VOL. 4 (1971), 247-254.

Certain non-algebras in harmonic analysis

Lynette M. Butler

Given $q_{0} \in[1,2)$, functions $f=f_{q_{0}} \in \prod_{p>1} A^{p}$ and $g_{q}=g_{q, q_{0}} \in A^{q}$ are constructed such that $f g_{q} \notin A^{q}$ for every $q \in\left[1, q_{0}\right]$. In particular, if $p \in(1,2), A^{p}$ is not an algebra.

1. Introduction and preliminaries

We consider functions on the circle group T and write

$$
A^{p}=C \cap F \mathcal{F}^{p}, \quad 1 \leq p<\infty,
$$

where C denotes the set of continuous functions on T and

$$
F Z^{P}=\left\{f \in L^{1}(T): \hat{f} \in Z^{P}(Z)\right\}
$$

In private correspondence with the author, Professor Yitzhak
Katznelson suggested in outline a proof that A^{p} is not an algebra when $1<p<2$, and has since formulated existential proofs of more general results. Meanwhile the author has concentrated on a more constructive approach, the details of which are set out below. The author would like to thank Professor Katznelson for suggesting the use of the polynomials D_{n} and P_{v}^{*} introduced below, and the form of Lemma 1.1.

It is known that A^{p} is a Banach space under the norm

$$
N_{p}: h \rightarrow\|h\|_{\infty}+\|\hat{h}\|_{p}=\|h\|_{\infty}+M_{p}(h)
$$

Received 13 November 1970. Communicated by R.E. Edwards.

We define e_{ν} to be the function $e^{i t} \rightarrow e^{i v t}$ on T and note that, for $h \in A^{p}$,

$$
\begin{equation*}
N_{p}\left(e_{v} h\right)=N_{p}(h) ; M_{p}\left(e_{v} h\right)=M_{p}(h) . \tag{1.1}
\end{equation*}
$$

The spectrum of $h \in L^{1}(T)$ is defined by

$$
\mathrm{sp}(h)=\{n \in Z: \hat{h}(n) \neq 0\}
$$

Throughout the following we assume that $p \in(1,2), q \in[1,2)$. a_{1}, a_{2}, \ldots will denote positive absolute constants. If φ and ψ are positive functions on $\{1 ; 2, \ldots\}$, we write $\varphi \sim \psi$ iff $0<\inf \varphi^{-1} \psi \leq \sup ^{-1} \psi<\infty$.

If D_{n} denotes the Dirichlet kernel of degree n,
(1.2) $\left\|D_{n}\right\|_{\infty}=2 n+1 \sim n ; \quad M_{p}\left(D_{n}\right)=(2 n+1)^{\frac{1}{p}} \sim n^{\frac{1}{p}} ; \quad M_{p}\left(D_{n}^{2}\right) \sim n^{1+\frac{1}{p}}$.

In [1], p. 33, the Rudin-Shapiro polynomials $P_{m}(m=0,1,2, \ldots)$
are defined by

$$
P_{m}=\sum_{n=0}^{2^{m}-1} \varepsilon_{m}(n) e_{n}
$$

where the $\varepsilon_{m}(n) \in\{-1,1\}$ are chosen in such a way that

$$
\left|P_{m}\right| \leq 2^{\frac{m+1}{2}} ; \quad M_{p}\left(P_{m}\right)=2^{\frac{m}{p}}, \quad m=0,1,2, \ldots .
$$

We shall use the polynomials $P_{v}^{*}(\nu=1,2, \ldots)$, where $P_{v}^{*}=P_{m}$ for the unique m such that $2^{m} \leq v<2^{m+1}$. Then

$$
\begin{equation*}
\left\|P_{v}^{*}\right\|_{\infty} \leq 2^{\frac{m+1}{2}}=2^{\frac{1}{2}} 2^{\frac{m}{2}} \leq 2^{\frac{1}{2} \frac{1}{2}} v^{2} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{p} \geq M_{p}\left(P_{v}^{*}\right)=2^{\frac{m}{p}}>\left(\frac{v}{2}\right)^{\frac{1}{p}}=2^{-\frac{1}{p} \frac{1}{p}} \tag{1.4}
\end{equation*}
$$

