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Abstract

We consider a stochastic SIR (susceptible → infective → removed) epidemic on a random
graph with specified degree distribution, constructed using the configuration model, and
investigate the ‘acquaintance vaccination’method for targeting individuals of high degree
for vaccination. Branching process approximations are developed which yield a post-
vaccination threshold parameter, and the asymptotic (large population) probability and
final size of a major outbreak. We find that introducing an imperfect vaccine response
into the present model for acquaintance vaccination leads to sibling dependence in the
approximating branching processes, which may then require infinite type spaces for their
analysis and are generally not amenable to numerical calculation. Thus, we propose and
analyse an alternative model for acquaintance vaccination, which avoids these difficulties.
The theory is illustrated by a brief numerical study, which suggests that the two models
for acquaintance vaccination yield quantitatively very similar disease properties.
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1. Introduction

In the past decade there has been an abundance of research published concerning the
modelling of stochastic epidemics spreading on networks of ‘individuals’ connected by ‘rela-
tionships’which in some way model the social networks that people establish with, for example,
their families, friends, coworkers, and classmates. Early work on epidemic models on random
graphs includes that of Diekmann et al. (1998), Andersson (1997), (1998), (1999), and also
Newman (2002) (see also Kenah and Robins (2007)). Epidemics evolving on extensions of the
basic configuration model (see, for example, Durrett (2007, Chapter 3)) have been studied by,
for example, Kiss et al. (2006), Ball and Neal (2008), Ball et al. (2009), and Ball and Sirl (2012).
Alternative random graph structures have been considered by, amongst others, Newman (2002,
Section V), Britton et al. (2008), and Ball et al. (2013).

In this paper we address the question of vaccination in what we refer to as the standard
network model (SNM), an SIR (susceptible → infective → removed) epidemic model on a
network structure specified via the configuration model. Vaccination of individuals in these
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1148 F. BALL AND D. SIRL

network models seems to have first been investigated by Cohen et al. (2003); their work was
extended and put into a more rigorous framework by Britton et al. (2007). However, these papers
considered only perfect vaccines, where vaccination of an individual renders them completely
immune to the disease, and assumed a fixed infectious period. The primary motivation for this
paper is to derive analogous results for other vaccine action models where vaccination might
confer only a partial resistance to infection or where there might be several possible responses
to vaccination (see Becker and Starczak (1998)). In addition to allowing for individuals chosen
uniformly at random to be vaccinated, the above-mentioned works of Cohen et al. (2003) and
Britton et al. (2007) focused on modelling acquaintance vaccination, where neighbours of
individuals chosen uniformly at random from the population are vaccinated. This has the effect
that vaccinated individuals tend to have a higher degree and this targeting of well-connected
individuals increases the effectiveness of vaccination.

We continue the work of Cohen et al. (2003) and Britton et al. (2007) by seeking to extend
their results to allow for more general infectious period distributions and vaccine action models.
The key tool in the analysis is branching process approximation, which enables the probability
and relative final size of a major outbreak to be approximately determined for large networks.
We find that, with an imperfect vaccine response, the models of Cohen et al. (2003) and Britton et
al. (2007) for acquaintance vaccination lead to approximating branching processes with sibling
dependence (cf. Olofsson (1996)), which may then require infinite type spaces for their analysis
and are thus not generally amenable to numerical calculation. Thus, we modify the model of
acquaintance vaccination slightly to avoid these difficulties. We find that the performance of
the modified model is quantitatively very similar to that of the original model.

The remainder of the paper is organised as follows. In Section 2 we recall the definition of the
basic SNM and its analysis as well as outlining the vaccine action models we use. In Section 3 we
extend the above-mentioned analysis of Britton et al. (2007) to include nonconstant infectious
period distributions and imperfect vaccines. In order to compare the quantitative properties
of the two acquaintance vaccination models, we nevertheless analyse the original model with
an imperfect vaccine. In Section 4 we propose a modification of the acquaintance vaccination
model and completely analyse the basic final size properties of the SNM with this vaccination
model (see Propositions 2–4). In Section 5, the performance of the old and new acquaintance
vaccination models are illustrated numerically, and compared with each other and with that of
uniform vaccination. We also compare these with the performance of an optimal vaccination
scheme (analysed in Appendix B), in which we assume that the degrees of all individuals are
known and the individuals of high degree are vaccinated.

1.1. Notation

We denote by R+ and Z+ the nonnegative real numbers and integers, respectively. For
any x ∈ R+, we define the usual floor function �x� = max{k ∈ Z+ : k ≤ x}. For suitable
vectors x = (x1, x2, . . . , x�) and y = (y1, y2, . . . , y�), we define x! = ∏�

i=1 xi !, xy =∏�
i=1 x

yi

i , and
(
x
y

) = ∏�
i=1

(
xi

yi

)
, and we say that x ≤ y if the inequality holds componen-

twise. We also adopt the convention that summations over vector indices are rectangular,
i.e.

∑y
i=x =∑y1

i1=x1
· · ·∑y�

i�=x�
. We denote the probability generating function (PGF) of a

random vector X = (X1, X2, . . . , X�) taking values in the range R ⊆ Z
�+ by fX(s) =∑

x∈R P(X = x)sx, s ∈ [0, 1]�, and, for any k = (k1, k2, . . . , k�) ∈ Z
�+, we denote by f (k)(s)

the mixed derivative of f (s) of order kj with respect to sj , j ∈ {1, 2, . . . , �}. Of course, for
a scalar random variable X taking values in Z+, this notation simplifies to f

(k)
X (s), s ∈ [0, 1],

k = 0, 1, . . . .
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Acquaintance vaccination 1149

For a scalar random variable X, we write µX and σ 2
X for its mean and variance, respectively,

and we denote by 1 a vector of appropriate length with all entries equal to 1.

2. Epidemic and vaccine models

2.1. Standard network model

We consider an epidemic evolving amongst a closed population of n individuals. We specify
a degree distribution D by its mass function pk = P(D = k), k = 0, 1, 2, . . . , and assume that
the mean (µD) of D is finite. To construct the graph describing possible infectious contacts, we
follow Newman et al. (2001), so each individual is assigned a number of half-edges according
to independent draws from D. We then pair these half-edges uniformly at random to form the
edges of the random graph. (If the total number of half-edges is odd then the leftover half-
edge is ignored.) The epidemic is defined as follows. Each individual is assumed to be either
susceptible, infectious, or removed. We assume that initially all individuals are susceptible
except for a single individual, chosen uniformly at random from the population, who is infective.
(Extensions to other initial conditions, in which the number of initial infectives remains fixed as
n → ∞, are easily treated.) An infective individual remains so for a random time determined
by a realisation of a random variable I , most conveniently specified by its Laplace transform
φ(θ) = E[e−θI ], θ ≥ 0. At the end of its infectious period an infectious individual becomes
removed, whence it plays no further role in the epidemic. During its infectious period an
individual makes infectious contacts with any given neighbour in the random graph at the
points of a Poisson process of rate λ. If an individual so contacted is susceptible then it
becomes infectious; otherwise, nothing happens. We assume that the contact processes and
infectious periods associated with every individual are all independent. The epidemic continues
until there is no infective remaining in the population.

2.1.1. Forward process. We analyse the early stages of epidemic spread by approximating the
number of infected individuals with a (forward) branching process. The ancestor (generation
zero) of the branching process corresponds to the initially infected individual. Then generation
k comprises those previously uninfected individuals who are contacted by individuals in gen-
eration k − 1. The branching property arises because, in the early stages of the epidemic, every
individual contacted by an infective is susceptible with probability tending to 1 as n → ∞. The
offspring distribution for the initial generation of the branching process is generally different
from that of all subsequent generations. The initial infective is chosen uniformly at random
from the population, and, hence, has degree distribution D. Subsequent infectives are chosen
as the individual from which a randomly chosen half-edge emanates, and, hence, the number of
uninfected neighbours of subsequent infectives is distributed as D̃−1, where D̃ is the size-biased
version of D defined by the mass function p̃k = kpk/µD, k = 1, 2, . . . . The approximating
branching process is thus defined by the distributions of C, the number of neighbours infected
by a typical individual chosen uniformly at random from the population and of C̃, the number of
neighbours infected by an individual that is infected by one of its neighbours. This often-used
approximation is made fully rigorous, for a more general (network and households) model, in
Ball et al. (2009).

