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ON SOME GENERALIZATION OF INEQUALITIES 
OF OPIAL, YANG A N D SHUM 

BY 

CHENG-SHYONG LEE 

1. Introduction. In 1960, Z. Opial [20] proved the following interesting 
integral inequality: 

THEOREM A. If u is a continuously differentiable function on [0, ft], and if 
u(0) = u(b) = 0, and u(x)>0 for x e (0, b), then 

(1) f \u(x)u'(x)\dx<%\ [u'(x)Ydx 

where the constant b/4 is the best possible. 
Equality holds in (1) if and only if 

u(x) = cx, for 0 < x < -
2 

and 

u(x) = c(b-x), for - < x < 6 , 

where c is a constant. 

At the same time, C. Olech [19] showed that (1) is valid for any function 
u(x) which is absolutely continuous on [0, b], and satisfies the boundary 
conditions w(0) = u(b) = 0. 

C. Olech also pointed out that in order to prove (1) is suffices to prove the 
following: 

THEOREM B If u is an absolutely continuous function on [0, b], and if 
w(0) = 0, then 

(2) [b \u(x)\ \u'(x)\ dx < M [u'(x)T dx 
J0 2 J0 

where b/2 is the best possible constant. 
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72 CHENG-SHYONG LEE [ M a r c h 

In 1962, P. R. Beesack, [3], gave a different proof of Opial's inequality, and 
showed that (2) is contained in the following: 

THEOREM C If u is an absolutely continuous function on [0, b], and if 
u(0) = 0, then 

J | u (x ) | | u ' ( x ) | dx+M \{2 \\u(t)\\u'(t)\dt-[u(x)Y}dx 
Jo 2 J0 x J0 

(3) b 

< - [u'(x)]2dx. 

Equality in (3) hoZds i/ and on/y if u(x) = cx, c being a constant. Since 

g l(x) = 2 f X | u ( 0 l k ' ( 0 l ^ - [ u ( x ) ] 2 ^ 0 . 
Jo 

(3) gave an improvement of (2). 

In 1966, G. S. Yang, [27], proved the following theorems which are the 
generalization of Z. Opial's inequality and some extensions of P. R. Beesack's: 

THEOREM D-l ([27]; Theorem 3). Let l(x) be positive on a < x < X with 
J^/_1(x) dx <o°? and let s(x) be bounded, positive and non-increasing on a < x < 
X; u(x) be any function which is absolutely continuous on a < x < X with 
u(a) = 0. Then 

(4) 2Ï s(x)\u(x)\\u'(x)\dx<[ r\x)dx[ l(x)s(x)uf(x)2 dx. 
•>a •'a Ja 

There is equality only if s = constant, u = Aj^Z-1(t) dt, A being a constant. 

THEOREM D-2 ([27]; Theorem 3'). Let l(x) be positive on X < x < b with 
j"x'_1(x) dx<<*>, and let s(x) be bounded, positive and non-decreasing on X < 
x < b ; u(x) be any function which is absolutely continuous on X < x < b with 
u(b) = 0. Then 

J
mb rb rb 

s(x) \u(x)\ \u'(x)\ dx < l~x(x) dx l(x)s(x)uf(x)2 dx. 
x Jx Jx 

Equality in (5) hoWs only if s = constant, u = B J^ _ 1(0 df with constant B. 

THEOREM E ([27]; Theorem 6). 1/ u(x) is absolutely continuous on a<x<b 
with u(a) = w(b) = 0, then 

(6) [ b | M | p | M r d j c < _ i _ ( ^ y fb|u'|p-^dx, p,q>l. 
Ja p + q \ 2 / Ja 

In a recent paper [24], D. T. Shum gave a generalization of Theorem C as 
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following: 

THEOREM F ([24]; Theorem 4). Let u be an absolutely continuous function on 
[a, 6], and u(a) = 0. I / p > 0 , and Jal"1P + 1 dx<*>, then 

(7) fb i„|p |Ml dx+^i r -BM- dx j±^i p , u r , dx 
l P + l I (x-a)p + 1 p + 1 Ja 

where 

g2(x) = (p + l) [ \u\"\u'\dt-\u(x)\p+1(^0)(a^x<b). 

If either p < - l and both $b
a\u\p \u'\dx<*> and |u'|p+1 dx<™\ or - K p < 0 

•'a 

and Ja |w|p \u'\ dx<™, the reverse inequality holds. 
For p > 0, equality holds in (7) if and only if u(x) = c(x — a), for some constant 

c; for p<—1, equality never holds; for — K p < 0 , equality holds if and only if 
u(x) = c(x — a), for some constant c^O. 

The method of the proof of (7) (Theorem F) was first used by Benson [6], 
and was modified by Shum [23; 24]. 

