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Impact Statement: What are the biggest consequences of climate change for marine 14 

ecosystems? Is it deoxygenation, thermal stress, ocean acidification, or any combination 15 

thereof? The Permian-Triassic climate crisis was an episode of severe and rapid climate 16 

warming with similarities to the worst-case projected scenarios for the near future. To better 17 

understand which consequences of this climate event led to one of the most severe biodiversity 18 

crisis ever, we implemented a novel approach of statistically integrating high-resolution fossil 19 

data with high-resolution geochemical data. Our results demonstrate that for equatorial, marine 20 

ecosystems, oxygen isotope (temperature proxy) and cadmium isotope (primary productivity 21 

proxy) dynamics best explain the marine extinction. This suggests that the biggest threats to 22 

past and modern biodiversity in these settings are the impacts of thermal and nutrient stress, as 23 

well as associated trophic knock-on effects. 24 

Abstract: The Permian-Triassic climate crisis can provide key insights into the potential impact 25 

of horizon threats to modern-day biodiversity. This crisis coincides with the same extensive 26 

environmental changes that threaten modern marine ecosystems (i.e., thermal stress, 27 

deoxygenation and ocean acidification), but the primary drivers of extinction are currently 28 

unknown. To understand which factors caused extinctions, we conducted a data analysis to 29 

quantify the relationship (anomalies, state-shifts and trends) between geochemical proxies and 30 

the fossil record at the most intensively studied locality for this event, the Meishan section, 31 

China. We found that δ18Oapatite (paleotemperature proxy) and δ114/110Cd (primary productivity 32 

proxy) best explain changes in species diversity and species composition in Meishan’s 33 

paleoequatorial setting. These findings suggest that the physiological stresses induced by 34 

ocean warming and nutrient availability played a predominant role in driving equatorial marine 35 

extinctions during the Permian-Triassic event. This research enhances our understanding of the 36 

interplay between environmental changes and extinction dynamics during a past climate crisis, 37 

presenting an outlook for extinction threats in the worst-case “Shared Socioeconomic Pathways 38 

(SSP5-8.5) scenario. 39 

Keywords:  Permian, Triassic, mass extinction, climate crisis, thermal stress, invertebrates 40 
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Main text 41 

Introduction: The most distinct and widely acknowledged causes of extinction in marine 42 

ecosystems today are pollution, habitat loss, overexploitation, introduction of invasive species 43 

and climate change (Bonebrake et al., 2019; IPBES 2019). Understanding how these threats 44 

will reduce populations or drive species to extinction is a core component of modern-day 45 

conservation and policymaking. One issue is that horizon threats, like climate change, occur on 46 

global and centennial scales that are much broader in scope than knowledge that can be 47 

acquired using modern-day datasets alone (Bonebrake et al., 2019). The rock record, however, 48 

provides the only record of long-term biotic responses from disturbances and information on 49 

ecosystem re-establishment, which is now a priority in the Intergovernmental Panel on Climate 50 

Change (IPCC 2021; Kiessling et al., 2023; Finnegan et al., 2023). We can, therefore, use 51 

different hyperthermal events of the past, to provide key information on how horizon threats 52 

operate at community, ecosystem, and even biome levels. 53 

The Permian-Triassic climate crisis is an exceptionally rapid warming event (around 8-12°C rise 54 

in 60 ± 48 ka at low latitudes) from the latest Permian into the Early Triassic (late Griesbachian) 55 

(Joachimski et al., 2012; 2020; Sun et al., 2012; Chen et al., 2016; Gliwa et al., 2022). This 56 

climate crisis is thought to have been caused by the simultaneous eruptions of the Siberian 57 

Traps Large Igneous Province and the combustion of organic-rich sedimentary rocks (Burgess 58 

and Bowring 2015), leading to a large and rapid injection of CO2 and volatiles into the 59 

atmosphere (Svenson et al., 2009; Joachimski et al., 2022). This event is also associated with 60 

the Permian-Triassic mass extinction, the most catastrophic mass extinction on Earth, which 61 

was highly selective against taxonomic groups that dominated pre-extinction marine 62 

communities (Foster et al., 2022a, 2023a), with an estimated loss of 81-96% of species (Erwin 63 

1993; Stanley 2016). Multiple environmental perturbations occurred simultaneously during the 64 

climate crisis, making it difficult to disentangle which specific environmental changes were most 65 

significant in causing the extinctions. In addition, environmental stressors can interact in 66 

antagonistic or synergistic ways, where one stressor could reduce the impact of another or 67 

where a multiple of stressors can lead to an additive response (Benton, 2018; Penn et al., 68 

