL(e1)). It follows that l ∈ ψE(L(e1)) =

ψ(L(e1)) ⊆ ψ(VL(e1)), so from (16) and the observation that the body of the λ-

abstraction labeled l is labeled Ql , we have ψ(VL(e2)) ⊆ ψ(Ul) and ψ(Ql) ⊆ ψ(Gl′).

From Lemma 6 we have ψ(L(e2)) ⊆ ψ(VL(e2)), so ψE(L(e2)) = ψ(L(e2)) ⊆ ψ(VL(e2)) ⊆
ψ(Ul) = ψE(Ul). From Ql ∈ ψ(Ql) ⊆ ψ(Gl′) and (17) we have ψ(Sl′) ⊆ ψ(UQl).

The variable occurrence labeled Ml is bound by a λ-abstraction labeled Ql , so

ψ(UQl) = ψ(Ml). It follows that Sl′ ∈ ψ(Sl′) ⊆ ψ(UQl) = ψ(Ml), so from (18) we

have ψ(VL(e)) ⊆ ψ(USl′). From Lemma 6 we have ψ(L(e)) ⊆ ψ(VL(e)). The variable

occurrence labeled l′ is bound by a λ-abstraction labeled Sl′ , so ψ(USl′) = ψ(l′). We

conclude ψE(L(e)) = ψ(L(e)) ⊆ ψ(VL(e)) ⊆ ψ(USl′) = ψ(l′) = ψE(l′).

Consider finally an expression in E of the form e0 →l e1, e2. For i ∈ {1, 2}, we

have

ψE(L(ei)) = ψ(L(ei)) L(ei) ∈ FlowDom(E)

⊆ ψ(VL(ei)) Lemma 6

⊆ ψ(UTl) mH
i
l @Ni

l v
VL(ei)

i , Tl ∈ ψ(Hi
l)

= ψ(l) vl is bound by λTl

= ψE(l) l ∈ FlowDom(E).

�

Appendix B: Proof of Theorem 2

It is straightforward to show that if ϕ ∈ FlowAnalysis(E), then (ϕ*)E = ϕ. We will

now prove that if ψ ∈ FlowAnalysis(cps(E)), then (ψE)* ⊆ ψ.

Proof

Suppose a ∈ FlowDom(cps(E)) and l ∈ FlowDom(E). We proceed by case analysis

on a.

• If a ∈ {Xl, Pl , Rl , Ql , Sl , Jl , Tl}, then (ψE)*(a) = {a}. Since a is the label of a

λ-abstraction we have a ∈ ψ(a). We conclude (ψE)*(a) ⊆ ψ(a).

• If a ∈ {Yl, Zl, UXl , Al , Bl , Cl , Dl , Fl , N
1
l , N

2
l ,Wl}, then (ψE)*(a) = ∅ ⊆ ψ(a).

• If a ∈ {l, Ul}, then (ψE)*(a) = ψ(a).

• If a ≡ Vl , then from Lemma 6 we have (ψE)*(a) = ψ(l) ⊆ ψ(a).

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 921

• If a ≡ Gl and e1 @l e2 occurs in E, then (ψE)*(a) = {Ql′ | l′ ∈ ψE(L(e1))}.
Suppose Ql′ ∈ (ψE)*(a). From Lemma 6 we have l′ ∈ ψE(L(e1)) = ψ(L(e1)) ⊆
ψ(VL(e1)). In cps(E) we have the expression

v
VL(e1)

1 @Gl v
VL(e2)

2

and since the body of the λ-abstraction in cps(E) labeled l′ is labeled Ql′ , we

have ψ(Ql′) ⊆ ψ(Gl). We have Ql′ ∈ ψ(Ql′), so we conclude Ql′ ∈ ψ(Gl).

• If a ≡ UQl and λlx.e occurs E, then

(ψE)*(a) = {Sl′ | e1 @l′ e2occurs in E andl ∈ ψE(L(e1))}.

Suppose Sl′ ∈ (ψE)*(a), such that e1 @l′ e2 occurs in E. In cps(E) we have

[[e1 @l′ e2]] = . . . (v
VL(e1)

1 @Gl′ v
VL(e2)

2) @Dl′ (λSl′)

and we have established already that Ql ∈ ψ(Gl′). This gives Sl′ ∈ ψ(Sl′) ⊆
ψ(UQl).

