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MAXIMAL d-IDEALS IN A RIESZ SPACE

CHARLES B. HUIJISMANS AND BEN DE PAGTER

1. Introduction. We recall that the ideal / in an Archimedean Riesz
space L is called a d-ideal whenever it follows from f € I that {f}dd c I
Several authors (see [4], [5], [6], [12], [13], [15] and [18] ) have considered
the class of all d-ideals in L, but the set_Z of all maximal d-ideals in L has
not been studied in detail in the literature. In [12] and [13] the present
authors paid some attention to certain aspects of the theory of maximal
d-ideals, however neglecting the fact that_ g, equipped with its hull-kernel
topology, is a structure space of the underlying Riesz space L.

The main purpose of the present paper is to investigate the topological
properties of #; and to compare _#; to other structure spaces of L, such as
the space # of minimal prime ideals and the space 2¢ of all e-maximal
ideals in L (where e > 0 is a weak order unit). This study of % makes it for
instance possible to place some recent results of F. K. Dashiell, A. W.
Hager and M. Henriksen [7], concerning the order completion of C(X) in
the general setting of Riesz spaces.

After establishing some preliminary results in Section 2, it is proved in
Section 3 that for any uniformly complete Riesz space L with weak order
unit the space ¢ is a compact quasi-F-space. This result makes it possible
to use Z for the description of the order completion of L, which is done in
Section 4. Furthermore we consider what conditions have to be imposed
on L in order that g is an F-space, basically disconnected or extremally
disconnected respectively. In Section 5 it is investigated what effect
certain homeomorphisms between Z, .#, and 2¢ have on L.

Finally in Section 6, we interpret some of the results in the case that L is
the Riesz space C(X). It turns out that g is precisely the minimal
quasi-F-cover K(X) of X, as introduced in [7]. We can apply therefore the
results of Sections 4 and 5 to the space K(X). Moreover, it is shown that
the representation of the order completion of L which we have obtained in
Section 4 is in the case L = C(X) precisely the realization of the order
completion as obtained in [7].
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2. Séme preliminary results. All Riesz spaces considered in this paper
are supposed to be Archimedean. For the terminology and unproved
properties of Riesz spaces we refer to [16]. Throughout this paper
relatively uniformly complete (closed) is called uniformly complete
(closed).

Let L be an Archimedean Riesz space.

Definition 2.1 (see [12], Section 4). The ideal I in L is called a d-ideal if it
follows from f € I that {f}¥ c I.

It is immediate from the definition that the ideal I is a d-ideal if and
onlyiff€ I,g € Land {/}* = {g}*imply g € I. All o-ideals in L (and
hence all bands) are d-ideals. Moreover, every minimal prime ideal is a
d-ideal. For any non-empty subset D of L, the d-ideal E(D) generated by
D is the intersection of all d-ideals containing D. The proof of the next
lemma is routine.

LEMMA 2.2
E(D) = {fe€ L:3d,...,. d,, € D such that
fe {idV...Vid,| }*}.
In particular, every principal d-ideal is of the form { f}%.

The proper d-ideal J in L is called a maximal d-ideal if L is the only
d-ideal in which J is properly contained. We denote the set of all maximal
d-ideals by ¢, Every maximal d-ideal is a (proper) prime ideal (see [12],
Section 6). If L has in addition a weak order unit e > 0, then, by a Zorn
argument, every proper d-ideal is contained in some maximal d-ideal.

We equip % with its hull-kernel topology by choosing as a base for the
open sets all subsets of the form {J}, = {J € Zru & J}withO =u € L
([16], Section 36). The closed sets in this topology are precisely the hulls
of subsets of L, i.e., sets of the form h(D) = {J € #:D C J}. Clearly, we
can replace D in this formula by the d-ideal E(D) generated by D. From
the next proposition it follows that_Z is a structure space of L.

ProposITION 2.3. Let L be an Archimedean Riesz space with weak order
unit e > 0.
(1) % is a compact Hausdorff space.
i) N {JJ € 4} = {0}.
Proof. (i) This is similar to the proof of [16], Theorem 36.4.
(ii) For any 0 < u € L there exists n € N such that (nu — e)" > 0.
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Since
(nu —e)" & I = { (nu — e)ﬁ}‘l‘j,

the ideal I is, as a proper d-ideal, contained in some maximal d-ideal J. We
claim that u ¢ J. Indeed, u € J would imply that (nu — e)™ € J.
Combined with (nu — e)~ € J this would result in e € J, a
contradiction.