2018). Furthermore, the drivers of extinction are expected to be spatially heterogeneous, as 69 

factors such as carbonate saturation state and the polar amplification of climate warming lead to 70 

heterogeneous patterns (Feldl and Merlis, 2021). Therefore, it is not unequivocally known 71 

exactly which factors played a major role in causing the biodiversity crisis. This lack of 72 
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understanding is also due to the poor geographical coverage of continuous Permian-Triassic 73 

successions and the small number of sections that have been investigated at a high-resolution 74 

with multiple proxies for environmental and biodiversity changes. 75 

Along the Meishan Hill, Zhejiang, China, a Permian-Triassic succession extends 2 km laterally 76 

and has been the subject of many paleontological and geochemical studies (Chen et al., 2015), 77 

which combined make the Meishan composite section the only place that can currently be 78 

quantitatively investigated to better understand which environmental proxies relate to 79 

biodiversity loss. In addition, Meishan’s Permian-Triassic succession has a well-defined 80 

stratigraphic framework with each bed and sub-bed numbered allowing accurate correlations 81 

between studies performed over the last 3 decades. In contrast, other regions with a rich 82 

paleontological and geochemical record for the Permian-Triassic transition, such as the 83 

Dolomites in Italy, do not yet have the same clear stratigraphic scheme or diversity in analyses 84 

that makes studies like this one possible. During the Permian-Triassic transition, the Meishan 85 

section represent an outer slope setting in an equatorial (ca. 20°N) epicontinental sea (Yin et al., 86 

2001). This means that the Meishan section can provide an analog into the causes of extinction 87 

during an extreme climate crisis for equatorial, shallow marine ecosystems (i.e., for the worst-88 

case Shared Socioeconomic Pathways (SSP5-8.5) scenario, which predicts a total temperature 89 

increase of 3.3 to 5.7°C by 2100 (IPCC 2021)). Here, we have conducted a data analysis by (a) 90 

creating a database of the fossil record to define the timing of extinction among different marine 91 

taxa and (b) assembling a database of 18 geochemical proxies (Fig. 1, Table S1) for different 92 

environmental changes from the Meishan section that have been hypothesized to have had a 93 

critical role in the marine extinctions and (c) quantitatively investigating which environmental 94 

changes associated with the climate crisis best explain the marine extinctions. 95 

 96 

Figure 1. Schematic of the paleoenvironmental setting, indicating the inorganic 97 

geochemical proxies that were selected to investigate the role of different environmental 98 
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changes at Meishan. Data comes from: δ7Li (Sun et al., 2012), δ13Ccarb (Shen et al., 2013), 99 

δ13Corg (Cao et al., 2009) supplemented at beds 23-38 with (Huang et al., 2007) and (Sial et al., 100 

2021), δ15N (Cao et al., 2009), δ18Oapatite (J. Chen et al., 2016), ∆33S and δ 34S (Shen et al., 101 

2011), δ44/40Caapatite (Hinojosa et al., 2012), δ66Zncarb (Liu et al., 2017), 87Sr/86Srapatite (Song et al., 102 

2015), Th/Uapatite, ΩCeapatite, (Song et al., 2012), δ114/110Cd (Zhang et al., 2018), 187Os/188Os (Liu 103 

et al., 2020), Hg/TOC (Sial et al., 2021), FeHR/Fetot and Fepy/FeHR (Xiang et al., 2020). The 104 

bathymetry follows Zhang et al. (1997) at the time of the Permian/Triassic boundary. 105 

 106 

Materials and Methods: 107 

Fossil Data 108 

Using the Geobiodiversity Database (http://www.geobiodiversity.com), Paleobiology Database 109 

(https://paleobiodb.org) and a literature search, we constructed a database of all known fossil 110 

occurrences from the Meishan section that spans from the Longtan Formation (Wuchiapingian) 111 

to the Nanlinghu Formation (Dienerian). The wide breadths of these time intervals were chosen 112 

to reduce the impact of edge effects. The clades included in the dataset were the Arthropoda, 113 

Brachiopoda, Bryozoa, Chlorophyta, Chordata, Cnidaria, Foraminifera, Mollusca, Radiolaria, 114 

Rhodophyta, and Problematica. The occurrences were manually vetted to ensure that 115 

typographic errors were corrected, so species did not appear with multiple spellings, and to 116 

ensure that individual species were not represented within multiple genera in the database due 117 

to taxonomic synonymy, in which case the most up-to-date species identification was followed. 118 

Freshwater and palynomorph fossils were removed. 119 

To calculate the stratigraphic range of each species, occurrences of species with open 120 

nomenclature (“”, ?, aff., cf., informal) were taken into account. In older references from the 121 

