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SPACE OF SOLUTIONS OF HOMOGENEOUS 
ELLIPTIC EQUATIONS 

BY 
E. DUBINSKYC) AND T. HUSAIN(2) 

This is the continuation of our paper [1] and includes the results promised there. 
As in [1], we consider a homogeneous elliptic equation in two variables. In [1] 
we showed that all solutions of such equations can be written in a specific form, 
viz. in the form of an infinite series in certain specific polynomials. Here we first 
establish that a common solution of any two positive powers of any two linearly 
independent, linear elliptic polynomials can be expressed as a polynomial (Lemma 
2). This leads, by induction, to the main result (Corollary 2) of §1, viz. the linear 
space of all vectors(u l 9 . . . , ur)9 6ifc|wf=0, /= 1 , . . . , r such that wxH hwr = 0 is 
finite-dimensional, where Q = Q\i... Qrr is an elliptic homogeneous polynomial 
and the Qt

9s are its factors ([1], Lemma 3). 
Finally, using some facts about the locally convex space of entire functions, we 

show that the linear space of solutions of an elliptic homogeneous polynomial in 
two variables is isomorphic to the space of entire functions and therefore has a 
Schauder basis, as stated in [1]. 

All notation and terminology is identical to that used in [1], We take z=x+iy 
and z its complex congugate. 

1. Intersections of solution spaces. In this section we let P(sus2)=sl + is2, 
AC?i> s2) = avsx+pvs29 v= 1 , . . . , r and we assume that the pairs (1, i), (al9 & ) , . . . , 
(ar, /?r) are pairwise linearly independent in C2. Let k, kl9..., kr be positive integers, 
and assume k-l<kj9j=l9..., r. 

LEMMA 1. Let 

v(xl9 x2) = 2 (x1-ix2yg^xl9 x2)9 
y = o 

N 

gfcl9X2) = 2 *nA*l + '*2)W. 
n = 0 

IfP^u — v, then u can be written as the sum: u=u0 + ul9 where 

PfiWi = 0, PXWQ = v9 
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18 E. DUBINSKY AND T. HUSAIN [March 

fc-i 
wo(-^i5 ^ 2 ) =Z A4 \X1~~~IX2) hj\xi> x2), 

j = 0 

N + (k-j)ki 

hj(xux2)= 2 Kfa + ixz)". 
n = 0 

Proof. We need only obtain w0, since then one gets the required u1 = u — u09 for 

Pjfi Wi=PÏ1 w—PÏ1 ^0 = ^ - ^ = 0. 
To obtain w0 we compute A 0 , . . . , hk-x from the following equation: 

^ « 0 = Y 2 (kl) JT^T, 0«i+i3i)K(x1-/x2y-"Pf1-''/!, 

,'j'(t'f;)<M(i,+Wf!,.»,..). 
Equating coefficients of (xx — ix2)

j on both sides, we get : 

k 2 ' Q , ; -P ï i -^ + , = ft, j = 0 , . . . , * - 1 , 
M = 0 

where 

Q,, = (*;)^WM«. 

Note C0,; = 1, so we can write the equations as, 

Pfrhjc-i-, = gjc-x-j+fj, j = 1,2, . . . , f c - l , 

where./} is a linear combination of Pi^~jhk-U P^~jJrlhk^2, • • •> ̂ ï 1 " 1 ^- ; -
We can then verify directly that the first equation has a solution of the form 

N + kt 

Itk _ iOx, X2) = 2 èn,fc - lO + (V)n. 
n = 0 

Thus successively we obtain hk-±,..., hk.j- of the form: 

/ifc-v(̂ i» ̂ 2) = 2 *n,k-v(*+i»n, v = 1,.. .,y 
n = 0 

whence we have the required /z/s of the desired form. 

LEMMA 2. Let Pku=PiW = 0. Then u can be written as 
k-l 

u(xl9x2) = 2 fa-bcitff,, 
; = 0 

fc+fci-1 

fj(xi, x2) = 2 *nA*i + **2)n, 7 = 0 , . . . , k-1. 
n = 0 

Proof. Case 1. i \ 0 i , ^2) = ^i — ^2- Then by [1, Theorem 1] we can write, 
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1971] SOLUTIONS OF ELLIPTIC EQUATIONS 19 

fc-l oo 

u(xl9x2) = 2 2 anj(x1-ix2y(x1 + ix2)
n 

j ' = 0 n = 0 

and 
fci-l oo 

u(xu x2) = 2 I w^+^yfe-w1. 
y=o n=o 

If we apply the operator P[Pn to each equation and equate the result, evaluating 
at xx=x2=09 we obtain anj = bjn. But bnj=0 for j>kl9 so anJ=0 for «>&i and we 
have 

fc-ifci-i 

U(X19 *2) = 2 2 0nA*l-fr2y(*l + î*2)W, 
y = 0 n = 0 

and since k± — 1 <fc-f fci — 1 we have the desired result. 