The branching process approximation for the early stages of the epidemic justifies the
use of R0 = E[C̃] as a threshold parameter for the epidemic model, determining whether
major outbreaks (that infect at least log n individuals) are possible. It is easy to show (see,
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e.g. Andersson (1999)) that

R0 = E[C̃] = µ
D̃−1p

I =
(

µD + σ 2
D

µD

− 1

)
pI , (1)

where pI = 1 − φ(λ) is the marginal probability that an infected individual makes infectious
contact with a given neighbour. As n → ∞, the probability of a major outbreak converges to
the survival probability of the forward branching process, so such outbreaks occur with nonzero
probability if and only if R0 > 1. Note that if σ 2

D = ∞ then R0 = ∞ and, as long as pI > 0,
the limiting probability of a major outbreak is strictly positive.

To find the probability pmaj of a major outbreak, it is necessary to determine the PGFs fC

and f
C̃

. Conditioning on the infectious period and degree of the individual of interest yields

fC(s) =
∞∑
i=0

(1 − s)iφ(iλ)

i! f
(i)
D (s) and f

C̃
(s) =

∞∑
i=0

(1 − s)iφ(iλ)

i! f
(i)

D̃−1
(s).

Standard branching process theory then gives pmaj = 1 − fC(σ ), where σ is the smallest
solution of f

C̃
(s) = s in [0, 1] (cf. Kenah and Robins (2007, Section III.B.1)).

2.1.2. Backward process. We can also calculate the asymptotic (as n → ∞) expected relative
final size of a major outbreak, that is, the proportion of individuals infected by a major
outbreak, as the survival probability of a branching process which approximates an individual’s
susceptibility set, defined as follows. For every individual in the population, suppose that
it is infected, choose its infectious period using the distribution of I , and determine, using
independent Poisson processes with rate λ, which of its neighbours it would infect. Now
construct a directed graph in which nodes represent individuals and an arc from individual
i to individual j is present if and only if individual i, were it to be infected, would make
infectious contact with individual j . The susceptibility set of an individual, i∗ say, comprises
all individuals j from which there is a path to i∗ in this (random, directed) graph, including i∗
itself. Observe that i∗ is infected by the epidemic if and only if its susceptibility set includes
the initial infective.

Suppose that i∗ is chosen uniformly at random from the population. The (backward)
branching process that approximates i∗’s susceptibility set is similar to the forward process
describing the early stages of epidemic spread, but rather than considering how many neighbours
an individual makes infectious contact with we consider how many neighbours make infectious
contact with that individual. Individual i∗ is the ancestor (zeroth generation) of the branching
process and generation k consists of the individuals who join the susceptibility set by way of
an infectious contact with an individual in generation k − 1. The offspring distributions, which
define the branching process, are thus the distributions of B, the number of neighbours of i∗
that, if infected, would make contact with i∗, and B̃, the number of neighbours (excluding i∗)
of one of these contacting individuals, j∗ say, that, if infected, would make contact with j∗.
Similarly to the forward process, B describes the offspring distribution for the initial generation
of the branching process and B̃ that for subsequent generations. As each neighbour of a given
individual makes infectious contact with that individual independently with probability pI , the
offspring PGFs are

fB(s) = fD(1 − pI + pI s) and f
B̃
(s) = f

D̃−1(1 − pI + pI s).

Let T (n) be the number of initial susceptibles ultimately infected by a major outbreak.
Then, as proved formally for a more general model in Ball et al. (2009), E[T (n)]/n → z as
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n → ∞, where z is the survival probability of the backward branching process. Furthermore,
the argument of Ball et al. (2013) (who consider an SIR epidemic on a random intersection
graph) can be used to show that T (n)/n → z in probability as n → ∞. Standard branching
process theory yields z = 1 − fB(ξ), where ξ is the smallest solution of f

B̃
(s) = s in [0, 1]

(cf. Andersson (1999, Equations (11) and (12)) and Newman (2002, Equations (25) and (26))).
Thus, with probability tending to 1 as n → ∞, a major outbreak infects exact order n (and not
just log n) individuals.

2.2. Vaccination

We work within the quite general framework of the vaccine action model proposed by
Becker and Starczak (1998), in which the vaccine responses of individuals are described by
independent copies of a random vector (A, B) taking values in R

2+ (usually in [0, 1]2). Here A

denotes the relative susceptibility (compared to a nonvaccinated individual) and B denotes the
relative infectivity of the vaccinated individual if he/she becomes infected. Thus, all Poisson
processes concerning potential infection of the individual have their rates multiplied by A and
the Poisson processes governing infection by the individual have their rates multiplied by B.
Becker and Starczak (1998) allowed for a finite number of possible outcomes of (A, B), but
we restrict attention to two special cases. The first of these is the nonrandom vaccine, where
P((A, B) = (a, b)) = 1 for some given (a, b) ∈ R

2+ and the vaccine has the same effect
on every vaccinated individual; the second is the all-or-nothing vaccine (see Halloran et al.
(1992)), where P((A, B) = (0, 0)) = 1 − P((A, B) = (1, 1)) = ε, so vaccinated individuals
are rendered completely immune with probability ε and otherwise the vaccine has no effect. If
a nonrandom vaccine has b = 1 then it is called leaky (see Halloran et al. (1992)). A vaccine
which renders all vaccinees completely immune is called perfect.

Vaccine allocation models are the primary focus of this paper. Perhaps the simplest strategy is
to vaccinate individuals chosen uniformly at random from the population. Cohen et al. (2003)
introduced the idea of acquaintance vaccination, where individuals are chosen uniformly at
random from the population, but rather than vaccinating that individual, they are asked to name
an acquaintance (a neighbour in the random graph) and that person is vaccinated. As we detail
in Section 3, this has the effect of targeting individuals of higher degree and, therefore, has more
impact on disease spread. In either situation an important quantity is the vaccine coverage c,
the proportion of the population that is vaccinated.

Analysis of the case where individuals to be vaccinated are chosen uniformly at random
from the population is relatively straightforward, since the vaccination status of an individual
is independent of its degree. Note that, with a perfect vaccine and coverage c, R0 is reduced
to (1 − c)R0; so, from (1), if σ 2

D = ∞ then the critical vaccination coverage to eliminate the
possibility of a major outbreak is 1.

3. Original acquaintance vaccination model

In this vaccine allocation model we sample individuals uniformly at random from the
population and vaccinate a neighbour chosen uniformly at random. Thus, the degree of a
vaccinated individual is distributed as D̃ rather than D. An individual that is sampled but
has no neighbours is ignored and an individual is vaccinated only once, even if it is chosen
to be vaccinated more than once. Adopting most of the language and notation of Britton et
al. (2007), assume that we sample (with replacement) a random number of individuals with a
Poisson distribution with mean κn for some κ ≥ 0. The corresponding vaccine coverage c(κ)
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is easily shown to be 1 − fD(α), where

α =
∞∑

d=1

e−κ/d p̃d (2)

is the probability that an individual is not named by a given neighbour.

3.1. Perfect vaccine

The approximating forward branching process involves only unvaccinated (i.e. unnamed)
individuals, since the vaccine is perfect. Consider a typical individual in a noninitial generation
of this branching process and denote its degree by D̃U . Unconditionally, this individual’s
degree is distributed as D̃, but we know that this individual (i) is unvaccinated and (ii) does not
name its infector for vaccination. Denote these events by U and Nc, respectively. Hence, for
d = 1, 2, . . . ,

P(D̃U = d) = P(D̃ = d | U, Nc) = P(D̃ = d, U, Nc)

P(U, Nc)
= p̃dαd−1e−κ/d∑∞

k=1 p̃kαk−1e−κ/k

and

P(U | Nc) =
∑∞

k=1 p̃kα
k−1e−κ/k∑∞

k=1 p̃ke−κ/k
=

∞∑
k=1

p̃kα
k−2e−κ/k.

Then the mean of the offspring random variable C̃v in this forward branching process is given
by

Rv = E[C̃v] =
∞∑

d=1

P(D̃U = d)(d − 1)e−κ/dpI
P(U | Nc) = pI

∞∑
d=2

p̃dαd−2e−2κ/d(d − 1).

(3)
This is the same threshold parameter that appears as Equation (3.13) of Britton et al. (2007),
though we use a different branching process approximation. (We find that our branching process
approximation is easier to generalise than that given in Britton et al. (2007).) Note from (3)
that, in contrast to uniform vaccination, the critical vaccination coverage is strictly less than 1
when σ 2

D = ∞.