The following lemma will be needed.
LEMMA 1.1 (Katznelson). Let s be a positive integer, φ a trigonometric polynomial of degree less than s, and ψ any trigonometric polynomial. Write $\Psi_{(2 s)}: e^{i t} \rightarrow e^{i 2 s t}$. Then

$$
M_{p}\left(\varphi \psi_{(2 s)}\right)=M_{p}(\varphi) M_{p}(\psi)
$$

Proof. We can write

$$
\theta=\varphi \psi(2 s)=\sum_{m \in Z} \hat{\psi}(m) e_{2 s m^{\varphi}}
$$

a finite sum. Also, $e_{2 s m^{\prime}}{ }^{\varphi}$ and $e_{2 s m^{\prime}} \varphi$ have disjoint spectra whenever $m \neq m^{\prime}$. Thus, by (1.1),

$$
\begin{aligned}
\left(M_{p}(\theta)\right)^{p} & =\sum_{m \epsilon Z}|\hat{\psi}(m)|^{p}\left(M_{p}\left(e_{2 s m^{\varphi}}\right)\right)^{p} \\
& =\sum_{m \epsilon Z}|\hat{\psi}(m)|^{p}\left(M_{p}(\varphi)\right)^{p} \\
& =\left(M_{p}(\varphi)\right)^{p}\left(M_{p}(\psi)\right)^{p} .
\end{aligned}
$$

2. Construction

Let $f_{n, p}=D_{n} P_{m_{1}}^{*}\left(2 s_{1}\right)$ and $g_{n, p, q}=D_{n} P_{m_{2}}^{*}\left(2 s_{2}\right)$, where
$m_{1}=\left[n^{\frac{2(p-1)}{2-p}}\right], \quad m_{2}=\left[\frac{2(q-1)}{2-q}\right]$ and the choice of s_{1}, s_{2} will be specified below.

If $s_{1}>n$, Lemma 1.1 and (1.2) - (1.4) show that

$$
\begin{align*}
N_{p}\left(f_{n, p}\right) & \leq a_{1}\left(n m_{1}^{\frac{1}{2}}+n^{\frac{1}{p}} \frac{1}{p} t_{1}\right) \\
& \leq a_{2} n^{\frac{1}{2-p}} \tag{2.1}
\end{align*}
$$

Similarly, if $s_{2}>n$,

$$
\begin{equation*}
N_{q}\left(g_{n, p, q}\right) \leq a_{3} n^{\frac{1}{2-q}} \tag{2.2}
\end{equation*}
$$

Again, if $s_{2}>2 n+2 s_{1} m_{1}$ and $s_{1}>2 n$,

$$
\begin{aligned}
M_{q}\left(f_{n, p, q}\right) & =M_{q}\left(D_{n}^{2} p_{m_{1}}^{*}\left(2 s_{1}\right)^{P_{m_{2}}^{*}\left(2 s_{2}\right)}\right) \\
& =M_{q}\left(D_{n}^{2}\right) M_{q}\left(P_{m_{1}}^{*}\left(2 s_{1}\right)\right) M_{q}\left(P_{m_{2}}^{*}\left(2 s_{2}\right)\right)
\end{aligned}
$$

Taking $s_{1}=4 n$ and $s_{2}=4 n+16 n m_{1}$, we have

$$
\begin{equation*}
M_{q}\left(f_{n, p} g_{n, p, q}\right) \geq a_{4} n^{k} \tag{2.3}
\end{equation*}
$$

where

$$
\kappa=\frac{8 q-4-2 q^{2}+p q^{2}-5 p q+4 p}{q(2-p)(2-q)}
$$

From (2.1), (2.2) and (2.3),

$$
\begin{equation*}
\frac{M_{q}\left(f_{n, p^{g_{n, p, q}}}\right)}{N_{p}\left(f_{n, p}\right) N_{q}\left(g_{n, p, q}\right)} \geq a_{5} n^{\sigma} \tag{2.4}
\end{equation*}
$$

where

$$
\sigma=\frac{(p-1)(2-q)}{q(2-p)}>0
$$

We next estimate the size of $\operatorname{sp}\left(f_{n, p}\right)$ and $\operatorname{sp}\left(g_{n, p, q}\right)$:

$$
\begin{gathered}
\operatorname{sp}\left(f_{n, p}\right) \subseteq\left[-n, n+2 s_{1} m_{1}\right] \\
\operatorname{sp}\left(g_{n, p, q}\right) \subseteq\left[-n, n+2 s_{2} m_{2}\right]
\end{gathered}
$$