Meishan section, the beds do not have the same stratigraphic subdivision as today and the 122 

occurrence of a specimen is considered present in all respective sub-beds. These occurrences 123 

that were not specified to a single bed/ sub-bed as recognized in this study were subsequently 124 

excluded, as for them the timing of extinction is poorly constrained. 125 

The resulting database included 603 species from 6457 occurrences. 126 

Inorganic Geochemical Data 127 
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To investigate changes in environmental conditions, we downloaded the raw datasets of 128 

inorganic geochemical proxies for the Meishan section. We initially obtained all the articles for 129 

each proxy investigated for the Meishan section. Where multiple records of a single proxy were 130 

collected, we selected the most robust record, i.e., we avoided mixing datasets collected from 131 

the same beds by different studies and selected the most extensive record. The resulting 132 

dataset included 18 proxies (Table S1; Figs. S1-S4). The sample heights were standardized 133 

according to the Permian/Triassic boundary, with 0 cm marking the base of bed 27c. Data from 134 

the Meishan core, which is located 550 m west of the Meishan section D (GSSP section), were 135 

scaled to correlate with the section from Meishan D as the beds demonstrate considerable 136 

thickness variations. 137 

Statistical analysis 138 

Determining the patterns of extinction can be confounded by subjective interpretations and by 139 

the Signor-Lipps effect. Therefore, to quantify the nature of extinction, here we used a modified 140 

version of the two-step extinction pulse algorithm of Wang and Zhong (2018) (See also 141 

extended materials and methods).  142 

To quantitatively determine the number of breakpoints in the segmented regression analysis, 143 

the selgmented() function from the segmented package was used (Muggeo et al., 2014). The 144 

segmented() function was then used to statistically determine where these breakpoints occur for 145 

each geochemical proxy. For data imputation of the geochemical data, a segmented regression 146 

was used because (a) it is less affected by anomalous data points, (b) estimates are based 147 

upon overall trends in the data, (c) it does not assume that a relationship between different 148 

proxies exists, and (d) it recognizes significant shifts in data trends and is more dynamic than a 149 

single regression model (see also Figs. S5-S6). 150 

We applied GLMs with a Poisson distribution to test the effects of multiple geochemical proxies 151 

on changes of species richness through the study interval. Only proxies that showed significant 152 

correlations with species richness were included in the model, and model selection was carried 153 

out by exploring the value inflated factors and factors that are highly correlated were 154 

successively dropped from the model. This resulted in two GLMs, one where δ114/110Cd was 155 

dropped because it highly correlated with δ18Oapatite, and vice versa. 156 

To investigate relationships between fossil incidence data and geochemical proxies, we carried 157 

out a partial-distance based redundancy analysis using the Jaccard distance measure. Model 158 
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selection was carried out using value inflated factors, and factors that are highly correlated were 159 

successively dropped from the model. Variables that were insignificant in explaining incidence 160 

data dynamics using a permutation test for partial-dbrda were also dropped from the final 161 

model. 162 

All analyses were carried in R v.3.4.3. Data and relevant code for this research work are stored 163 

and publicly available in GitHub: https://github.com/wjf433/QMEI 164 

Results 165 

Nature of the mass extinction event 166 

The nature of the Permian-Triassic mass extinction is hotly debated and has been interpreted 167 

either as a single pulse, interval or a two-pulsed extinction (Jin et al., 2000; Shen S-Z et al., 168 

2011; Song et al., 2014; Wang et al., 2014). Quantifying the number of pulses of extinction, 169 

which considers confidence intervals of stratigraphic ranges (Figs. 2, S7-S11), demonstrates 170 

that the nature of the mass extinction is complex and varies between different phyla. Near the 171 

Permian/Triassic boundary, the traditional extinction horizon (bed 25) (Wang et al., 2014) marks 172 

numerous last occurrences (LAD), leading to composition shifts (Figs. 2, S7-S11). Our analysis 173 

shows, however, that a single pulse of extinction (the final LADs) occurs at bed 28 for mollusks 174 

and bed 29a for foraminifera, brachiopods, and conodonts (Fig. 2). Ostracods, instead, record 175 

two earlier pulses of extinction at beds 23a and 24d (Fig. 2), the latter coinciding with a 176 

sequence boundary. The species richness of the remaining groups is too low to detect the 177 

timing of extinction, but the highest occurrences do not occur above bed 27c. This suggests that 178 

the nature of the mass extinction event at Meishan, except for ostracods, is best characterized 179 

as an extinction interval (51 cm), from beds 25 to 29a (C. meishanensis – I. isarcica conodont 180 

zones). Such an interpretation is also relatively consistent with a stark reduction in bioturbation 181 