The PGFs of C̃v and the random variable Cv corresponding to the initial generation may be
calculated in a form that is amenable to numerical evaluation but, unless the infectious period
is constant, the expressions are cumbersome and give little insight, so we do not present them
here.

Turning to the backward process, the same arguments given to justify the calculation of
Rv (with ‘an individual’s infector’ replaced by ‘the neighbour the individual contacted to join
the susceptibility set’) can be used to derive the PGF f

B̃v
of the offspring distribution B̃v in

noninitial generations. Let i∗ denote a typical noninitial individual in the susceptibility set.
Given i∗’s degree d (distributed as D̃U ), each neighbour of i∗ (except the one it contacted
to join the susceptibility set) joins the susceptibility set independently by making infectious
contact with i∗ if it (i) is not named by i∗, (ii) is not named by any of its other neighbours, and
(iii) makes infectious contact with i∗. These events are independent and occur with respective
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probabilities e−κ/d , P(U | Nc), and pI , so

f
B̃v

(s) = E[sB̃v ]
= E

D̃U
[E

B̃v
[sB̃v | D̃U ]]

= E
D̃U

[(1 − e−κ/D̃U P(U | Nc)pI + se−κ/D̃U P(U | Nc)pI )D̃U −1]

=
∞∑

d=1

p̃dαd−2e−κ/d

P(U | Nc)
{1 − (1 − s)e−κ/d

P(U | Nc)pI }d−1. (4)

For the initial generation, writingDU for the degree distribution of an unvaccinated individual
chosen uniformly at random from the population, we have, for all d = 0, 1, . . . , P(DU = d) =
P(D = d | U) = pdαd/fD(α); and arguing as in the derivation of (4) gives

fBv (s) =
∞∑

d=0

pdαd

fD(α)
{1 − (1 − s)e−κ/d

P(U | Nc)pI }d .

The proportion of the population infected by a major outbreak is z = fD(α)(1 − fBv (ξ)),
where ξ is the smallest solution of f

B̃v
(s) = s in [0, 1]. If the infectious period is constant, it is

easily verified that fCv = fBv and f
C̃v

= f
B̃v

, so pmaj = z, and that the above expression for
z (and, hence, pmaj) is the same as that obtained using Equation (3.11) of Britton et al. (2007).

3.2. Imperfect vaccine

Applying the above approach directly to deal with imperfect vaccines introduces sibling
dependence (see Olofsson (1996)) into the branching processes, unless we use multitype
branching processes. This is because both the forward and backward processes may now
involve vaccinated individuals and, given that an individual is vaccinated, the degrees of its
neighbours are not independent (see (5), below). Thus, we type infected individuals according
to both their degree and their vaccination status. For every d = 1, 2, . . . , define the types Nd ,
Vd , and Ud . Here d denotes an individual’s degree, N means an individual was named by
its infector (and is therefore vaccinated), V means it is not named by its infector but is still
vaccinated (i.e. is named by another neighbour), and U means that it is unvaccinated.

We consider a forward process approximating the proliferation of infective individuals in the
early stages of an epidemic. We focus on the means of the offspring distributions corresponding
to a noninitial generation, with a view to calculating a threshold parameter. Define the mean
matrix M = (mt,t ′ , t, t ′ ∈ T ), where T is the type space {Nd, Vd, Ud : d = 1, 2, . . . }. Also,
define the marginal transmission probabilities pUU , pUV , pV U , and pV V between unvaccinated
and vaccinated (or named) individuals. If the vaccine is all-or-nothing then these are given by

P AoN =
(

pAoN
V V pAoN

V U

pAoN
UV pAoN

UU

)
= pI

(
1 − ε 1
1 − ε 1

)

and if the vaccine is nonrandom then they are given by

P NR =
(

pNR
V V pNR

V U

pNR
UV pNR

UU

)
=
(

1 − φ(abλ) 1 − φ(bλ)

1 − φ(aλ) 1 − φ(λ)

)
.

First consider an individual of type Nd . The degrees of its d − 1 uninfected neighbours
are independent copies of D̃. Each such neighbour is named with probability 1 − e−κ/d .

https://doi.org/10.1239/jap/1389370105 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370105


1154 F. BALL AND D. SIRL

If a neighbour is of degree d ′ and not named then it is unvaccinated with probability αd ′−1;
otherwise, it is vaccinated. Therefore, for all d, d ′ = 1, 2, . . . , it can easily be seen that
mNd,Nd′ = (d − 1)(1 − e−κ/d)p̃d ′pV V , mNd,Vd′ = (d − 1)e−κ/d p̃d ′(1 − αd ′−1)pV V , and

mNd,Ud′ = (d − 1)e−κ/d p̃d ′αd ′−1pV U .
Next consider an individual of type Ud . Since it is unvaccinated, all of its uninfected

neighbours failed to name it; so, letting DU
1 , DU

2 , . . . , DU
d−1 denote the degrees of its d − 1

uninfected neighbours, we have

P(DU
1 = d ′

1, DU
2 = d ′

2, . . . , D
U
d−1 = d ′

d−1)

=
d−1∏
i=1

p̃d ′
i
e−κ/d ′

i

α
, d ′

1, d
′
2, . . . , d

′
d−1 = 1, 2, . . . .

The same arguments as above show that

mUd,Nd′ = (d − 1)(1 − e−κ/d)p̃d ′e−κ/d ′
α−1pUV ,

mUd,Vd′ = (d − 1)e−κ/d p̃d ′e−κ/d ′
α−1(1 − αd ′−1)pUV ,

and

mUd,Ud′ = (d − 1)e−κ/d p̃d ′e−κ/d ′
αd ′−2pUU .

Finally, consider a typical individual of type Vd and write DV
1 , DV

2 , . . . , DV
d−1 for the degrees

of its d − 1 uninfected neighbours. Since the individual is of type V we know that at least one
of these neighbours named the individual of interest, so it follows that, for d ′

1, d
′
2, . . . , d

′
d−1 =

1, 2, . . . ,

P(DV
1 = d ′

1, D
V
2 = d ′

2, . . . , D
V
d−1 = d ′

d−1)

=
p̃d ′

1
p̃d ′

2
. . . p̃d ′

d−1
(1 − e−κ/d ′

1 e−κ/d ′
2 · · · e−κ/d ′

d−1)

1 − αd−1 . (5)

Note that DV
1 , DV

2 , . . . , DV
d−1 are identically distributed but not independent. Summing (5)

over d ′
2, d

′
3, . . . , d

′
d−1 and recalling the definition of α given in (2) yields, for d = 2, 3, . . . ,

P(DV
1 = d ′

1) = p̃d ′
1

1 − αd−1 (1 − e−κ/d ′
1αd−2), d ′

1 = 1, 2, . . . .

Then, by the same arguments as before,

mVd,Nd′ = (d − 1)(1 − e−κ/d)p̃d ′(1 − e−κ/d ′
αd−2)(1 − αd−1)−1pV V ,

mVd,Vd′ = (d − 1)e−κ/d p̃d ′(1 − e−κ/d ′
αd−2)(1 − αd−1)−1(1 − αd ′−1)pV V ,

and

mVd,Ud′ = (d − 1)e−κ/d p̃d ′(1 − e−κ/d ′
αd−2)(1 − αd−1)−1αd ′−1pV U .

When the support of D is finite, the above branching process may be analysed using standard
multitype branching process theory (see, e.g. Mode (1971)), so suppose that D has countable
support. For ease of exposition, we assume that pd > 0 for all d = 1, 2, . . . ; the theory is easily
modified if this condition is relaxed. Note that, except for the initial generation, individuals
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with degree 1 have no offspring in the above branching process, so let B̃ be the Galton–Watson
process with type space T̃ = {Nd, Vd, Ud : d = 2, 3, . . . } and offspring random variables
as described implicitly above. We assume that pUU and pV U are both strictly positive. If
pUU = 0, vaccination is not required, and if pV U = 0, the vaccine is effectively perfect.