• If a ≡ UPl , then (ψE)*(a) = {Rl} and we have in cps(E)

[[e]] @Bl (λRl)

where L([[e]]) = Pl . It follows that Pl ∈ ψ(L([[e]])), so Rl ∈ ψ(Rl) ⊆ ψ(UPl).

• If a ≡ UJl , then (ψE)*(a) = {Tl} and we have in cps(E):(
λJ

l

. . . .
)
@Wl (λTl).

It follows that Tl ∈ ψ(Tl) ⊆ ψ(UJl).

• If a ∈ {Kl,URl ,Ml, USl , UTl , H
1
l , H

2
l }, then there is also a related label b ∈

FlowDom(cps(E)), namely UPl , Vl , UQl , l, l, UJl , UJl , respectively, such that

(ψE)*(a) = (ψE)*(b) and such that we have already established above that

(ψE)*(b) ⊆ ψ(b). Moreover, ψ(a) = ψ(b). To see that in the case of a ≡ Kl and

b ≡ UPl , notice that Kl is the label of a variable bound by a λ-abstraction

labeled Pl , so ψ(UPl) = ψ(Kl). Similar remarks apply to the other six cases.

We conclude (ψE)*(a) = (ψE)*(b) ⊆ ψ(b) = ψ(a).

�

In the last item of the above proof, notice that if the constraint for a variable

occurrence were an inclusion rather than an equality, then our proof technique would

not work. For example, if a ≡ URl and b ≡ Vl , then we would have ψ(URl) ⊆ ψ(Vl)

rather than ψ(URl) = ψ(Vl), so we would only derive ψ(b) ⊇ ψ(a).

Appendix C: Equalities versus inclusions

A full-blown flow analysis of E is a total mapping

ϕ : FlowDom(E) → Flow(E)

which is defined in the same way as a flow analysis of E, except that for each

xl occurring in E and bound by a λ-abstraction labeled l′, we have ϕ(Ul′) ⊆ ϕ(l)

(rather than ϕ(Ul′) = ϕ(l)).

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

922 J. Palsberg and M. Wand

Theorem 8

For a program E, let ϕ′ be the ⊆-least full-blown flow analysis, and let ϕ be the

⊆-least flow analysis. We have ϕ′ = ϕ.

Proof

First notice that every flow analysis is also a full-blown flow analysis. Hence, ϕ′ ⊆ ϕ.

Second, define

ϕ′′(l) =



ϕ′(Ul′) for xl occurring in E and

bound by a λ-abstraction labeled l′

ϕ′(l) otherwise.

Since ϕ′ is a flow analysis of E, we have that for any xl occurring in E and bound

by a λ-abstraction labeled l′, ϕ′ satisfies ϕ′(Ul′) ⊆ ϕ′(l), so ϕ′′ ⊆ ϕ′.

To see that ϕ′′ is a flow analysis of E, notice ϕ′′ satisfies the constraints for

variable occurrences. Notice also that in the remaining constraints, if xl occurs in E,

then ϕ′′(l) occurs in constraints of the form ϕ′′(l) ⊆ ϕ′′(l′) for some l′, or ϕ(l) may

be used in a conditional statement of the form

if a ∈ ϕ′′(l), thenϕ′′(l′) ⊆ ϕ′′(l′′),

for some l′, l′′. Thus, from the definition of ϕ′′ and ϕ′ being a flow analysis of E, we

have that ϕ′′ is a flow analysis of E.

Since ϕ is the ⊆-least flow analysis of E, we have that ϕ ⊆ ϕ′′.

Putting it all together, we have that

ϕ′′ ⊆ ϕ′ ⊆ ϕ ⊆ ϕ′′,

so ϕ′ = ϕ. �

References

Appel, A. W. (1992) Compiling with Continuations. Cambridge University Press.

Damian, D. and Danvy, O. (2000) Syntactic accidents in program analysis: On the impact of

the CPS transformation. Proceedings of ICFP’00, ACM SIGPLAN International Conference

on Functional Programming, pp. 209–220.