D. T. Shum [24] also stated that the inequality (7) with p > 0, can further be 
generalized as following: 

THEOREM G ([24]; (15)). With the conditions of Theorem F (7), if s is positive 
and non-increasing on (a, b) with —c°<a<b<°° and fcs lM1P + 1 dt<<*>, then 

(8) 
(p+D r , ,p| ,,, , r s(x) 

: 0 T - 7 [Xs\u\p\u'\dt-\u(x)\p+1)dx< [ s\u'\p+1dx. 
ls(x) Ja J Ja 

The well-known inequality of Z. Opial had led to numerous articles (see, e.g. 
[3]-[10], [12]-[21] and [24]-[27]). The object of this paper is to give a 
generalization of Theorem D-l , Theorem D-2, Theorem E, Theorem F and 
Theorem G in Section 3. 

We also note that, in [25], Shum had combined Benson's method ([6]) with 
that of Bessack's ([2]-[5]) to get some inequalities, which also gave a further 
generalization of Opial's inequality. 

2. Preliminary lemmas 

LEMMA 1. Let l(t) be positive on a<t<x with fcl~q(t) dt<™. If u is abso­
lutely continuous on [a, b] with u(a) = 0, and if s is positive and non-increasing 
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on [a, b], then, for all a < x < b, p> -q , q > 1, 

(9) g,M = (—)''(JV''(<)<i<)''~' 

• ([>-•«) w,)r.(o-i.'(.)r*)-i«(.r-.(.r»!o. 

Equality holds in (9) i/ and on/y i/ u' does not change sign on [a, b], 
s = constant and u(x) = k(S^l~Q(t)dt)q/(p+xl) with constant k. 

Proof. Since 

(-^—) |u(x)|(p+q)/q = I f *u p / V dt\ < fX \u\p/(i \u'\ dt. 
\p + q/ IJa I Ja 

By Holder's inequality ([12], p. 81; or [22], p. 113). We have 

( - J - ) |u(x)|(p+q)/« < (p (0~ q df) " q(pW**-1* |M(0|P |u'(0lq dr)1/q. 

Now, with the fact that s is positive and non-increasing on [a, b], we obtain 

(-4-)sW|M(x)| (p+q) /q 

\p + qJ 

a x x ( q - l ) / q / /-x v i / q 

/(r)-q dtj ( I /(0q(q_1)s(0q W(t)\p |u'(r)|q Aj 
that is 

( - J - J W iw(x)rq ^ ( p c r q dt)q 1Qxi(ofl("-i)s(oq iw(oip kwiq A) 

which proves our result. 
Before giving to second lemma, we first state two elementary algebraic 

inequalities [1; 11; 12; or 18, p. 30]. If q > 0 , then 

(10) q s p + q + p f p + q - ( p + q)s qf p>0, for all p > 0 ; or p<-q. 

(11) q s p + q + p f p + q - ( p + q)s q r p <0, for all - q < p < 0 . 

Here, s and t are nonnegative (positive if p<—q), and in both cases strict 
inequality holds unless s = t. (We also note that when p = 0 or p = -q , the left 
sides of both (10) and (11) become identically zero for all s and t). 

LEMMA 2. Let v(x) be absolutely continuous on [a, j3] with t / (x )>0 , a.e. 
Also, suppose that Q(x) is nonnegative a.e. and measurable on [a, |3], and 
G(v,x) is continuously differentiate for xe[a, j3] and v in the range of the 
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function v(x) with Gv(v, x )>0 .* (or Gv(v,x)>0 in case p < 0 ) , then, if the 
integrals exist and q > 0 , we have 

(12) [ [q(v'Yp+q)/qQ + p(GJ (p+« ) /pQ-« /p + (p + q)Gx] dx 

>(p + q){G(t)((3),/3)-G(t)(«),«)}, ( p > 0 ; or p <-<}). 

(13) [ [q(t/) (p+q) /qQ + p(GJ ( p + q ) / p Q- q / p +(p + q)Gx]<ix 
•'a 

< (p + q){G(u(|3), 0) - G(u(a), a)}, (-q < p <0) , 

where 

G. - — (G(t>, x)), Gx = — (G(i>, x)). 
du ' ôx 

Equality in both (12) and (13) fioids if and only if the differential equation 

(14) v' = {GJQf* 

is satisfied almost everywhere. 

Proof. By taking s = (i/)1/qQ1/ (p+q), t = (GJ1 /pQ-q /Cp(p+q) ] in (10), we have 
almost everywhere, 

q (v'fp+q)/qQ + p(GJ ( p + q ) / pQ~q / p > (p + q)t/G„. 

This implies that 

q(vT+Q)/qQ + p(GJ ( p + q ) / pQ- q / p + (p + q)Gx ^ ( p + q) ( £ (G(t>, x))). 