Case 2. Pifai, £2) is not a scalar multiple of In this case we can write 
Pi(s1,s2) = a1s1+p1s2 and iax+fi^O. Since Pku = 09 again by [1, Theorem 1], we 
have 

fc-l oo 

w(*i,*2) = 2 (x1-ix2Yfj, fj(xi,x2) = 2 0nAxi + ix2)
n. 

3 = 0 n = 0 

As in the proof of Lemma 1, we have 

0 = Pfi« = k 2 *"£"' (kl) (-^7T-! (^i+P^Pi^fjUxi-ix^. 
y = o # = o VA1/ y* 

It is well known and elementary that the powers of the function x± — ix2 are linearly 
independent with coefficients from the ring of entire functions. In fact this is shown 
inductively by applying appropriate powers of the operator P to a polynomial in 
(xx — ix2) with entire functions as coefficients. With this fact we then conclude that 

"'£' (kl) (J±f^ (fe^mi-y,^ = o, j = o,..., k-1. 
By successively writing out the above for j=A:— 1, k — 2 , . . . , 0, we obtain 

Pfrf*-i = P^ + 1Â-2 = • • • = P^+k'Vo = 0. 
But 

Plffycu x2) = 2 J^M Q«i+PiY<Uxi + ix2)n-v = 0 

so 0n;=O for «>v and we have 
k + fci - 1 

/X*l>*2)= 2 ^n/^l + ^ 2 ) n . 
n = 0 

THEOREM 1. 7/'i>fc w=0 am/ rii=i P^u^O, then u can be written as 

k - l 

u(xl9 x2) = 2, \Xi"~ix2)fj(xl9 x2), 
i = 0 
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20 E. DUBINSKY AND T. HUSAIN [March 

fÂ*U X2) = 2 an£Xl + ^2)"» J = 0, . . ., fc - 1. 
n = 0 

Proof. We use induction on r. If r= 1 the result follows from Lemma 2 and the 
fact that k + ki-\<kki* Now suppose the result holds for r - 1 and we have 
Pku=P$i...P*ru=Q. Let v=Pfru. Then Pkv = 0 and P ^ . . .Pr

fcn; = 0 so by the 
induction hypothesis, 

fc-i 
v(xl9x2) = 2 (*i-**2)'&, 

y = o 

fe(fc2 + "* + fcr) 

&(*1, *2) = 2 M * l + fe2)
n. 

n = 0 

Then by Lemma 1, we can write u— w0 + Wi such that Pkm = 0 and PïiWc^^ where 

fc-i 

u0(xlix2)= 2 fe-^y^cx!, x2), 
fc(fcl + — + fcr) 

hj\Xli X2) — Z, tnj\Xi-{-lX2) . 
n = 0 

ButPfcw1=P;cw~Pku0 = 0, because Pku = 0 and by [1, Theorem 1], Pku0 = 0. Hence 
we can apply Lemma 2 to wx and conclude that 

j c - i 

Wi(^i,x2)= 2 (xi-ix2yh}(xux2), 
; = 0 

fc+fci-1 

*X*i, x2) = 2 cn, X*i + ix2)
n. 

n = 0 

Hence we have 
k — 1 

w(x1? xa) = 2 (*i-'*2)W*i>*2) + Ay(*i>*2)) 

and since k+kx — \<k(kx-\ bkr) we may take ./} = /#+/$ and we have the 
desired expression for u. 

COROLLARY 1. The vector space of functions u with the property that Pku — 0 and 
Pi*.. .Pkm = 0 is finite dimensional with dimension at most k{kx-\ \-kr+1). 

Proof. The vector space generated by the linearly independent functions, 
(x1 — ix2)

i, (xi + LY2)
n, 0<j<k—l, ()<«</:(&!H \-kr) includes the function u. 