For d∗ = 2, 3, . . . , let B̃(d∗) be the branching process derived from B̃ by ignoring all
individuals with degree strictly greater than d∗ and all descendants of such individuals. Let
M̃ denote the mean offspring matrix for B̃ and, for t ∈ T̃ , let π̃t be the probability that
B̃ becomes extinct given that initially there is one individual whose type is t . For d∗ =
2, 3, . . . , define M̃(d∗) and π̃

(d∗)
t (t ∈ T̃ (d∗) = {Nd, Vd, Ud : d = 2, 3, . . . , d∗}) similarly for

the branching process B̃(d∗) and let R
(d∗)
A be the dominant eigenvalue of M̃(d∗). Then, R

(d∗)
A

is strictly increasing in d∗ (see Seneta (1973, Theorem 6.8)). Let RA = limd∗→∞ R
(d∗)
A ;

comparison with the model without vaccination shows that RA is finite if σ 2
D < ∞. The

following proposition, proved in Appendix A, shows that RA is a threshold parameter for the
original acquaintance vaccination model with imperfect vaccination.

Proposition 1. For any t ∈ T̃ , (i) π̃t = limd∗→∞ π̃
(d∗)
t and (ii) π̃t < 1 if and only if RA > 1.

Similar results to the above hold for the corresponding backward branching process. Al-
though it may be computationally feasible to approximate the threshold parameter RA, or
calculate it exactly if the support of D is not too large, approximation of major outbreak
probabilities and expected relative final sizes is likely to be computationally infeasible, unless
the support of D is small. Hence, we believe that a better approach is to modify the formulation
of the acquaintance vaccination model slightly, so as to obtain numerically tractable branching
process approximations.

4. New acquaintance vaccination model

In this model each individual in the population is sampled independently with probability
pS , each sampled individual then names each of its neighbours independently with probability
pN and finally any individual that is named at least once is vaccinated. Thus, the probability
that an individual is not named by a given neighbour is 1 − pSpN , so the probability that
an individual chosen uniformly at random from the population is vaccinated (i.e. the vaccine
coverage) is

pV = 1 −
∞∑

k=0

pk(1 − pSpN)k = 1 − fD(1 − pSpN). (6)

The modification of the naming process so that the chance an individual names a given
neighbour is independent of that individual’s degree means that we do not have to type indi-
viduals by their degree in order for a branching process approximation to work and we obtain
a branching process with finitely many types. However, vaccination is still targeted at higher-
degree individuals since neighbours of sampled individuals are vaccinated. We now describe
the typing required for the forward and backward branching processes, which we denote by
BF and BB , respectively.

In BF , infected individuals are typed by (i) whether they are named (N ), vaccinated (V ),
or unvaccinated (U ), as before, and (ii) whether or not they are sampled and, thus, might name
their neighbours for vaccination (S and Sc). Thus, there are six types of individuals involved
in the noninitial generations of BF , labelled 1–6 as indicated in Table 1.

The typing required for the initial generation is somewhat simpler: the initial individual
clearly cannot be named since it does not have a parent and we can easily condition on whether
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Table 1: The six types of individuals involved in the noninitial generations of BF .

Label 1 2 3 4 5 6
Type (N, S) (V, S) (U, S) (N, Sc) (V , Sc) (U, Sc)

or not it was sampled; thus, we need only distinguish between vaccinated and unvaccinated
individuals. We denote these types by V and U . Therefore, the forward process BF is specified
by the (joint) distributions of the random variables C̃i = (C̃ij , j = 1, 2, . . . , 6) for i =
1, 2, . . . , 6, where C̃ij is the number of type-j individuals infected by a typical type-i infective,
and of the random variables CA = (CAj , j = 1, 2, . . . , 6), for A = U, V . The same typing
is used in BB , so, for example, a noninitial member of a susceptibility set is named if its
parent in the susceptibility set names it for vaccination. Thus, in an obvious notation, the
backward process BB is specified by the distributions of B̃i = (B̃ij , j = 1, 2, . . . , 6) for
i = 1, 2, . . . , 6, and BA = (BAj , j = 1, 2, . . . , 6) for A = U, V . When analysing the forward
branching process BF , it is useful to think of a generation as consisting of two phases. In the
first phase we determine the types an infective’s neighbours, which we call potential offspring,
would be if they were infected, i.e. whether they are named, vaccinated, or unvaccinated and
whether or not they are sampled. Then in the second phase, conditional on this information, we
determine which of these neighbours actually are infected. A similar decomposition is used for
the backward process BB . Note that, for i = 1, 2, . . . , 6, the random vector giving the number
of potential offspring of individuals of the six types from a typical type-i individual has the
same distribution in both BF and BB .

Before analysing BF and BB , we determine the degree distribution of individuals of each
type. Note that this is independent of whether or not an individual is sampled, so types 1 and
4, types 2 and 5, and types 3 and 6 have the same degree distributions; we denote generic
random variables with these distributions by D̃N , D̃V , and D̃U , respectively. The degree
distribution of a typical named individual follows the size-biased degree distribution, so D̃N

has the same distribution as D̃. Next, consider a typical ‘vaccinated’ individual (type 2 or 5).
It has unconditional degree distribution D̃, but we also know that it is named by at least one of
its neighbours, though not by its infector. Thus, for d = 2, 3, . . . ,

P(D̃V = d) = P(D̃ = d)P(V | D̃ = d)

p̃V

= p̃d(1 − (1 − pNpS)d−1)

p̃V

, (7)

where p̃V = ∑∞
i=2 p̃i(1 − (1 − pNpS)i−1) = 1 − f

D̃−1(1 − pNpS) is the a priori probability
that the individual is vaccinated. Similarly, a typical unvaccinated (type 3 or 6) individual has
unconditional degree distribution D̃, but we also know that it avoids vaccination by all of its
neighbours, so

P(D̃U = d) = p̃d(1 − pNpS)d−1

1 − p̃V

, d = 1, 2, . . . . (8)

Turning now to initial individuals, recall that these can be of only two types, V and U . If the
initial individual is chosen uniformly at random from the population then a priori its degree is
distributed according to D and it is vaccinated with probability pV given by (6). If the initial
individual is vaccinated then the distribution of its degree, say DV , is given by

P(DV = d) = P(D = d, V )

pV

= pd(1 − (1 − pSpN)d)

pV

, d = 1, 2, . . . . (9)
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If, on the other hand, it is unvaccinated then the distribution of its degree, say DU , is given by

P(DU = d) = pd(1 − pSpN)d

1 − pV

, d = 0, 1, . . . . (10)

We also define the marginal infection probabilities pI
ij = pA(i),A(j) for the types i, j =

1, 2, . . . , 6, where A(i) = V if i ∈ {1, 2, 4, 5} and A(i) = U if i ∈ {3, 6}.
4.1. Threshold parameter

We now set out to calculate the mean matrix M = (mij , i, j = 1, 2, . . . , 6) of the offspring
distributions for the noninitial generations of the forward branching process BF . The dominant
eigenvalue Rv of M will serve as a threshold parameter determining whether or not major
outbreaks infecting a significant fraction of the population are possible.

Consider a typical type-1 (i.e. (N, S)) individual. On average it has µ
D̃−1 uninfected

neighbours. Since a type-1 individual is sampled, each of these neighbours is named with
probability pN ; if such a neighbour is not named then it is vaccinated with probability p̃V .
Independently, each such neighbour is sampled with probability pS . For i = 1, 2, . . . , 6, let
p̂1i be the probability that a given potential offspring of a type-1 individual is of type i. Then
p̂11 = pNpS , p̂12 = (1 − pN)p̃V pS , p̂13 = (1 − pN)(1 − p̃V )pS , p̂14 = pN(1 − pS),
p̂15 = (1 − pN)p̃V (1 − pS), and p̂16 = (1 − pN)(1 − p̃V )(1 − pS). Furthermore, each
potential type-i offspring actually is an offspring with probability pI

1i . Therefore, the first row
of the matrix M is specified by m1j = µ

D̃−1p̂1jp
I
1j . For a type-4 individual, the situation is

very similar, the difference being that since the individual is not sampled its neighbours cannot
be named by it. Thus, m4j = µ

D̃−1p̂4jp
I
4j , where p̂41 = 0, p̂42 = p̃V pS , p̂43 = (1 − p̃V )pS ,

p̂44 = 0, p̂45 = p̃V (1 − pS), and p̂46 = (1 − p̃V )(1 − pS).
Consideration of a typical unvaccinated (i.e. type 3 or 6) individual follows very similar

arguments, the key difference being that we know that the potential offspring do not name
their parent (since the parent is unvaccinated), so the probability that each potential offspring
is sampled is

p̃SU = P(S | does not name parent) = pS(1 − pN)

pS(1 − pN) + 1 − pS

= pS(1 − pN)