Damian, D. and Danvy, O. (2001) CPS transformation of flow information, part II: Adminis-

trative reductions. Technical report RS–01–40, BRICS, University of Aarhus.

Danvy, O. and Filinski, A. (1992) Representing control, a study of the CPS transformation.

Math. Struct. Comput. Sci. 2(4), 361–391.

Danvy, O., Malmkjær, K. and Palsberg, J. (1996) Eta-expansion does the Trick. ACM Trans.

Program. Lang. Syst. 18(6), 730–751.

Heintze, N. (1995) Control-flow analysis and type systems. Proceedings of SAS’95, International

Static Analysis Symposium: Lecture Notes in Computer Science 983, pp. 189–206. Springer-

Verlag.

Heintze, N. and McAllester, D. (1997) Linear-time subtransitive control flow analysis.

Proceedings of ACM SIGPLAN 1997 Conference on Programming Language Design and

Implementation, pp. 261–272.

Meyer, A. R. Wand, M. (1985) Continuation semantics in typed lambda-calculi. Proceedings of

Logics of Programs: Lecture Notes in Computer Science 193, pp. 219–224. Springer-Verlag.

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

CPS transformation of flow information 923

Muylaert-Filho, J. and Burn, G. (1993) Continuation passing transformation and abstract

interpretation. Proceedings 1st Imperial College, Department of Computing, Workshop on

Theory and Formal Methods.

Nielson, F. (1982) A denotational framework for data flow analysis. Acta Informatica, 18,

265–287.

Palsberg, J. (1995) Closure analysis in constraint form. ACM Trans. Program. Lang. Syst. 17(1),

47–62. (Preliminary version in Proceedings of CAAP’94, Colloquium on Trees in Algebra and

Programming: Lecture Notes in Computer Science 787, pp. 276–290. Springer-Verlag.)

Palsberg, J. (1998) Equality-based flow analysis versus recursive types. ACM Trans. Program.

Lang. Syst. 20(6), 1251–1264.

Palsberg, J. and O’Keefe, P. M. (1995) A type system equivalent to flow analysis. ACM Trans.

Program. Lang. Syst. 17(4), 576–599. (Preliminary version in Proceedings of POPL’95, 22nd

Annual SIGPLAN–SIGACT Symposium on Principles of Programming Languages, pp. 367–

378. San Francisco, CA, January 1995.)

Palsberg, J. and Pavlopoulou, C. (2001) From polyvariant flow information to intersection

and union types. J. Functional Program. 11(3), 263–317. (Preliminary version in Proceedings

of POPL’98, 25th Annual SIGPLAN–SIGACT Symposium on Principles of Programming

Languages, pp. 197–208. San Diego, CA, January 1998.)

Palsberg, J. and Schwartzbach, M. I. (1994) Object-oriented Type Systems. Wiley.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci. 1,

125–159.

Sabry, A. and Felleisen, M. (1994) Is continuation-passing useful for data flow

analysis? Proceedings of SIGPLAN’94 Conference on Programming Language Design and

Implementation, pp. 1–12.

Tang, Y. M. and Jouvelot, P. (1994) Separate abstract interpretation for control-flow analysis.

Proceedings of TACS’94, Theoretical Aspects of Computing Software: Lecture Notes in

Computer Science 789, pp. 224–243. Springer-Verlag.

Wand, M. (1985) Embedding type structure in semantics. Proceedings POPL’85, 12nd Annual

Symposium on Principles of Programming Languages, pp. 1–6.

Wand, M. and Williamson, G. B. (2002) A modular, extensible proof method for small-

step flow analyses. In: Métayer, D. L., editor, Proceedings of ESOP 2002, 11th European

Symposium on Programming, ETAPS 2002: Lecture Notes in Computer Science 2305, pp. 213–

227. Grenoble, France. Springer-Verlag.

Wells, J. B., Dimock, A., Muller, R. and Turbak, F. (1997) A typed intermediate language

for flow-directed compilation. Proceedings TAPSOFT’97, Theory and Practice of Software

Development: Lecture Notes in Computer Science 1214. Springer-Verlag.

https://doi.org/10.1017/S0956796802004513 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004513