Although the above detailed results may be of some interest, the only result to 
be used in the sequel is the following: 

COROLLARY 2. Let Q be an elliptic homogeneous polynomial with factorization, 
Q—QÏ1-- -Q*r,ki<k2<- • • <kr into independent linear factors, with r>2. Let 
Ej be the vector space of solutions of Qkw~0. Then 

Fr = {(ul9..., uT): !*!+••• +wr = 0, Qkwj = 0, j = 1, . . . , r} 

is finite-dimensional. 
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Proof. If Wi+*/24- • 

also 
ôi*. 

• • 4-wr=0, then ux~ — u2— 

. . a?^ = -ôia...eîHw2+ 

-ur. We have gfiWx^O, and 

•+«,) = 0. 

So by Corollary 1, the set of u± lies in a k1{k2-\ -f fcr+l)-dimensional space. 
For r—2, (ul9 u2)eF2 implies t^ + Wâ O, i.e. u2 = -ux. Since the set of all ux lies 
in a finite-dimensional space, F2 is finite-dimensional. Assume by induction that 
Ff-x is finite-dimensional. Consider the projection P^Fr-^F^ Then Fr is iso­
morphic to P{1(0)xP1(Fr). But P1~

1(0) = {(0, u2,..., ur)\ u2+ • • • +wr = 0} which 
is isomorphic to F r_ l t Hence iv is finite-dimensional because Pf HO) is finite-
dimensional and P1(Fr)=F1 is finite-dimensional. 

2. The locally convex space of entire functions. Let H be the space of entire func­
tions in one complex variable equipped with the compact open topology. It is well 
known that H is a Frechét space and furthermore, if/represents a function in H, 
the map 

1 dnf 

is a continuous linear functional. (This can be seen, for example, by considering 
the Cauchy formula.) We write the power series expansion of/as/(x) = 2£=o anz\ 
where an(f)=an, and observe that the map un: H-> C, un(f)=an, is an element of 
H' (the space of all continuous linear functional on H). 

THEOREM 2. (i) H is isomorphic to H2, 
(ii) H is isomorphic to Hn(n> 2 finite integer), and 
(iii) If F is a finite-dimensional subspace ofH, then H/F is isomorphic to H. 

Proof, (i) We map HxH~>Hby 

( f anz\ I bA-±> t anz*"+ 2 6n*2n+1, 
\ n = 0 n=0 / n=0 n=0 

where 

/CO = S anz- and g(z) = f bnz\ 
n=0 n=0 

Clearly, Tis an algebraic isomorphism of the Frechét space HxH onto the Frechét 
space H. To show that it is continuous we need only show that the graph of T is 
closed. For v= 1, 2 , . . . , let 

Pit) = 

* v(z) = 

TO = 

2 «»*"> 
n = 0 

2 Kz\ 
71 = 0 

2 *"> 
n = 0 

/(*) = 

*<*) = 

* ( * ) -

2 «nZ", 
n = 0 

2 ^n2", 
n = 0 

00 

2 CnZn-
n=0 
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We assume that hv=T(f\ gv), l im v / v =/ , limv g
v=g, limv h

v = h and we must show 
that h = T{f, g). But from the definition of T, we have cl = al,2 (for n even) = bjn _ 1)/2 

(for n odd), and from the remarks preceding this theorem we know that 

lim al = an, lim bv
n = 6n, lim cl = cj, w = 0, 1, 2, 

V V V 

Hence it follows that cn = ani2 (for n even) = è(n_1)/2 (for n odd), so T(fg)=h. 
Therefore by the closed graph theorem, Tis continuous and hence it is open by the 
open mapping theorem. 

(ii) In view of (i), this follows by induction. 
(iii) F o r / e H, consider the mapping, f-> zf of H into itself. This is easily seen 

to be 1:1. The range of this mapping is a complementary subspace G of the space 
F0 of constant functions in H. Clearly F0 is a one-dimensional subspace of H, G a 
closed hyperplane of H and G = H/F0 is isomorphic to H. Since it is not difficult 
to show that any two closed hyperplanes in a topological vector space are iso­
morphic, it follows that H is isomorphic to H/F, where F is any one-dimensional 
subspace of H. By induction then H is isomorphic to H/F, where F is any finite-
dimensional vector subspace. 

THEOREM 4. H is a nuclear space, has a Schauder basis and is isomorphic to a 
power series space {see [2], p. 88). 