Which proves (12) by integrating both sides of the above inequality from a to 

0-
The proof of (13) follows from the above argument, by using (11) instead of 

(10). 
The proof of (14) follows at once from the fact that s = t. 

3. Main results. 

THEOREM 1-1. Let l(x) be positive on a < x < X with fâl(x)~Q dx<°°, and let 
s(x) be positive and nonincreasing on a < x < X ; u(x) be any function which is 
absolutely continuous on a < x < X with u(a) = 0. Then, for all p ^ O , q > l . 

(15) (p + q ) f J q ( q - V M w N w 1 q d x < q ( [ l~qdxY([ ! q ( p + q - 1 ) s q | i i ? + q dxY 

* (We note that in case p + q = 2n with n a positive integer, the restriction i / (x)>0, a.e. and 
Gv(v, x ) > 0 may be removed). 
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There is equality if and only if u' does not change sign on [a, X], sis a positive 
constant function, q = 1 and u(x) = A féi(t)-q dt with constant A. 

Proof. Define z(x) = £I(0q ( q _ 1 )s(0q 2 / ( p + q ) |u'(t)|q dt, a < x < X , then z'(x) = 
/(x)q(q-1)s(x)q2/(p+q) |u'(x)|q. Since 

( |*x \ ( q - D / q / px \ 1/q 

J i(t)-qdtj (J ^ ^ - ^ ' ( O N t j 
and s(x) is positive and non-increasing on a < x < X , we have 

fX x [p(q-l)]/q 

This implies that 

(p + q) I iq<q-1)s"|u|p |w' |qdx 
•'a 

/ |-X \ [p(q-l)]/q f X 

^ ( P + l ) ( *~qdx] zp / qz'dx 

a < x < X. 

aX \ [p(q~l ) ] /q 

l-«dx\ z(X) (p+q) /q 
[p (q - l ) ] /q / r X \ (P+q)/fl aX \ LpCq-DJ/q/ r X v 

/-qdxj ( I /q(q-1}sq2/(p+q)|ii'NxJ 
By Holder's inequality, the result (15) follows immediately. 

We note that (4), (Theorem D-l) , is a special case of (15), by taking 
p = q = l. We also note that Theorem 1-1 give an extension of Beesack's 
Theorem ([3]). 

THEOREM 1-2. Let l(x) be positive on X<x<b with Jx/(x)~q dx<<*>, and let 
s(x) be positive and non-decreasing on X<x<b; u(x) be any function which is 
absolutely continuous on X < x < b with u(b) = 0. Then, for all p ^ O , q>\. 

(16) (p + q) [ i(x)q(q-1)s(x)q |w(x)|p |w'(x)Nx 
Jx 

< q ( f ? (x)- q dxY([ /(x)q(p+q-1)s(x)q |w'(x)|p+qdxY 

There is equality if and only if u' does not change sign on [X, b], s is a positive 
constant function, q = 1 and u(x) = Bfcl(t)~q dt with constant B. 

Proof. Define z(x)= -J^(t)q ( q-1 )s(t)q 2 / ( p + q ) |u'(0lq dt, X < x < b , then 
z'(x) = /U)q(q_1)s(x)q2/(p+q) |w'(x)|q, for all X < x < b . Since 

a b \ ( q - l ) / q / çb \ 1/q 

/(0"qdt) (I l(Oq<q_1)l"'N*) 
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and s(x) is positive and non-decreasing on X < x < b ; we have 

a b \ [ p ( q - D ] / q 

/(x)~q dxj (-z(x))p/q, X < x < 6. 
This implies that 

(p + q) [ I(x)q(q-1)s(x)q |u(x)|p |u f(x)|qdx 
Jx 

a b \ [p(q- l ) ] /q / /»b \ 

a b \ [ p ( q - l ) ] / q / rb \ (p+q)/q 

/ - q dxj M /q(q-1)sq2/(p+q) |w1qdH 
By Holder's inequality, we get (16) immediately. 

We note that (5), (Theorem D-2), is a special case of (16), by taking 
p = q = 1. We also note that Theorem 1-2 gives a generalization of Beesack's 
Theorem ([3]). 

THEOREM 2. Let l(x) be positive on a < x < f e with j£Z(x)~qdx<o°. Lef K = 
d x ' t o - q dx)p = (J*/(*)~q dtf for some Xe[a, b]. If u is an absolutely continuous 
function on [a, fe] with u(a) = u(b) = 0, and if s(x) is a positive and non-
increasing on [a, X] and nondecreasing on [X, 6], tfien, /or a// p ^ O , q ^ l , 

(17) (p + q) [b/q(q~1)sq |u|p \u'\qdx<qK [ ^ « ^ V |u'|p+qdx. 
•'a •'a 

Equality holds in (17) i/ and on/y i/ u' does not change sign on [a, X] and on 
[X, b], respectively, s is a positive constant function, q = 1 and u = Afcl(i)~q dt if 
x G [a, X], and u = B^l(t)~q dt if x e [X, b]. A, B being a constant. 