and tiering depth at the base of bed 25 (Zhao and Tong 2010).  182 

On the contrary, ostracods record an earlier major extinction interval from beds 22-23a and a 183 

subsequent minor pulse at bed 24d (Crasquin et al., 2010), suggesting that this group of 184 

organisms were more sensitive to initial environmental changes or responded to different 185 

environmental changes prior to the main extinction interval. When the timing of extinction is 186 

investigated with all the species included, the mass extinction event is consistent between the 187 

different data splits, with a 2-pulse event at beds 23a and 29a, with bed 23a reflecting the 188 

selective extinction of ostracods (Table S2). In addition to the extinction interval that spans the 189 
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Permian/Triassic boundary, ostracods, mollusks, brachiopods, and conodonts also record a 190 

minor extinction pulse earlier in the Changhsingian (beds 9 and 12, Fig. 2). 191 

 192 

Figure 2. Stratigraphic ranges of fossil species (vertical lines) from the Meishan section. 193 

Stratigraphic ranges of (A) foraminifera, (B) arthropods (all ostracods, except 1 trilobite species), 194 

(C) brachiopods, (D) mollusks, (E) conodonts, and (F) other (includes: bryozoans, corals, 195 

calcareous algae, and Tubiphytes). Quantitatively determined extinction pulses for each phylum 196 

indicated (horizontal red line). Singletons are excluded from the figure and from determining the 197 

number of extinction pulses. Bed numbers and sedimentology follows Zhang et al. (1997) and 198 

Yin et al. (1995). 0 meters is taken as the base of bed 27c, which is the biostratigraphic position 199 

of the Permian/Triassic boundary that is defined by the first appearance of Hindeodus parvus 200 

(Yin et al., 2001). W. = Wuchiapingian, Ind. = Induan, Yink. = Yinkeng Formation. 201 

These changes are also reflected by the breakpoints and a rapid decline in species richness at 202 

beds 23, 25, and 29a (Fig. 3). Lithology changes and sequence stratigraphic boundaries play a 203 

role in determining the stratigraphic position of the last occurrences (Holland and Patzkowsky 204 

2015; Nawrot et al., 2018; Zimmt et al., 2021). At Meishan, the extinction interval includes a 205 

lithostratigraphic boundary at the base of bed 25, and a transgressive surface at bed 27a, 206 

suggesting that these sedimentological changes affect our interpretations of the nature and 207 

timing of the extinction. Despite that, radiometric dating proposes that beds 25 to 28 only 208 
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represent 60 ±48 ka (Burgess et al., 2014), and any hiatuses associated with sequence 209 

stratigraphic surfaces during the extinction interval are of a relatively short duration.  210 

 211 

Figure 3. Stratigraphic correlation of selected paleoenvironmental proxies with species 212 

diversity at the Meishan section, South China, with segmented regression lines overlain. 213 

δ13Ccarb (Shen et al., 2013), δ18Oapatite (VSMOW) (Chen et al., 2016), δ114/110Cd (Zhang et al., 214 

2018), FeHR/Fetot (Xiang et al., 2020), ΩCeapatite (Song et al., 2012), δ44/40Caapatite (Hinojosa et al., 215 

2012). The main extinction interval (beds 25-29a) is highlighted in orange and with two 216 

horizontal dashed lines. Note: only paleoenvironmental proxies that showed significant 217 

relationships with diversity are included, for a full figure with all the paleoenvironmental proxies 218 

see Figs. S1-S4. 219 

Changes in species richness, in particular the earlier onset of ostracod extinctions, are 220 

problematic when trying to compare extinctions with geochemical proxies. This is because many 221 

of the proxies that have been investigated at the Meishan section only span a short interval, 222 

e.g., δ114/110Cd only spans beds 22-33 (Zhang et al., 2018), after species diversity has already 223 

started to decline (Fig. 3). Analyses linking geochemical and fossil data were, therefore, 224 

restricted to beds 22-29a. Investigations did not extend beyond bed 29a because the protracted 225 

low diversity after the extinction interval can be attributed to a delayed recovery rather than 226 

environmental conditions. 227 
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Quantifying the causes of extinction 228 

Quantifying the causes of extinction is complex, as environmental changes will manifest with 229 

different patterns and may be reflected as either state-shifts, anomalies, or correlations that can 230 

be associated with biodiversity dynamics. For example, the investigated proxies associated with 231 

volcanism, e.g., Hg/TOC, δ66Zn and 187Os/188Os, are expected to appear as anomalies or 232 

spikes. Hg/TOC, δ66Zn and 187Os/188Os show anomalies that coincide with the onset of the mass 233 

extinction interval (Fig. S3), with the Hg/TOC, δ66Zn, and 187Os/188Os anomalies from beds 24b-234 