1 − pSpN

. (11)

Thus, for j = 1, 2, . . . , 6, m3j = µ
D̃U −1p̂3jp

I
3j and m6j = µ

D̃U −1p̂6jp
I
6j , where, using (8),

µ
D̃U −1 =

∞∑
k=1

(k − 1)
p̃k(1 − pNpS)k−1

1 − p̃V

= (1 − pNpS)
f

(1)

D̃−1
(1 − pNpS)

1 − p̃V

;

and the potential offspring type probabilities are p̂31 = pNp̃SU , p̂32 = (1 − pN)p̃V p̃SU ,
p̂33 = (1 − pN)(1 − p̃V )p̃SU , p̂34 = pN(1 − p̃SU ), p̂35 = (1 − pN)p̃V (1 − p̃SU ), p̂36 =
(1 − pN)(1 − p̃V )(1 − p̃SU ), p̂61 = 0, p̂62 = p̃V p̃SU , p̂63 = (1 − p̃V )p̃SU , p̂64 = 0,
p̂65 = p̃V (1 − p̃SU ), and p̂66 = (1 − p̃V )(1 − p̃SU ).

Now consider a typical type-2 (i.e. (V , S)) individual, i∗ say. Its degree is distributed as
D̃V . Let NS and NSc be the number of uninfected neighbours of i∗ that are sampled and
unsampled, respectively. For d = 1, 2, . . . , the conditional distribution of NS , given that i∗’s
degree D̃V = d , is given by

P(NS = k | D̃V = d) =
(
d−1

k

)
pk

S(1 − pS)d−1−k(1 − (1 − pN)k)

1 − (1 − pNpS)d−1 , k = 0, 1, . . . , d − 1.

(12)
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Hence, using (7), µNS
= p̃−1

V pS(µ
D̃−1 − (1 − pN)f

(1)

D̃−1
(1 − pSpN)) and, since NSc = D̃V −

1−NS , we have µNSc = p̃−1
V (1−pS)(µ

D̃−1−f
(1)

D̃−1
(1−pSpN)). Now, note that each potential

offspring, whether sampled or not, is named with probability pN and otherwise vaccinated
(with probability (1 − pN)p̃V ) or unvaccinated (with probability (1 − pN)(1 − p̃V )). Thus,
we have m2j = µNS

p̂2jp
I
2j (j = 1, 2, 3) and m2j = µNSc p̂2jp

I
2j (j = 4, 5, 6), where

p̂21 = p̂24 = pN , p̂22 = p̂25 = (1−pN)p̃V , and p̂23 = p̂26 = (1−pN)(1−p̃V ). For a type-5
(i.e. (V , Sc)) individual, the situation is exactly the same except that the potential offspring
cannot be named, so m5j = µNS

p̂5jp
I
5j (j = 1, 2, 3) and m5j = µNSc p̂5jp

I
5j (j = 4, 5, 6),

where p̂51 = p̂54 = 0, p̂52 = p̂55 = p̃V , and p̂53 = p̂56 = 1 − p̃V .
Using similar coupling arguments to those in Ball and Sirl (2012, Section 6.2), the approxi-

mating branching process BF and a sequence (E (n)) of epidemic processes with acquaintance
vaccination, indexed by the population size n, may be constructed on the same probability
space so that the number of individuals infected in (E (n)) converges almost surely to the total
progeny of BF as n → ∞. Moreover, if σ 2

D < ∞, similar coupling arguments to those in
Ball et al. (2009) show that the probability that E (n) infects at least log n individuals tends to
the survival probability of BF as n → ∞. We then have the following proposition, in which a
major outbreak is one that infects at least log n individuals. We conjecture that, as for the model
without vaccination, in the limit as n → ∞, a major outbreak almost surely infects exact order
n individuals (see Proposition 4, in Section 4.4; cf. final paragraph of Section 2.1.2).

Proposition 2. The quantity Rv is a threshold parameter for our epidemic model in the usual
sense that, as the population size n → ∞, a major outbreak occurs with strictly positive
probability if and only if Rv > 1.

4.2. PGFs of potential offspring distributions

First we consider individuals in a noninitial generation. For i = 1, 2, . . . , 6, let X̃i =
(X̃i1, X̃i2, . . . , X̃i6) be the number of potential offspring of each type of a typical type-i
individual in a noninitial generation. (Recall that X̃i has the same distribution in both the forward
and backward processes.) For types 1, 3, 4, and 6, each neighbour of the individual under
consideration takes its type independently with fixed probability so, conditional on the degree
of the individual, the numbers of potential offspring follow a multinomial distribution. Thus, for
s ∈ [0, 1]6, we have fX̃i

(s) = f
D̃−1(gi(s)), i = 1, 4, and fX̃i

(s) = f
D̃U −1(gi(s)), i = 3, 6,

where gi(s) = ∑6
j=1 p̂ij sj , i = 1, 3, 4, 6.

Now consider a typical type-2 individual. Conditioning on its degree (distributed according
to D̃V ) and then on the number NS of its potential offspring that are sampled, we have

E

[ 6∏
j=1

s
X̃2j

j

]
= E

D̃V

[
ENS

[
EX̃2

[ 6∏
j=1

s
X̃2j

j

∣∣∣∣ NS, D̃V

]]]
.

Since each potential offspring, independently of whether or not it is sampled, is named, vacci-
nated, or unvaccinated with probability p̂21 = p̂24, p̂22 = p̂25, and p̂23 = p̂26, respectively,
we have (note that NS + NSc = D̃V − 1)

EX̃2

[ 6∏
j=1

s
X̃2j

j

∣∣∣∣ NS, NSc

]
= (g21(s))

NS (g22(s))
NSc , (13)

where, for s ∈ [0, 1]6, g21(s) = ∑3
j=1 p̂2j sj and g22(s) = ∑6

j=4 p̂2j sj . Together with the
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conditional distribution of NS given by (12), it then follows that, for d = 2, 3, . . . ,

EX̃2

[ 6∏
j=1

s
X̃2j

j

∣∣∣∣ D̃V = d

]

= 1

1 − (1 − pSpN)d−1

×
d−1∑
k=1

(
d − 1

k

)
(pSg21(s))

k((1 − pS)g22(s))
d−1−k(1 − (1 − pN)k)

= 1

1 − (1 − pSpN)d−1 [(g2(s, pS, 0))d−1 − (g2(s, pS, pN))d−1], (14)

where g2(s, pS, pN) = pS(1 − pN)g21(s) + (1 − pS)g22(s). Taking the expectation of (14)
with respect to D̃V , using the mass function (7), then yields

fX̃2
(s) = 1

p̃V

[f
D̃−1(g2(s, pS, 0)) − f

D̃−1(g2(s, pS, pN))].

A similar calculation for a type-5 individual, noting that its offspring cannot be named, yields

fX̃5
(s) = 1

p̃V

[f
D̃−1(g5(s, pS, 0)) − f

D̃−1(g5(s, pS, pN))],

where g5(s, pS, pN) = pS(1 − pN)g51(s) + (1 − pS)g52(s), with g51(s) = ∑3
j=1 p̂5j sj and

g52(s) = ∑6
j=4 p̂5j sj .

For individuals in the initial generation the calculations are very similar. Recall that initial
individuals are typed only by whether they are vaccinated (type V ) or unvaccinated (type U ).
For A = V, U , let XA = (XAj , j = 1, 2, . . . , 6) be the number of potential offspring of an
initial individual of type A. A typical type-U initial individual is sampled with probability pS

and has degree distributed as DU defined by (10). If it is sampled then each of its neighbours
(potential offspring) is of type j independently with probabilities (p̂3j , j = 1, 2, . . . , 6) and
if it is not sampled then these probabilities are (p̂6j , j = 1, 2, . . . , 6). Thus, for s ∈ [0, 1]6,

fXU
(s) = pSfDU

(g3(s)) + (1 − pS)fDU
(g6(s)),

where, using (10), fDU
(s) = fD(s(1 − pSpN))/(1 − pV ). Now consider a typical type-V

individual, i∗ say. As before, let NS and NSc be the number of i∗’s neighbours that are sampled
and unsampled, respectively. Since i∗ must be named by at least one of its neighbours, it
follows that, for d = 1, 2, . . . ,

P(NS = k | DV = d) =
(
d
k

)
pk

S(1 − pS)d−k(1 − (1 − pN)k)

1 − (1 − pSpN)d
, k = 1, 2, . . . , d.