For future purposes we collect finally some simple properties of
maximal d-ideals. The proof is omitted.

PROPOSITION 2.4. In any Archimedean Riesz space L with a weak order
unit e > 0 the following statements hold.
D) {u} =n{Jeguel)forall 0 =uce L
(i) {J}, € (I}, if and only if {u}* c {v}* (0 =
In [13], Remark 7.6 (iii) it is observed that in any Archimedean Riesz

space with a weak order unit every o-ideal is an intersection of maximal
d-ideals, so Proposition 2.4 (i) is a special case of the former result.

u,v € L).

3. The quasi-F-space . The main purpose of this section is to prove
that for any uniformly complete Archimedean Riesz space L with a weak
order unit the space g is a quasi-F-space.

We recall that a completely regular Hausdorff space X is said to be a
quasi-F-space whenever every bounded continuous function on a dense
cozero-set has a continuous extension to the whole of X, i.e., every dense
cozero-set in X is Cp-embedded. Quasi-F-spaces were orginally defined in
[7], Definition 3.6. The following lemma gives a simple characterization of
quasi-F-spaces.

LeEMMA 3.1 ([18], Lemma 11.9). Let X be a completely regular Hausdorff
space. The following are equivalent.
(i) X is a quasi-F-space.
(i1) For any two zero-sets Z and Z, in X with disjoint interiors, the sets
int Z| and int Z, are completely separated by a continuous function.

The next theorem gives more information about the topological
structure of Z;.

THEOREM 3.2. Let L be an Archimedean uniformly complete Riesz space
with weak order unit e > 0. Then the space % is a quasi-F-space.

Proof. We use the criterion of Lemma 3.1, so suppose that Z; and Z, are
zero-sets in ¢ such that
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(int Zl) N (il’l[ Zz) = ﬂ

Following [22], Lemma 6.2, there exist0 = u, € L,0 = v, € L(n = 1,
2, ...) such that

(o0} (e}
Zi= 0 Wl Zo= 0},
Since Z; and Z, are closed, Z, = h(Il,) and Z, = h(l,) for appropriate
d-ideals I; and I, in L. From h(l,) € {J},, it follows that E(/, u,) =
L (n= 1,2, ...). There exists. therefore, an element 0 = w, € I, such
thate € {u, V w,,}‘[" (see Lemma 2.2), i.e., u, V w, is a weak order unit.
Without loss of generality we may assume 0 < w, = e (n=1,2,...).
Analogously, there exist elements -, € I,,0 = z,, = e such thatv, V z, are

weak order units in L (n = 1,2....).
Now define
oo [ee]

p=22"w. qg= 22"z,

n=1 n=1

(e-uniformly convergent series). Clearly p € I‘]M and g € 1‘2"’. We assert
that p V ¢ is a weak order unit in L. To this end, take 0 = y € L such that
y N (pVgq) = 0. It follows that

YyAw, =y ANz, =0 (n=12...).
Since u, V w, is a weak order unit we have y € {u, V w,,}"d. Hence,

y AN {k(un \ Wu) } T/\ Y.

SO

Y A (k un) T/\ v

which implies y € {u,,}"". By Proposition 2.4 (ii), {/},, € {/ },,. Similarly,
it is shown that {J}, C {J}, . It follows easily that

{/}, € int(Z)) N int(Z>).

so {J}, = 0, ie.,y = 0 (Proposition 2.3 (ii) ). Therefore p V g is a weak
order unit.

Now it follows that the sets G; = h(p) and G, = h(q) are disjoint
closed sets in #. We claim that int Z; C G,. In order to prove this
inclusion, take Jy € int Z,. There exists 0 < z € L such thatJ, € {J}. C
Z, = h(l,). Forany 0 = x € I, and any J € ¢ we have z \ x € J.
Indeed, if J € {J}., then x € I} C J implies z A x € J. On the other
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hand, if J &€ {J},thenz € Jandsoz A\ x € J. By Pdroposition 2.3 }i), z
/A x = 0. This holds for all 0 = x € Iy, thusz € I|. Sincep € I} we
derive z A\ p = 0. Therefore, z & Jyimpliesp € Jy, 1.e.,Jg € h(p) = G|.
The inclusion int Z;, C G, has been proved. In like manner int Z, C
G,.