Proof. If we take Xe[a, b] such that K = ( & r q dx)p - (J*rq dx)p in (15) 
and (16) of Theorem 1-1 and Theorem 1-2, respectively, (17) follows im­
mediately. 

We note that (6), (Theorem E) is a special case of (17), by taking X = 
(a + b)/2, p > 1, q > 1, and s and / be a positive constant function. 

THEOREM 3. Let l(x) be positive on a^x^b with J ^ ( ^ ) ~ q ^ < 0 ° - If u is an 
absolutely continuous function on [a, b] with u(a) = 0, and if s(x) is a positive 
and non-increasing on [a, 6], and J^q ( p + q _ 1 )sq |u'|p+q dt <oo, fhen, /or all p > 0 , 

q1-p(p + q)C(p+q)(q-1)]/q f /q(p+q-1)5q |w , |p+qdx 

<18> ^^Vvwi , , . , * ! ' -^ , , 
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where g3(x) is defined in (9) (Lemma 1). If —q<p<0, q ^ l , and 
jbjq(q-i)sq | u | P \u'\<* dx <<*>, the reverse inequality holds. 

For p > 0 , equality holds in (18) if and only if s = constant, u(x) = 
c(Ja/_qdOq/(p+q)(a")/q for some constant c; for - q < p < 0 , equality holds if and 
only if s = constant, u(x) = c(fcl~q Jt)q/(p+q)(c,1)q for some constant c ^ 0. 

Proof. By (15), Theorem 1-1, we have, for p > 0 , q^l, 

'(iv,4 
I P + q I 

Now, from (19) with b replaced by x, it follows that 

o m Hm / f f + \ p [Vq-V|u|PkNt = 0, (p>0,q>l). 
(20) x ^ / r r q d \ ja 

Now, let u(x) = £ r , < q - i y , | M | p | u ' N t , Q - 1 ^ " ^ ^ sP(P + q)~ [ p ( q~1 ) ]V^P> 
and G = u(J*rq d0"p . Then from (12) with [a, |8] replaced by [a, b], we obtain, 
for p > 0, q > 1, and a < a < 6, 

q1~p(p + q)Cp<q_1 ) ] /q f f q ( p + q - 1 ) s q |u ' | p + q dx 

+ ^ I lito-Vs" \u\p \uVdx 

(21) 

f iq ( q" 

(f ̂ 4 " 
P + q f b , n f a - n n l . . n , , . „ , . • • M " (b K x ) - q g 3 ( x ) j x - f iq(q-x )sq |u|p lu' |qdx + /

 M * . f 

Now, on taking limits as a-> a+ on both sides of the above inequality, one 
obtains (18) by using (20). On noting thatg3(x) is nonnegative by Lemma 1, so 
that both integrals on the right side of (18) exist (finite). 

The proof of the case —q <p < 0 is essentially the same as above except that 
of (12) we now use (13). 

The proof of the equality condition begins by employing (14) in (21) and are 
similar to those used in [23, 24]. 

We note that by taking q = 1 and s and / be a positive constant function, 
parts of Theorem F is a special case of Theorem 3. We also note that if q = 1, 
p > 0 , and I is a positive constant function, we may deduce Theorem G. 

THEOREM 4. Let l(x) be positive on a < x < b with JaI - qdx<o°. If u is an 
absolutely continuous function on [a, b] with u(a) = 0, and if s is a positive and 
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non-increasing on [a,b], and both Ja/"'" -1^" \u\p |u'|"dx<<» and 
jb /q(P+<,-iy |u' |p+qdx<oo. Then, for all p<-q, q > l . 

where 

ft3(x) = (P+ <?)([ l^dtX [ / « « " V |M|P lu'l^df-sCxr \u(x)\p+q (<0). 

TTte equality condition never holds. 

Proof. Let u(x)= [ l^-^s" \u\p \uf dt, Q-1 = \ufpip+")V<>spl'p, and G = 
•'a 

u(Ja^~q df)~p, then, from (12) with [a, |3] replaced by [a, fe], we obtain 

(23) J a 7 U ' 
_ - ( p + q) - [ ^ " " s " |u|p |u' |qdx + q f /««"-n-V |u' |p+qdx. 

Now, since p < - q , <J^1, it follows, from the definition of h3(x), that p h 3 > 0 , 
hence both limits on the left side of (23) exist as a—>a+, and the first limit is 
zero, since p < 0 , which proves the case p<—q without the equality condition. 
Thus, we get the result (22). 

Now, by combining Theorem 3 and Theorem 4, we may deduce Theorem F 
on setting q = l, and s and / be a positive constant function on [a, 6]. 
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