Furthermore, since i∗ is sampled with probability pS , we have

EXV

[ 6∏
j=1

s
XVj

j

∣∣∣∣ NS, NSc

]
= pS(g21(s))

NS (g22(s))
NSc + (1 − pS)(g51(s))

NS (g52(s))
NSc .
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This is an analogue of (13) in the derivation of fX̃2
and the corresponding equation in the

derivation of fX̃5
. Arguing as in those cases and recalling the mass function (9) yields

fXV
(s) = 1

pV

(pS[fD(g2(s, pS, 0)) − fD(g2(s, pS, pN))]
+ (1 − pS)[fD(g5(s, pS, 0)) − fD(g5(s, pS, pN))]).

4.3. Probability of a major outbreak

It is convenient to treat the nonrandom and all-or-nothing vaccine responses separately.
Consider first the nonrandom vaccine action model and, for i = 1, 2, . . . , 6, define ai to be the
relative susceptibility and bi the relative infectivity of a type-i individual. Thus, ai = bi = 1
for i = 3, 6 and ai = a, bi = b for i = 1, 2, 4, 5. For i = 1, 2, . . . , 6, conditioning on the
potential offspring vector X̃i and infectious period I of a typical noninitial generation type-i
individual yields

f
C̃i

(s) = E
I,X̃i

[
E

C̃i

[ 6∏
j=1

s
C̃ij

j

∣∣∣∣ X̃i , I

]]
= E

I,X̃i

[ 6∏
j=1

(e−aj biλI +(1−e−aj biλI )sj )
X̃ij

]
. (15)

Then, using the same manipulations as at the end of Section A.2 of Ball et al. (2010) and
employing the vector notation defined in Section 1.1, we find that

f
C̃i

(s) =
∑

k∈Z
6+

(1 − s)khF
i (k)

k! f
(k)

X̃i
(s), (16)

where hF
i (k) = φ(biλ

∑6
j=1 aj kj ).

Exactly the same arguments apply for the initial generation, whence, for A = U, V and
s ∈ [0, 1]6,

fCA
(s) =

∑
k∈Z

6+

(1 − s)khF
A(k)

k! f
(k)
XA

(s), (17)

where hF
V ≡ hF

1 and hF
U ≡ hF

3 .
If the infectious period is constant then (16) and (17) simplify appreciably, since it follows

directly from (15) that, with pI
ij defined using P NR, for s ∈ [0, 1]6,

f
C̃i

(s) = fX̃i
(hF

i (s)), i = 1, 2, . . . , 6, and fCA
(s) = fXA

(hF
A(s)), A = U, V,

(18)
where hF

i (s) = (1 − pI
ij + pI

ij sj , j = 1, 2, . . . , 6), hF
V (s) = hF

1 (s), and hF
U (s) = hF

3 (s).
Turning to the all-or-nothing vaccine response model, since vaccinated individuals are either

rendered completely immune or are unaffected by the vaccine, in BF we need only keep track
of unvaccinated individuals and vaccinated individuals for whom the vaccine fails. Thus, we
still have six types of individual, labelled 1 to 6 as before, but with the implicit assumption
that ‘named’ and ‘vaccinated’ types are fully infectious, i.e. we ignore individuals who become
fully immune. (Of course, the different types still have different degree distributions.) A similar
argument to that used above shows that (15) holds but with e−aj biλI +(1−e−aj biλI )sj replaced
by e−λI + (1 − e−λI )sj for j = 3, 6, and by ε + (1 − ε)e−λI + (1 − ε)(1 − e−λI )sj for
j = 1, 2, 4, 5. Analogous expressions to (16) and (17) then follow. If the infectious period is
constant then (18) holds with the pI

ij defined using P AoN.
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The probability of a major outbreak in our epidemic model is approximated by the survival
probability of the forward branching process BF . By standard branching process theory this
is, assuming that the initial individual is of type A ∈ {U, V }, p

(A)
maj = 1 − fCA

(σ ), where σ

is the smallest solution of f
C̃
(s) = s in [0, 1]6 and f

C̃
(s) = (f

C̃i
(s), i = 1, 2, . . . , 6). The

following proposition then follows by conditioning on the type of the initial infective.

Proposition 3. Consider the epidemic taking place on the network with vaccination according
to our (new) acquaintance vaccination model and a single initial infective chosen uniformly
at random from the population. As the population size n → ∞, the probability that a major
outbreak occurs is given by

pmaj =
{

pV p
(V )
maj + (1 − pV )p

(U)
maj nonrandom vaccine,

pV (1 − ε)p
(V )
maj + (1 − pV )p

(U)
maj all-or-nothing vaccine.

The probability pmaj is strictly positive if Rv > 1; if Rv ≤ 1 then pmaj = 0.

4.4. Final size of the major outbreak

The expected relative final size of a major outbreak is approximated by the survival prob-
ability of the backward process BB . Standard branching process theory tells us that if we
write fB̃(s) = (fB̃i

(s), i = 1, 2, . . . , 6) then the expected relative final size amongst type-A
individuals (A = U, V ) can be written as z(A) = 1 − fBA

(ξ), where ξ is the smallest solution
of fB̃(s) = s in [0, 1]6.

To calculate the PGF fB̃i
(s), we firstly condition on X̃i = (X̃ij , j = 1, 2, . . . , 6), the

number of potential offspring of each type. Since each potential offspring joins the susceptibility
set independently, type j potential offspring joining with probability pI

ji , we find that

fB̃i
(s) = fX̃i

(hB
i (s)),

where hB
i (s) = (1−pI

ji +pI
jisj , j = 1, 2, . . . , 6) and pI

ji (i, j = 1, 2, . . . , 6) are the marginal

infection probabilities, using P AoN or P NR as appropriate. As with BF , the calculations relating
the potential to the actual offspring distribution are exactly the same when dealing with the initial
generation; in this instance we have

fBA
(s) = fXA

(hB
A(s)), A ∈ {U, V },

where hB
U ≡ hB

3 and hB
V ≡ hB

1 .
These formulae hold equally for all-or-nothing and nonrandom vaccine action models if

we make the same implicit assumption as above, namely that with the all-or-nothing vaccine
action model we count only those individuals for whom the vaccine fails in the ‘named’ and
‘vaccinated’ types. We expect that the arguments of Ball et al. (2009) can be adapted to prove
that, as supported by extensive numerical simulations, the relative final size of a major outbreak
converges in probability to the survival probability of BB as n → ∞ (cf. final paragraph of
Section 2.1.2). A simple conditioning on the type of the randomly chosen initial susceptible
thus suggests the following result.

Proposition 4. Consider the epidemic taking place on the network with vaccination according
to our (new) acquaintance vaccination model and a single initial infective chosen uniformly at
random from the population. As the population size n → ∞, the proportion of the population
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that is ultimately infected by a major outbreak is given by

z =
{

pV z(V ) + (1 − pV )z(U) nonrandom vaccine,

pV (1 − ε)z(V ) + (1 − pV )z(U) all-or-nothing vaccine.

5. Properties of the new vaccination model

In this section we briefly investigate some of the properties of our new model for acquaintance
vaccination. We use the notation c for the vaccine coverage; as pointed out earlier it is the
same as the probability pV but the interpretation as the coverage is more pertinent here. We
begin by examining the trade-off between pS and pN . Clearly, the vaccine coverage c =
1 − fD(1 − pSpN) depends only on the product pSpN , but the precise values of pS and pN

affect how effective the vaccination is. Analytical progress in this direction is possible in the
case where the vaccine is perfect, we later use numerical methods to explore the situation for
imperfect vaccines.