The space _#, being Hausdorff and compact, is a normal topological
space, so, by Urysohn’s lemma, G; and G, are completely separated.
Hence the sets int Z; and int Z, are completely separated as well and the
proof is complete.

As is well known, any continuous mapping f from a topological space X
into the extended real number system R* is called an extended continuous
function on X if the set {x € X:|f(x)| < oo} is dense in X. The set of all
such functions is denoted by C*°(X). With respect to pointwise operations
C*(X) is a lattice, but in general not an algebra. In [11], Proposition 2.2,
M. Henriksen and D. G. Johnson proved that in case X is a compact
topological space, C°°(X) is an algebra if and only if each open dense
Fy-set is Cp-embedded. Hence if X is a compact quasi-F-space, then
C*(X) is a uniformly complete f-algebra. In fact, C°°(X) is even order
complete in this case. We recall the definition.

Definition 3.3. The Archimedean Riesz space L is called order complete
(also order Cauchy complete) whenever every order Cauchy sequence
{/n}»1in L (i.e., a sequence for which there exist p, | 0 with |f,, — f,+ 4
= p, for all n, k) has an order limit f (i.e., | f, — f| = p, for all n, which is
denoted by f, — f).

Papangelou’s criterion ( [19], Lemma 2.1) states that L is order complete
if and only if for all sequences {f,,},fil and {g,,}i,x;l for which f, 1 =
g, | and inf (g, — f,) = 0, there exists » € L such thatf, = h = g, for all
n. Evidently, f,, 1 h and g, | & in this case. Note that any order complete
Riesz space is uniformly complete. For any completely regular Hausdorff
space X the Riesz space C(X) is order complete if and only if X is a
quasi-F-space ( [7], Theorem 3.7; for a different proof see [18], Theorem
11.8).

Using the above mentioned criterion and the fact that C(X) is order
complete whenever X is a quasi-F-space, the next theorem follows
easily.

THEOREM 3.4. For any compact quasi-F-space X, the f-algebrq C*°(X) is
order complete. '

Applying this result to_# we get the following.
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COROLLARY 3.5. For any Archimedean uniformly complete Riesz space L
with a weak order unit C*°(%) is an order complete f-algebra with unit
element.

Remark 3.6. The Riesz space L is said to have the o-order continuity
property (0-o.c.p.) whenever every positive linear mapping from L into an
arbitrary Archimedean Riesz space is o-order continuous (the o-0.c.p. has
been introduced, under a different name, by C. T. Tucker in [23]). It is
proved in [8], Theorem 1.3 A that L has the ¢-o.c.p. if and only if every
uniformly closed ideal in L is a o-ideal. Moreover, every uniformly
complete Riesz space with the o-o.c.p. is order complete (see [18],
Corollary 11.5). It can be shown that C°°(X) has the o-0.c.p. for every
compact quasi-F-space X. Since the proof is beyond the scope of the
paper, we omit it.

4. The order completion of Archimedean Riesz spaces. Let L be an
Archimedean uniformly complete Riesz space with weak order unit e > 0.
Since ¢, is a structure space of L, we can consider the Johnson-Kist
representation of L in C*°(f), i.e., L is Riesz isomorphic to some Riesz
subspace L of the order complete Riesz space C°(%). In addition, "e(J)
= 1 forall J € _7 (see e.g. [16], Section 44). Let L¥ be the ideal generated
by 'L in C°(%), i.e.,

L* = € C®(%): gl = |"f| for some f € L}.
g

The main purpose of this section is to show that L¥ is a realization of the
order completion of L. We recall the definition.

Definition 4.1. Let L be an Archimedean Riesz space. The order
complete Riesz space K is called an order completion of L if
(i) L is Riesz isomorphic to a Riesz subspace L of K,
(i) for every f € K there exist sequences {g,}:>, and {h,}2>, in L
such that g, 1 fand 4, | f.