24e being interpreted to reflect volcanism associated with the Siberian Traps coming along with 235 

input of volcanic ashes (Liu et al., 2017; Liu et al., 2020; Sial et al., 2021).  236 

A segmented regression analysis, which can be used to quantify significant temporal shifts in 237 

proxies (i.e., state-shifts), recognizes significant changes for δ13Ccarb, δ18Oapatite, δ114/110Cd, and 238 

δ15N at the onset of the extinction interval (bed 25, Fig. 3, Figs S1-4). In addition, TOC shows a 239 

breakpoint at bed 22 (Fig. S1), corresponding with the main extinction pulse of ostracods (Fig. 240 

3). Whereas Th/Uapatite ratios show a state shift at bed 29 (Fig. S4), with an interpreted state shift 241 

from oxic to anoxic conditions (Song et al., 2012), and corresponding with a plateau of low 242 

richness. 243 

One issue with comparing the different proxies and changes in species richness or incidence 244 

data is the difference in resolution between the different datasets. To allow for statistical 245 

exploration of the data, the data were aggregated to the same resolution as the species dataset, 246 

i.e., bed and sub-bed level resolution. In addition, not all the beds record proxy values and, 247 

therefore, data were extrapolated using the segmented regression curves for each proxy (Figs. 248 

S5-S6). Another issue is that many of the different geochemical proxies correlate with one 249 

another (Figs. S12-14), and these correlations are not necessarily direct causal effects, but 250 

could rather be associated with autocorrelation effects within each time series, indirect links, or 251 

common drivers (Runge et al., 2019). This makes it difficult to disentangle whether the proxy is 252 

robust enough to interpret environmental changes, if an environmental change is causing a 253 

decline in diversity, or both diversity and proxy dynamics have a common cause. A correlation 254 

plot shows that δ13Ccarb, δ18Oapatite, δ114/110Cd, and δ15N are significantly correlated, which 255 

suggests these proxies share a common cause. 256 

Many of the proxies show a correlation with changes in species richness (Tab. S3). A Poisson 257 

regression model was performed to identify which proxies best explain the diversity dynamics. 258 
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Value-inflated factors show that the correlation between δ13Ccarb, δ18Oapatite, δ114/110Cd, and δ15N 259 

significantly affects the quality of the model. For this reason and because the δ15N data is at a 260 

low resolution, δ15N was dropped from the model, whereas for δ114/110Cd and δ18Oapatite two 261 

separate models were run. The generalized linear models show that δ13Ccarb, δ18Oapatite, 262 

δ114/110Cd, and δ44/40Caapatite have significant relationships with changes in species diversity at 263 

Meishan (Tab. 1). In addition, no proxies showed a significant relationship between proxy 264 

variance and extinction rate. 265 

Table 1. Generalized linear model of significant environmental variables (geochemical 266 
proxies) and changes in diversity. Model selection was based on proxies that showed 267 
consistent and significant linear relationships with diversity (Tab. S3). Note: δ114/110Cd and δ15N 268 
were dropped from the first model because they showed a significant correlation with δ18Oapatite 269 
that negatively impacted the model (Supp. mat). A second model swapping δ18Oapatite and 270 
δ114/110Cd was done to investigate the best model. 271 

   95% Confidence 

intervals 

  

Model Parameter Estimate 2.5% 97.5% t-value p-

value 
Species 
Diversity 

pseudo-R2 = 

0.62  
 

(Intercept) 0.40 -1.35 2.15 0.44 0.658 

δ13Ccarb 0.06 0.01 0.11 2.49 0.001 

δ18Oapatite 0.25 0.17 0.32 6.38 < 0.001 

δ44/40Caapatite 0.94 0.22 1.67 2.55 0.011 

Species 
Diversity 

pseudo-R2 = 

0.59 
 

(Intercept) 5.71 5.13 6.30 19.18 < 0.001 

δ13Ccarb 0.03 -0.03 0.09 1.08 0.279 

δ114/110Cd 0.92 0.57 1.28 5.09 < 0.001 

 δ44/40Caapatite 1.61 0.92 2.31 4.55 < 0.001 

 272 

A partial distance-based redundancy analysis (partial-dRDA) was undertaken to investigate the 273 

changes in fossil incidence data for beds 22 to 29a and changes in geochemical proxies (Fig. 274 

4). Once more, value-inflated factors show that the correlation between δ13Ccarb, δ18Oapatite, 275 