Proof. These are well-known facts about H found, for example, in [2], 

3. The locally convex space E(P). Let P be a hypoelliptic partial differential 
operator in two variables xx and x2 so that all solutions are C00. Let E{P) be the 
vector space of solutions of Pu=0 equipped with the compact open topology. 

THEOREM 5. The compact-open topology on E(P) is equivalent to the topology 
of uniform convergence of each derivative on compact sets (that is, the topology 
induced by the space C00). 

Proof. If K runs through compact sets then a fundamental sequence of semi-
norms for the compact open topology is given by (pK)K, where 

pK(u) = sup {| u(x)\ \xeK), ue E(P). 

If v runs through the positive integers, then a fundamental sequence of seminorms 
for the "C00-topology" is given by (pv,K)VtK where 

(I dmi + m 2 I ^ 

pVtK(u) = sup ]\dxfldx:2 (x)\:xeK and m 1+m 2 < vj-

Clearly PK(.U)<PKK(U) for all v, K, u. Conversely, given K, v one has K' and A/>0 
with K<=:(K')° and 

PV.K(U) £ M sup { |M(X)| : x e K'} = MpK.(u). 
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For a proof of this fact, see [3, p. 146]. Thus the two topologies compare in both 
directions so they are equivalent. 

COROLLARY 4. E(P) is a Frechét space. 

Proof, Clearly P: C°° -> C00 is continuous and E(P) is its kernel. The result 
then follows from the well-known fact that C00 is a Frechét space, and a closed 
subspace of a Frechét space is again a Frechét space. 

THEOREM 6. Let P{su s2) = (cts1+ps2)
k be elliptic. Then E(P) is isomorphic to H. 

Proof, As in the proof of [1, Theorem 1], we may assume that a= l , /?=*' 
because the resulting solution space can be transformed into E(P) by a map of 
the form u-^uoT where T is a fixed, invertible linear transformation on R2, 
which clearly is an isomorphism. 

With this assumption we apply [1, Theorem 1] and in complex notation, we 
obtain, 

E(P) = \u: u(z) = kf (gy t oiz"; lim \àL\lln = o l 
^ y = 0 n=0 n-»« J 

Let 
E, = {u: u(z) = zif(z),feH}, j = 0, . . . , * - l . 

The space iE'(P) is algebraically isomorphic to 2s0 x • • • xEk .x under the map: 

fo+2fl+ • • • Hzf-'A-l - > ( /o, ! / i , . . -, (Sy-Vr-l). 

Here we again use the fact that the powers of z are linearly independent over the 
ring of entire functions. One sees immediately that, say, the inverse of this map is 
continuous if each Ej is given the compact open topology and E0 x • • • x ^ . i is 
given the product topology. Thus by the open mapping theorem, the Frechét 
spaces E(P), E0 x • • • x Ek^1 are isomorphic. 

Since H is isomorphic to each Ej (y=0,. . . , k— 1) under / - > (z)jf, we have 
shown that E(P) is isomorphic to the product of k copies of H and hence by 
Corollary 3, E(P) is isomorphic to H. 

THEOREM 7. Let P be a homogeneous elliptic polynomial in two variables. Then 
E{P) is isomorphic to H. 

Proof. We can write P=P±...Pr where Pv(sl9 s2)=(avs1+f$vs2)
kv, v = l , . . . , r 

and pairs (av, /?v), (avi, j8vi) v^v1 are linearly independent in C2 ([1, Proposition 2]). 
Consider the map T: E{P^ x • • • x E(Pr) -> E(P), where 

T(uu . . . , ur) = u±+ • • • +ur. 

Obviously this map is linear and continuous and by [1, Lemma 3] it is onto. Hence 
by the open mapping theorem, E(P) is isomorphic to [£(Pi) x • • • x 2s(i>r)]/7

,'"1(0). 
By Theorem 6 and Corollary 3, E(P) is isomorphic to HjT'\0). By Corollary 2, 
r_1(0) is finite-dimensional so by Theorem 3, E(P) is isomorphic to H. 

https://doi.org/10.4153/CMB-1971-004-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-004-2


24 E. DUBINSKY AND T. HUSAIN 

COROLLARY 4. If P is a homogeneous elliptic polynomial in two variables then 
E(P) is a nuclear Frechét space with a Schauder basis and it is isomorphic to a power 
series space. 

Proof. Immediate from Theorem 7 and Theorem 4. 
It would be interesting to extend these results to elliptic polynomials in more 

than two variables, and also to the case in which the polynomial is not homogeneous. 
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