When the vaccine is perfect, only unvaccinated individuals can be infected and the ap-
proximating branching processes involve only two types of individual, (U, S) and (U, Sc).
Moreover, in both BF and BB unvaccinated individuals are sampled independently, so these
processes are essentially single type. The threshold parameter Rv may be obtained as follows.
A typical infected individual, i∗ say, in a noninitial generation of BF is sampled with probability
p̃SU , has on average µ

D̃U −1 forward neighbours (potential offspring) and fails to name a
given forward neighbour with probability 1 − p̃SU + p̃SU (1 − pN). Furthermore, each
unnamed forward neighbour is vaccinated with probability p̃V . Thus, i∗ has on average
µ

D̃U −1(1 − p̃SU + p̃SU (1 − pN))(1 − p̃V ) susceptible forward neighbours, so

Rv = pIµ
D̃U −1(1 − p̃SU + p̃SU (1 − pN))(1 − p̃V ) = pI (1 − 2p′ + p′pN)f

(1)

D̃−1
(1 − p′),

using (8) and (11) and writing p′ for pSpN . Thus, for fixed p′, i.e. fixed coverage, Rv is strictly
increasing in pN . The best we can do with fixed coverage is to take (pS, pN) = (1, p′), and
the worst we can do is to take (pS, pN) = (p′, 1); these give

Rb
v = pI (1 − p′)2f

(1)

D̃−1
(1 − p′) and Rw

v = pI (1 − p′)f (1)

D̃−1
(1 − p′).

Clearly, the factor 1 − p′ between Rb
v and Rw

v gives the greatest difference when p′ is large,
i.e. the coverage c = 1 − fD(1 − p′) is large. This suggests that when coverage is high
the balance between pS and pN is more important than when the coverage is low. However,
when the coverage is high with a perfect vaccine, the epidemic is likely to be subcritical in any
event. The nature of the dependence on pS and pN is also perhaps not surprising: the effect of
vaccination is greater if everyone in the population names a few friends to be vaccinated than
if a few people in the population name all of their friends to be vaccinated. As is seen below,
however, our numerical studies indicate that the observed differences between these ‘best’ and
‘worst’ strategies are very small. With a perfect vaccine in the old model, expression (3) for Rv

is explicit but cannot easily be compared to the corresponding formulae above for the new
model.

Turning to the case of an imperfect vaccine, we numerically compare the performance of
the old and new acquaintance vaccination models, ‘uniform vaccination’ (selecting individuals
to be vaccinated uniformly at random), and the best possible scheme in the SNM, where the
highest-degree individuals are vaccinated. The latter scheme, which we call ‘SNM-optimal’, is
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Figure 1: Plots of the post-vaccination threshold parameter and the expected relative final size of a major
outbreak versus vaccine coverage c for various vaccine allocation regimes, using a perfect vaccine and
with degree distributions D ∼ Poi(10) (left) and D ∼ Pow(12, 3.4) (right), which (to 1 decimal place)
has µD = 10.0 and σ 2

D = 176.7. Other model parameters are λ = 1 and I ∼ exp(3) (left), I ∼ exp(10)

(right), where exp(µ) denotes the negative exponential distribution with mean µ−1.

of course impossible to implement in any real-world setting, but nevertheless it gives a guide to
help understand how well the various acquaintance vaccination models perform and we would
hope that the performance of the acquaintance vaccination schemes comes close to that of the
SNM-optimal scheme. Details of the calculations involved are given in Appendix B.

In Figure 1 we plot (using two different degree distributions) the post-vaccination threshold
parameter Rv and the expected relative final size of a major outbreak z against vaccine coverage,
using a perfect vaccine with a range of vaccine allocation regimes. The regimes we compare
involve choosing individuals (i) uniformly at random, (ii) with the worst ‘new’ acquaintance
vaccination regime, (iii) with the best ‘new’ acquaintance vaccination regime, (iv) with the
‘old’ acquaintance vaccination regime, and (v) according to the SNM-optimal regime. The
degree distributions we use are the Poisson distribution with mean µ, denoted by Poi(µ), and
a distribution with a power law tail, for which we write D ∼ Pow(k∗, a) to mean

P(D = k) =
{

k−a∗ for k = 0, 1, . . . , k∗,
k−a for k = k∗ + 1, k∗ + 2, . . . .

In Figure 2 we present the same plots as in Figure 1 except the vaccine action model used is
all-or-nothing with success probability 0.8. In the upper-right plot of Figure 2 we do not include
the performance of the old acquaintance vaccination model, since the approximations R

(d∗)
A of

Rv (described in Section 3.2) are very slow to converge as d∗ → ∞ when D is heavy tailed
and we have not been able to implement satisfactory numerical methods to approximate Rv in
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Figure 2: Plots of the post-vaccination threshold parameter and the expected relative final size of a major
outbreak versus vaccine coverage for various vaccine allocation regimes, using an all-or-nothing vaccine
with ε = 0.8 and with degree distributions D ∼ Poi(10) (left) and D ∼ Pow(12, 3.4) (right). Other

model parameters are λ = 1 and I ∼ exp(3) (left), I ∼ exp(10) (right).

this situation. Very similar plots to those in Figure 2 are obtained when using a nonrandom
vaccine with parameters a = b = √

0.2 (chosen so that the efficacy 1−E[AB] of the imperfect
vaccines are the same).

Unsurprisingly, we see the various acquaintance vaccination regimes perform better than
vaccinating individuals chosen uniformly at random but not as well as vaccinating individuals of
highest degree. It also appears that the advantage acquaintance vaccination offers over uniform
vaccination is more pronounced for the more widely spread degree distribution—the effect of
selecting individuals to vaccinate whose degree is distributed according to D̃ rather than D being
greater when the degree distribution has greater variability. Additionally, the extent to which
the SNM-optimal allocation regime outperforms acquaintance vaccination is rather smaller for
the widely spread degree distribution. This suggests that it is in realistic networks, in which
individuals have vastly differing connectivities, that acquaintance vaccination both outperforms
naively vaccinating uniformly at random to the greatest extent and best approximates the optimal
vaccine allocation regime. We also note that the best and worst new acquaintance vaccination
regimes and (when we can do the necessary calculations) also the old acquaintance-based
regime all perform very similarly.

Figures 1 and 2 suggest that the difference between the best and worst performances of the
new acquaintance vaccination model is very small indeed, especially for the power law degree
distribution. Whilst we can analytically compare the threshold parameters of the best and worst
models when the vaccine is perfect and we find that the differences are quite small, results
such as those in Figure 2 and similar plots for other vaccine action models (not shown) indicate
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that the discrepancy is also quite small when considering imperfect vaccines. In Figure 2 we
have used the labels ‘best’ and ‘worst’ as with the perfect vaccine even though we have no real
reason to do so. Extensive numerical results (not shown) indicate that for fixed p′ = pSpN the
performance of an imperfect vaccine (measured by Rv or z) is always monotonic in pN and,
whilst the direction of the monotonicity is not fixed, the magnitude of the differences between
best and worst is very small.

Appendix A. Proof of Proposition 1

Let t0 denote the type U2, and suppose that B̃ has a single ancestor whose type is t0. Let B̃0
be the single-type (t0) Galton–Watson process embedded in B̃, in which, apart from the initial
ancestor, for each type-t0 individual in B̃, its mother in B̃0 is given by its most recent type-t0
ancestor when looking backwards in the family tree. Note that the offspring distribution of B̃0
may have a mass at ∞. Let π̂ be the extinction probability of B̃0. For d∗ = 2, 3, . . . , let B̃(d∗)

0
be the single-type Galton–Watson process derived from B̃(d∗) in the same fashion and let π̂ (d∗)

denote the extinction probability of B̃(d∗)
0 .

For d = 2, 3, . . . , let pNd
be the probability that a given type-Nd individual in B̃ has at least

one child of type U2. Then pNd
≥ mNd,U2/(d − 1) ≥ e−κ/2p̃2αpV U . Similarly, in obvious

notation, pUd
≥ e−κ p̃2pUU . Also, pVd

≥ e−κ/d p̃2(1−e−κ/2αd−2)(1−αd−1)−1αpV U (for d =
2, 3, . . . ). Now (1 − e−κ/2αd−2)(1 − αd−1)−1 increases with d if α ≤ e−κ/2 and decreases
with d if α ≥ e−κ/2. Thus, pVd

≥ e−κ/2p̃2 min(1, (1 − e−κ/2)/(1 − α))αpV U . Hence, there
exists p0 > 0 such that the probability that any given individual has at least one child of type
U2 is at least p0, so, by the strong law of large numbers, if B̃ survives (i.e. does not become
extinct) then almost surely so does B̃0. Clearly, B̃0 becomes extinct if B̃ becomes extinct.
Thus, π̃t0 = π̂ , and a similar argument gives π̃

(d∗)
t0

= π̂ (d∗) (d∗ = 2, 3, . . . ).