δ114/110Cd, and δ15N significantly affects the quality of the model. δ114/110Cd and δ15N were, 276 

therefore, dropped from the model. The partial-dRDA showed that δ13Ccarb, δ18Oapatite, and 277 

87Sr/86Sr best explained changes in the incidence data. Swapping δ114/110Cd with δ18Oapatite 278 

shows that δ18Oapatite is a more significant proxy for explaining incidence data dynamics. When 279 

only the significant factors are included in the partial-dRDA model, only δ13Ccarb and δ18Oapatite 280 

record significant relationships (Fig. 4). It is also evident that the fossil incidence data cluster 281 

according to lithology (Fig. 4), highlighting how lithological changes reflect changes in the 282 

environment affecting species loss. 283 
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 284 

Figure 4. Partial Distance-based Redundancy Analysis (capscale) for fossil assemblages 285 

and geochemical proxies from the Meishan section. Included vectors are the geochemical 286 

proxies that were determined as having a significant relationship with the fossil assemblages. 287 

Sample point shapes relate to bed lithology: filled circles = limestone, open squares = silty 288 

limestone, and filled triangles = clay. The bed numbers for each assemblage are indicated, and 289 

only beds 22-29a are included due to limited coverage of geochemical proxies at the Meishan 290 

section. Smooth contours of the oxygen isotope values underlie the ordination plot to 291 

demonstrate the relationship with the fossil assemblages. 292 

Discussion 293 

Due to the large suite of geochemical proxies investigated for the Meishan section, a number of 294 

different environmental changes have been proposed as possible causes of the Permian-295 

Triassic mass extinction. Our quantitative analysis, combining diversity and proxy data, 296 

demonstrates that δ13Ccarb, δ18Oapatite, and δ114/110Cd are key for understanding the cause(s) of 297 

the mass extinction event. The geochemical signature of these proxies is mostly generated in 298 

the euphotic zone with a high chance of transfer into sediments without much alteration, 299 

suggesting that the relationships between these proxies and the fossil record reflect past 300 

environmental-life interactions. In addition, the lack of relationship between the fossil incidence 301 

data and the geochemical proxies that are affected by lithology changes supports that our 302 
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interpretations are robust. δ13Ccarb is often interpreted as reflecting the release of large quantities 303 

of isotopically light carbon into the atmosphere, changes in primary productivity, and changes in 304 

carbon burial rates (Cao et al., 2002). δ13Ccarb can, therefore, signify an environmental 305 

disturbance and even the trigger of the mass extinction (Cui et al., 2015), but it cannot be 306 

inferred to identify the underlying environmental changes that drove species to extinction. In 307 

addition, δ13Ccarb, δ18Oapatite, and δ114/110Cd are significantly correlated, which we infer as being 308 

impacted by a common cause. 309 

A negative excursion in δ18Oapatite is interpreted to reflect a rapid, 8-12 °C, warming associated 310 

with the mass extinction event at Meishan (Joachimski et al., 2012; Sun et al., 2012; Chen et al., 311 

2016) and is consistently the best explanatory factor for diversity dynamics at Meishan (Tab. 1, 312 

Fig. 4). Thermal stress is understood to limit the performance of aerobic marine organisms, 313 

because the pejus temperature is close to the temperature optimum on the upper thermal limit, 314 

and increasing temperatures beyond a marine organism’s optimum temperature range rapidly 315 

leads to a reduction in the aerobic scope of marine organisms (excess capacity supporting 316 

activity, growth, and reproduction) (Pörtner et al., 2012; 2017). An expectation from this 317 

mechanism, would be an observed decrease in body size as temperatures increase and primary 318 

productivity declines. The only body size data from Meishan with enough measurements comes 319 

from two species of foraminifera, Diplosphaerina inaequalis and Frondina permica (Song et al., 320 

2011), that record decreasing size with more negative δ18Oapatite values (Fig. 5), suggesting a 321 

decrease in aerobic scope prior to their LADs in beds 27c and 29a, respectively. The 322 

paleoequatorial setting of the Meishan section also means that this locality would also have 323 

experienced some of the highest climate velocities (sensu Burrows et al., 2011) with Earth 324 

system models for the Permian-Triassic mass extinction demonstrating the consequent loss of 325 

aerobic habitats able to support the metabolism of marine ectotherms (Penn et al., 2018). This 326 

idea is supported, by the poleward migrations of Permian holdover radiolarians, sponges, and 327 

conodonts away from equatorial settings associated with the warming (Foster et al., 2023b). 328 

The significant relationship between δ18Oapatite with diversity, compositional changes, body size 329 

and poleward migrations supports the interpretation that temperature-driven hypoxia was 330 

fundamental in causing equatorial extinctions/extirpations during the Permian-Triassic climate 331 

crisis. 332 
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 333 

Figure 5. A scatter plot showing the relationship between foraminifera test size and 334 