Thus, according to the choice of s_{1} and s_{2} specified above,

$$
\begin{equation*}
\operatorname{sp}\left(f_{n, p}\right) \cup \operatorname{sp}\left(g_{n, p, q}\right) \subseteq\left[-n, n\left(1+8 n^{p}+32 n^{\tau}\right)\right] \tag{2.6}
\end{equation*}
$$

where

$$
\rho=\frac{2(q-1)}{(2-q)}, \quad \tau=\frac{6(p+q)-4(p q+2)}{(2-q)(2-p)}
$$

Define

$$
f_{n}^{\circ}=\frac{n^{-2} f_{k(n), p(n)}}{N_{p(n)}\left(f_{k(n), p(n)}\right)}
$$

$$
g_{n, q}^{\circ}=\frac{\beta(n, q) g_{k(n)}, p(n), q}{N_{q}\left(g_{k}(n), p(n), q\right.},
$$

where

$$
k(n)=2^{n^{2}}, \quad p(n)=1+\frac{1}{2 n}, \quad B(n, q)=2^{-\frac{1}{2}\left(\frac{2-q}{2 q}\right) n}
$$

Then (2.4) gives

$$
\begin{align*}
M_{q}\left(f_{n}^{0} g_{n, q}^{0}\right) & \geq a_{5} n^{-2} 2^{\psi}, \text { where } \psi=\frac{(2-q)(2 n+1)}{4 q\left(2-\frac{1}{n}\right)} \tag{2.6}\\
& \rightarrow \infty \text { as } n \rightarrow \infty
\end{align*}
$$

Since N_{p} is a decreasing function of p, the formula

$$
N_{p}\left(f_{n}^{0}\right)=\frac{n^{-2} N_{p}\left(f_{k(n), p(n)}\right)}{N_{p(n)}\left(f_{k(n), p(n)}\right)}
$$

shows that to any $p>1$ corresponds $n_{0}(p)$ such that

$$
\begin{equation*}
N_{p}\left(f_{n}^{\circ}\right) \leq n^{-2} \text { for } n \geq n_{o}(p) \tag{2.7}
\end{equation*}
$$

Also,

$$
\begin{equation*}
N_{q}\left(g_{n, q}^{0}\right)=\beta(n, q) \tag{2.8}
\end{equation*}
$$

Finally, let $f_{n}=e_{\nu_{n}} f_{n}^{0}, g_{n, q}=e_{\nu_{n}} g_{n, q}^{0}$, where the integers $\nu_{n}=\nu_{n, q_{0}}$ will be chosen appropriately, and consider

$$
\begin{equation*}
f=f_{q_{0}}=\sum_{n=1}^{\infty} f_{n}, \quad g_{q}=g_{q, q_{0}}=\sum_{n=1}^{\infty} g_{n, q} \tag{2.9}
\end{equation*}
$$

By (1.1) and (2.7),

$$
\begin{aligned}
N_{p}(f) & \leq \sum_{n=1}^{\infty} N_{p}\left(f_{n}\right) \\
& =\sum_{n=1}^{\infty} N_{p}\left(f_{n}^{\circ}\right) \\
& \leq \sum_{n=1}^{n_{0}(p)} N_{p}\left(f_{n}^{0}\right)+\sum_{n>n_{0}(p)} n^{-2} \\
& <\infty \text { for all } p>1,
\end{aligned}
$$

and so $f \in \bigcap_{p>1} A^{p}$. Similarly, by (1.1) and (2.8),

$$
\begin{aligned}
N_{q}\left(g_{q}\right) & \leq \sum_{n=1}^{\infty} N_{q}\left(g_{n, q}\right) \\
& =\sum_{n=1}^{\infty} N_{q}\left(g_{n, q}^{0}\right) \\
& \leq \sum_{n=1}^{\infty} B(n, q) \\
& <\infty,
\end{aligned}
$$

and so $g_{q} \in A^{q}$ for $1 \leq q<2$.
By (2.9),

$$
f g_{q}=\sum_{r, s} f_{r^{r}} g_{s, q}
$$

(2.10)

$$
=f_{m} g_{m, q}+\sum_{(r, s) \pm(m, m)} f_{r} g_{s, q} .
$$

Let

$$
\begin{align*}
F_{n, q_{0}} & =u\left\{\operatorname{sp}\left[f_{n}^{0}\right] \cup \operatorname{sp}\left[g_{n, q}^{0}\right]: q \leq q_{0}\right\} \tag{2.11}\\
& =u\left\{\operatorname{sp}\left(f_{k}(n), p(n)\right) \cup \operatorname{sp}\left(g_{k(n), p(n), q}\right): q \leq q_{0}\right\} .
\end{align*}
$$

