A REMARK BY PHILIP HALL

G. de B. Robinson

The relationship between the representation theory of the full linear group GL(d) of all non-singular linear transformations of degree d over a field of characteristic zero and that of the symmetric group S_n goes back to Schur and has been expounded by Weyl in his <u>classical groups</u>, [4; cf also 2 and 3]. More and more, the significance of continuous groups for modern physics is being pressed on the attention of mathematicians, and itseems worth recording a remark made to the author by Philip Hall in Edmonton.

As is well known, the irreducible representations of S_n are obtainable from the Young diagrams $[\lambda] = [\lambda_1, \lambda_2, \ldots, \lambda_r]$ consisting of λ_1 nodes in the first row, λ_2 in the second row, etc., where $\lambda_1 \ge \lambda_2 \ge \ldots \ge r$ and $\lambda_i = n$. If we denote the jth node in the ith row of $[\lambda]$ by (i, j) then those nodes to the right of and below (i, j), constitute, along with the (i, j) node itself, the (i, j)-hook of length h_{ij} .

The notion of a hook arose first in the modular theory, but the significant formula (1) for the degree f^{λ} of $[\lambda]$:

(1)
$$f^{\lambda} = n!/H^{\lambda}$$
,

where $H^{\lambda} = \prod h_{ij}$ for all (i,j) in [λ], indicates its role in the ordinary representation theory of S_n . The proof of (1) is immediate when one recognizes that certain factors in Frobenius formula [3, 4.34] for f^{λ} may be cancelled, leaving just the h_{ij} 's in the denominator.

Professor Hall remarked that a similarly simple formula holds for the degree δ^{λ} (d) of the irreducible representation $\langle \lambda \rangle$ of GL(d) corresponding to [λ]. If we set

and assume that $d \ge r$, then we may add d - r null rows to $[\lambda]$ and divide out [3, 4.41] as before to obtain the relation

Can. Math. Bull., vol. 1, no. 1, Jan. 1958

21

(2)
$$\delta^{\lambda}(d) = C^{\lambda}(d)/H^{\lambda},$$

where $C^{\lambda}(d) = \prod C_{ij}$, for all (i,j) in $[\lambda]$.

<u>Example</u>. In order to calculate the degree of the irreducible representation [3,2] of S₅ we write h_{ij} in place of the (i,j) node, yielding

so that $H^{3,2} = 24$ and $f^{3,2} = 5!/24 = 5$. The degree of the corresponding irreducible tensor representation $\langle 3,2 \rangle$ of GL(d) is obtained from the C_{ij} :

so that $\delta^{3,2}(d) = d^2(d^2-1)(d+2)/24$. A more familiar example is the case n = 2, in which the symmetric tensor is of degree $\frac{1}{2}d$ (d+1) and the skew symmetric tensor of degree $\frac{1}{2}d(d-1)$.

The formula (2) suggests the possibility of expressing the character of the tensor representation $\langle \lambda \rangle$, i.e. the Schur function $\{\lambda\}$ directly in terms of the elementary symmetric functions $S_p = \sum \alpha_i^p$ The usual expression

(3)
$$\left\{\lambda\right\} = \frac{1}{n!} \sum h_{\rho} \chi^{\lambda}_{\rho} S_{\rho} , \quad S_{\rho} = S_1^a S_2^b S_3^c \dots ,$$

where n = a+2b+3c+..., involves the characters χ_{ρ}^{λ} of S_n but if [λ] is a hook representation of the form [n-r, 1^r], then (2) can be made to yield (3) without involving character explicity. Using the Frobenius symbol $\binom{a_i}{b_i}$ for [λ] and the formula [2, XII p.112]:

 $\{\lambda\} = |\{ 1 + a_j, 1^{b_i}\}|$

we have an alternative approach to (3).

REFERENCES

1.	J.S. Frame, G. de B. Robinson, R.M. Thrall,
	<u>The hook graphs of S</u> _n , Can. J. Maths. 6 (1954), 316-324.
2.	D.E. Littlewood, <u>The</u> <u>Theory of</u> <u>Group</u> <u>Characters</u> , (Oxford, 1940).
3.	F.D. Murnaghan, <u>The Theory of Group Representation</u> , (Baltimore, 1938).

4. H. Weyl, <u>The Classical Groups</u>, (Princeton, 1946).

University of Toronto