δ18Oapatite (a temperature proxy) from the Meishan section. (A) Measurements of Frondina 335 

permica from beds 13a-27c (B) Measurements of Diplosphaerina inaequalis from beds 13a-29a. 336 

An order 2 polynomial trend line is underlain to illustrate the relationship between δ18Oapatite 337 

values and test size. As δ18Oapatite values decrease they can be used to infer a warming of the 338 

climate and vice versa, which is indicated on the axis. The test sizes of the foraminifera were 339 

converted to geometric sizes and log-transformed. Body size data are from Song et al. (2011) 340 

and oxygen isotope data from Chen et al. (2016). Other species could not be included due to 341 

either the lack of a species-level identification or size measurements. 342 

δ18Oapatite is also significantly correlated with δ114/110Cd and δ15N, where both δ114/110Cd and δ15N 343 

record negative excursions that are interpreted to reflect primary productivity dynamics (Zhang 344 

et al., 2018; Cao et al., 2009). δ114/110Cd reflects nutrient utilization by phytoplankton and is an 345 

indirect proxy for primary productivity. At Meishan a negative excursion in δ114/110Cd coincides 346 

with the mass extinction interval reflecting a collapse in primary productivity (Fig. 2) (Zhang et 347 

al., 2018), which is also associated with the major extinction of radiolarians (the primary fossil 348 

record of planktic biodiversity) (O’Dogherty et al., 2010). A stark reduction in primary productivity 349 

would be catastrophic for marine ecosystems because the cascading effect of extinction causes 350 

knock-on effects on species populations in successive layers of the marine food web (Huang et 351 
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al., 2023). Huang et al. (2023) inferred that the loss of radiolarians at the onset of the extinction 352 

interval could have been a cascading effect of a collapse in primary productivity. The migration 353 

of radiolarians to thermal refugia at higher latitudes and deeper waters (Foster et al., 2023b) 354 

could also suggest additive effects of different environmental stressors, i.e., nutrient and thermal 355 

stress. In addition, the aerobic metabolism is not only affected by thermal stress, but also 356 

nutritional stress, which can exacerbate the effects of climate change in marine ectotherms 357 

(Saulsbury et al., 2019). The impacts on the aerobic metabolism of marine organisms can also 358 

be inferred from the observed decrease in the body-size of surviving taxa (He et al., 2010). 359 

The hypothesis that primary productivity collapsed during the Permian-Triassic mass extinction 360 

is controversial, where some proxies suggest a collapse (e.g., Zhang et al., 2018) whilst others 361 

suggest enhanced primary productivity (e.g., Qiu et al., 2019). In part, this can be explained by 362 

spatial heterogeneity in primary productivity rates as evidenced by spatial variations in 363 

productivity proxies (e.g., Shen et al., 2015), but conflicting results are also known from the 364 

Meishan section (e.g., Zhang et al., 2018; Qiu et al., 2019). δ114/110Cd is not a redox proxy, but in 365 

sulfide-bearing anoxic sediments there are more negative values than in oxic surface waters 366 

(Hohl et al., 2017). Zhang et al. (2018), however, noted that there is no correlation between 367 

sulfur concentrations and δ114/10Cd values, inferring that the inferred trends reflect changes in 368 

primary productivity. Other proxies for primary productivity come from lipid biomarkers and δ15N, 369 

which show changes in the archaeal and bacterial communities as a consequence of the 370 

environmental changes (Xie et al., 2005; Cao et al., 2009). Taken together, this suggests that 371 

not only did primary productivity appear to collapse in South China, but there were also 372 

phytoplankton community shifts which would have led to nutrient stress. 373 

In the equatorial paleosetting of the Meishan section, both thermal and nutrient stress are 374 

interpreted to best explain the extinctions. It has been shown that despite inter-specific 375 

differences, there are clear differences in hypoxia tolerance among higher taxa (Song et al., 376 

2014b). Ostracods and crustaceans have the least tolerance to hypoxia compared to other 377 

invertebrate groups (Song et al., 2014b), and their earlier onset of extinction at the Meishan 378 

section also corresponds to the initial changes in the δ18Oapatite negative excursion (Fig. 2). 379 

δ18Oapatite dynamics have been divided into two phases associated with different rates and 380 

magnitudes of warming (Wu et al., 2023), with the first phase, coinciding with the major 381 

extinction of ostracods, being slower and of a smaller magnitude. Pre-extinction changes in 382 