Then, for $q \leq q_{0}$,

$$
\operatorname{sp}\left(f_{n}\right) \cup \operatorname{sp}\left(g_{n, q}\right) \subseteq v_{n, q_{0}}+F_{n, q_{0}},
$$

and

$$
\operatorname{sp}\left(f_{r} g_{s, q}\right) \subseteq v_{r, q_{0}}+F_{r, q_{0}}+v_{s, q_{0}}+F_{s, q_{0}}
$$

Moreover, (2.5) and (2.11) show that $F_{n, q_{0}}$ is finite. Supposing the $v_{n, q_{0}}$ to be chosen to satisfy

$$
\left\{\begin{array}{r}
\left(v_{m, q_{0}}+F_{m, q_{0}}+v_{m, q_{0}}+F_{m, q_{0}}\right) \cap\left(v_{r, q_{0}}+F_{r, q_{0}}+v_{s, q_{0}}+F_{s, q_{0}}=\varnothing\right. \tag{2.12}\\
\quad \text { whenever }(r, s) \neq(m, m)
\end{array}\right.
$$

then, for every $q \leq q_{0},\left(f g_{q}\right)^{\wedge}$ and $\left(f_{m} g_{m, q}\right)^{\wedge}$ will agree on the support of the latter, and (2.10) will show that

$$
\begin{aligned}
\left(M_{q}\left(f g_{q}\right)\right)^{q} & \geq\left(M_{q}\left(f_{m} g_{m, q}\right)\right)^{q} \\
& =\left(M_{q}\left(f_{m}^{0} g_{m, q}^{\circ}\right)\right)^{q}
\end{aligned}
$$

the last step by (1.1). Hence, by (2.6),

$$
M_{q}\left(f g_{q}\right)=\infty \quad \text { for } \quad 1 \leq q \leq q_{0}
$$

Reverting to (2.12) it is simple to check that (omitting explicit reference to q_{0}) it suffices to choose $v_{l} \in Z$ freely, and to make a choice by recurrence to satisfy

$$
v_{n+1} \in Z \backslash F_{n}^{\prime}\left(v_{1}, \ldots, v_{n} ; q_{0}\right), 2 v_{n+1} \in Z \backslash F_{n}^{\prime \prime}\left(v_{1}, \ldots, v_{n} ; q_{0}\right)
$$

where
$F_{n}^{\prime}\left(u_{1}, \ldots, u_{n} ; q_{0}\right)=\bigcup_{i \leq n}\left(u_{i}^{+E} i_{i, q_{0}}+F_{n+1, q_{0}}^{\left.-F_{n+1}, q_{0}^{-F_{n+1}, q_{0}}\right)}\right.$

$$
u \operatorname{u}_{\substack{\leq n \\ j \leq n}}\left(2 u_{i}-u_{j}+F_{n+1, q_{0}}^{+F_{n+1}, q_{0}}{ }_{i, q_{0}}^{\left.-F_{j, q_{0}}\right), ~}\right.
$$

$F_{n}^{\prime \prime}\left(u_{1}, \ldots, u_{n} ; q_{0}\right)=\underset{i \leq j \leq n}{u}\left(u_{i}+u_{j}+F_{i, q_{0}}+F_{j, q_{0}}^{-F_{n+1}, q_{0}}-F_{n+1}, q_{0}\right)$, for every $n \in N$ and every $\left(u_{1}, \ldots, u_{n}\right) \in 2^{n}$.

REMARK. The preceding simple construction encounters difficulties if one tries to handle all $q<2$ in one move. This is because the sets $F_{n}=U\left\{\operatorname{sp}\left(f_{n}^{\circ}\right) \cup \operatorname{sp}\left(g_{n, q}^{\circ}\right): q<2\right\}$ are infinite and it is no longer clear that integers v_{n} can be chosen so that the analogue of (2.12) is satisfied. On the other hand, in one of the stronger existential results mentioned in §1, Professor Katznelson indicates that the existence of $f \in \bigcap_{p>1} A^{p}$ and $g_{p} \in F Z^{p} \quad(1 \leq q<2)$ satisfying $f g_{q} \notin F Z^{q}(1 \leq q<2)$ follows on combining (2.4) with convexity and category arguments.

Reference

[1] Yitzhak Katznelson, An introduction to harmonic analysis (John Wiley, New York, London, Sydney, Toronto, 1968).

School of General Studies,
Australian National University, Canberra, ACT.