Let the random variable C̃0 be distributed according to the offspring distribution of B̃0 and,
for d∗ = 2, 3, . . . , let the random variable C̃

(d∗)
0 be distributed according to the offspring

distribution of B̃(d∗)
0 . Construct coupled realisations of C̃0 and C̃

(d∗)
0 (d∗ = 2, 3, . . . ) using the

progeny of the ancestor in B̃. If C̃0 < ∞ then only finitely many types in B̃ contribute to C̃0, so
C̃0 = C̃

(d∗)
0 for all sufficiently large d∗. Alternatively, if C̃0 = ∞ then, for any integer K > 0,

let T (K) be the maximum of the degrees of individuals used in B̃ when C̃0 first exceeds K . Then
C̃

(d∗)
0 ≥ K for all d∗ ≥ T (K). Thus, C̃(d∗)

0 converges almost surely to C̃0 as d∗ → ∞. Hence,
by the dominated convergence theorem, limd∗→∞ f

C̃
(d∗)
0

(s) = f
C̃0

(s), 0 ≤ s ≤ 1, whence
π̂ = limd∗→∞ = π̂ (d∗) (cf. Britton et al. (2007, Lemma 4.1)), so π̃t0 = limd∗→∞ π̃

(d∗)
t0

.

Suppose now that B̃ has a single ancestor whose type is t �= t0. Let B̃t,0 be the single-type
Galton–Watson process, consisting of the ancestor and all type-t0 individuals in B̃, that is
embedded in B̃ analogously to B̃0 above. Note that the offspring distribution of the ancestor
in B̃t,0 may be different from that of subsequent individuals. The above argument may be
modified in the obvious fashion to show that π̃t = limd∗→∞ π̃

(d∗)
t , thus, completing the proof

of Proposition 1(i).

To prove Proposition 1(ii), note that every element of M̃ is strictly positive, so, for any
t ∈ T̃ , π̃t < 1 if and only if π̃t0 < 1. Suppose that π̃t0 < 1. Then, since π̂ = π̃t0 and
π̂ = limd∗→∞ π̂ (d∗), there exists d∗ such that π̂ (d∗) < 1, whence, since π̃

(d∗)
t0

= π̂ (d∗), Mode
(1971, Theorem 1.7.1) implies that R

(d∗)
A > 1, so RA > 1. Conversely, if RA > 1, then there

exists d∗ such that R
(d∗)
A > 1, whence π̃

(d∗)
t < 1 which implies that π̃t0 < 1, since π̃t0 < π̃

(d∗)
t .
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Appendix B. SNM-optimal vaccination

Clearly, the best possible vaccination strategy in the SNM is to vaccinate all individuals
of ‘high’ degree and no individuals of ‘low’ degree, the cutoff between low and high being
determined by the coverage available. Given c, the smallest degree of individual which we
vaccinate is given by dc = max{k ∈ Z+ : ∑k−1

j=0pj < 1 − c}. We then vaccinate no individuals
of degree dc − 1 or smaller, some proportion δ ∈ (0, 1] of individuals of degree dc, and all
individuals of degree dc + 1 and higher. Setting δ = (c −∑∞

i=dc+1pi)/pdc gives the desired
coverage c.

Let p̃V be the probability that the individual from which a randomly chosen half-edge
emanates is vaccinated. The degree of this individual is distributed as D̃, so p̃V = δp̃dc +∑∞

j=dc+1 p̃j . The degree distribution of a typical vaccinated individual is given by P(DV =
dc) = δpdcc

−1 and P(DV = k) = pkc
−1 for k = dc + 1, dc + 2, . . . , whilst that of a typical

unvaccinated individual is given by P(DU = k) = pk(1 − c)−1 for k = 0, 1, . . . , dc − 1
and P(DU = dc) = (1 − δ)pdc (1 − c)−1. The degree distributions of a typical contacted
individual conditioned on it being vaccinated or unvaccinated are needed. These are given
by P(D̃V = dc) = δp̃dc p̃

−1
V and P(D̃V = k) = p̃kp̃

−1
V for k = dc + 1, dc + 2, . . . ; and

P(D̃U = k) = p̃k(1−p̃V )−1 for k = 0, 1, . . . , dc−1 and P(D̃U = dc) = (1−δ)p̃dc (1−p̃V )−1.
The corresponding means are

µ
D̃V

= p̃−1
V

(
δdcp̃dc +

∞∑
j=dc+1

jp̃j

)

and

µ
D̃U

= (1 − p̃V )−1
(dc−1∑

j=1

jp̃j + (1 − δ)dcp̃dc

)
.

In the forward and backward approximating branching processes, it is sufficient to type
individuals according to whether they are vaccinated (type 1) or unvaccinated (type 2). The
mean matrix for noninitial generations of the forward process is then given by

M =
(

µ
D̃V −1p̃V pV V µ

D̃V −1(1 − p̃V )pV U

µ
D̃U −1p̃V pUV µ

D̃U −1(1 − p̃V )pUU

)
.

The dominant eigenvalue Rv of this matrix is then a threshold parameter for the model,
describing (asymptotically) whether or not major outbreaks affecting a positive proportion
of the population are possible. Note that if pUUpV V = pUV pV U (which is satisfied when
the vaccine is all-or-nothing or nonrandom with a = 1 or b = 1 (leaky)) then rank M = 1
and Rv = µ

D̃U −1(1 − p̃V )pUU + µ
D̃V −1p̃V pV V . In particular, if the vaccine is perfect,

Rv = µ
D̃U −1(1 − p̃V )p.

As in the analysis of our acquaintance vaccination model we consider the offspring of an
individual in two phases. First we call (in the language of the forward process) uninfected
neighbours of an infected individual potential offspring and determine their types; then we
determine whether they are infected. Also, in the same way as before, with the all-or-nothing
vaccine we count as vaccinated types only individuals for which the vaccine fails.

For noninitial generations the PGFs of the potential offspring distributions X̃i = (X̃i1, X̃i2),

i = 1, 2, follow easily from the size-biased degree distributions given above. Since each
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neighbour takes its type independently with fixed probabilities, we have, for s ∈ [0, 1]2,
fX̃1

(s) = f
D̃V −1(g(s)) and fX̃2

(s) = f
D̃U −1(g(s)), where g(s) = p̃V s1 + (1 − p̃V )s2.

The same calculations for the potential offspring distributions in the initial generation (call
the random variables Xi = (Xi1, Xi2)) show that, for s ∈ [0, 1]2, fX1(s) = fDV

(g(s)) and
fX2(s) = fDU

(g(s)).
To calculate the PGFs of the offspring distributions for the forward process, we again follow

closely the derivation in Section 4. Consider first the case of a nonrandom vaccine action
model. Denoting by C̃i = (C̃i1, C̃i2), i = 1, 2, the number of vaccinated and unvaccinated
individuals infected by a typical type-i individual, and by ai and bi the relative susceptibilities
and infectivities of the types (so a1 = a, b1 = b, and a2 = b2 = 1), we find that

f
C̃i

(s) =
∑

k∈Z
2+

(1 − s)khF
i (k)

k! f
(k)

X̃i
(s),

where hF
i (k) = φ(λbi

∑
j aj kj ). Of course, exactly the same arguments hold for the initial

generation and the same formula is obtained, with Ci = (Ci1, Ci2) and Xi in place of C̃i

and X̃i .
Considering the case of the all-or-nothing vaccine action model, the same modifications as

described at the end of Section 4.3 applied to the above argument give corresponding formulae
for the offspring distributions.

The offspring PGFs for the backward process are also derived in the same way as in
Section 4; writing B̃i = (B̃i1, B̃i2), i = 1, 2, for the appropriate random variable we find
that fB̃i

(s) = fX̃i
(hB

i (s)), where hB
i (s) = (1 − pI

1i + pI
1i s1, 1 − pI

2i + pI
2i s2), with

pI
11 = pV V , pI

12 = pV U , pI
21 = pUV , and pI

22 = pUU .

The same arguments apply for the initial generation, so fBi
(s) = fXi

(hB
i (s)), with hB

i (s) as
before. The differences between the nonrandom and all-or-nothing vaccine action models again
arise only in the definition of the quantities pI

ij and the appropriate weighted average to use to
determine the overall expected relative final size of a major outbreak (cf. Section 4.4).
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