δ18Oapatite in equatorial settings have also been related to body size changes in ammonoids 383 
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(Gliwa et al., 2022) and correspond to pre-extinction changes in brachiopod assemblages 384 

(Zhang et al., 2017). This suggests that pre-extinction slower warming and the following rapid 385 

warming led to different timings of extinction for different marine organisms, depending on their 386 

sensitivity to temperature and oxygen-concentration changes.  387 

Widespread anoxic conditions throughout shallow and deep marine basins have long been 388 

associated with the marine extinctions. The Meishan section have been the subject of several 389 

paleoredox studies, utilizing: pyrite framboids (Chen et al., 2015; Wei et al., 2020), sulfur 390 

isotopes (Shen Y et al., 2011) as well as iron speciation, and redox sensitive metals (Xiang et 391 

al., 2020). Iron speciation has been established as a proxy for local water column redox in 392 

clastic successions and some carbonate successions, yet the FeHR/Fetot data for Meishan 393 

records almost persistently anoxic conditions for bed 21 to 34 (Xiang et al., 2020). Considering 394 

the abundant and deeply penetrated trace fossils (> 20 cm depth) found throughout most of this 395 

interval (Zhao and Tong 2010), the interpretation of consistently anoxic conditions is equivocal. 396 

Hence, the anoxic FeHR/Fetot signals at best represents dynamic redox conditions with 397 

intermittent anoxic intervals or an alternative explanation is the redeposition of dissolved Fe at 398 

Meishan that was released from nearby oxygen minimum zones (similar to the Guaymas Basin 399 

in the Gulf of California; Scholz et al., 2019). Multiple sulfur isotope signals from pyrite and 400 

pyrite aggregate sizes are suggested to support the development of episodic anoxic water 401 

column conditions during the deposition of bed 22 to 24 (Shen Y et al., 2011). Depending on the 402 

extent and duration of these anoxic episodes, they could have contributed to the loss of 403 

ostracods before the main extinction interval, as deposit-feeding ostracods are negatively 404 

impacted by falling oxygen levels (Lethiers and Whatley 1994). Conversely, ΩCeapatite anomalies 405 

from the same beds means deposition was in an oxygenated setting (Song et al., 2012). Above 406 

bed 24d, redox sensitive metal enrichment factors record decreasing trends (Xiang et al., 2020), 407 

reflecting increasing oxygenation of the water column. This is also supported by pyrite δ34S and 408 

∆33S signals that do not support an anoxic water column interpretation (Shen Y et al., 2011). 409 

Overall, the water column redox conditions at Meishan were likely dynamic during the Permian-410 

Triassic transition, but the timing and extent of anoxic episodes are too poorly constrained to 411 

unequivocally conclude that anoxia or dysoxia played a role in the relatively shallow setting of 412 

Meishan. 413 

Despite the intense geochemical and paleontological research on the Meishan section, this 414 

study highlights some limitations that must be addressed in future research. The restriction of 415 
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investigations of geochemical proxies over a short interval at the Permian/Triassic boundary 416 

hinders our ability to understand how environmental conditions evolved over the Changhsingian 417 

and how that relates to the climate crisis (e.g., δ44/40Caapatite; Hinojosa et al., 2012). Therefore, 418 

even though δ44/40Caapatite, a potential proxy for ocean pH (Hinojosa et al., 2012), is recorded as 419 

having a significant relationship with changes in species richness (Tab. 1), the short record still 420 

makes this interpretation equivocal. Even if the δ44/40Caapatite trends are seen as robust, concerns 421 

of using this proxy to determine ocean acidification have been raised (Komar and Zeebe 2016; 422 

Foster et al., 2022b), and, therefore, the role of ocean acidification in the extinctions for these 423 

settings is still unknown. In addition, the lack of abundance data and other ecological data from 424 

paleontological studies (e.g., Song et al., 2009; Crasquin et al., 2010) means it is not yet 425 

possible to investigate the ecological impacts of the Permian-Triassic climate crisis beyond the 426 

timing of extinction. Therefore, a number of ecological changes, such as changes in relative 427 

abundance, dominance, or body size and how they relate to environmental changes, cannot yet 428 

be explored. Finally, the cause(s) of extinction are expected to vary on various spatial scales, 429 

and more high-resolution studies from other sections and regions are, therefore, required. 430 

Despite these short-comings, our statistical analysis demonstrates that the extreme impact of 431 

environmental changes on the aerobic metabolism of marine ectotherms and the cascading 432 

effects of extinction best explain the cause of extinction in epicontinental, equatorial settings. 433 

This means that for the worst-case RCP scenario, the biggest climate threats to modern-day 434 

shallow marine, equatorial biodiversity are thermal and nutrient stress. 435 
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