In the following we identify L and L, so we embed L as a Riesz
subspace in K. It follows immediately from (ii) that L is order dense in K,
i.e., for every 0 << u € K there exists 0 < v € L such that v = u. This
implies among other things that for any sequence {f,},.; in L satisfy-
ing f, | 0 in L we also have f,, | 0 in K. Two order completions of L are
Riesz isomorphic via a Riesz isomorphism which is the identity on L.
Hence, it is justified to refer to K as “the” order completion of L. The
order completion of L exists. Indeed, let L be the Dedekind completion
of L and define
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Ly={f"e L3 {h,}, " inLandv, | 0in L
such that [ f — h| = v,.n e N} = {f" e L™ : 3 {/, )00,

{gn}?zil ln L Such thatj;l Tf/\’ gll \Lf/\}’

as introduced by J. Quinn ( [20], Section 3). In Theorem 4.1 (i) of the same
paper it is shown that L is the order completion of L. For any non-empty
subset D of L, we shall denote the double disjoint complement in L, by
D%+ 1n order to avoid confusion we denote momentarily the space of
all maximal d-ideals in L and L, by #,(L) and (L) respectively.

LEMMA 4.2. For any Archimedean uniformly complete Riesz space L with
weak order unit e > 0 the spaces _#(L) and Z/(L,) are homeomorphic.

Proof. For any J € g(L), let J, be the d-ideal generated by J in L,
1.€.,

Jo = {f" € Ly:3 g € J such that /" & {g}I)}.

We have {h}%(L) N L = {h}% as L is order dense in L,, and hence J, N
L = J. We claim that J,; is a maximal d-ideal in L;. To this end let N be a
proper d-ideal in L containing J,. Obviously, N N L is a d-ideal in L not
containing e, soJ = N N L. Take any 0 = f/ & N. There exist u, € L(n
=1,2,...)and v € L such that 0 = u, 1 /" = v. Obviously

(o]
u= 27 "u,

n=1

(v-uniformly convergent series in L) is an element of J. Since /" €
{u}‘/d(l‘ﬂ’ we get /€ J,. This shows that N = J, and thus J, € Z(L,).

The mapping a: #(L) — _Z/(L,) defined by a(J) = J, is a bijection. For
any 0 = g\ & L, there exist w, € L(n=1,2,...)and z € L such that0
=w,1g" =z Using Proposition 2.4 (ii), it is not hard to show that the
element

(z-uniformly convergent series in L) satisfies a ™ !( {/s}e ) = {J/}.- Hence
a is continuous. Since both #(L) and Z(L,) are compact Hausdorff
spaces, a is a homeomorphism.

We now consider the Johnson-Kist representation "L, of L, in
C(Z(L,) ). In the next lemma we show that the Riesz subspace ”*L, of
C*(#(Ly) ) is even an ideal.
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LEMMA 4.3 (compare [3], Proposition 2.8.). /\L,J is an ideal in
C®H(Ly) )

Proof. Observe first that /L, separates the points of Z(L,). Indeed, take
Jo Jy € Z(L,) with J, # Ji, . Since L, is order complete, the sum of two
d-ideals in L, is again a d-ideal (see [18], Theorem 11.2), soJ, + J; = L,.
Hence,e = f + f'with0 = f € J,.0 = ' € J,. Now "f(J,) = 0 implies
NI, = 1. On the other hand. "(f')(J}) = 0, so "\(f*) separates J,
and Jj.

Consider the uniformly closed Riesz subspace

ALo,h = {fe "Ly |"f| = n"efor somen € N}

of C(#(L,)). Since "A\L,,_,, separates the points, the Stone-Weierstrass
theorem yields

Moy = CE(L)).

In order to prove that "L, is an ideal, it suffices to show that 0 = g =
NN e MLy, g € CO(F(L,) ) implies g € L. For this purpose note
that

0=g—gAn"e)="u,
with
Py == CNH ATy (n=1,2,...)

and that Au,7 J 0in L,. By the above g N\ (n /\e) € /\L,,‘,,. For m = n we
have

0=gAm”e)—gAn e)y=2"u,

and hence {g /\ (n Me) }21' is an order Cauchy sequence in "*L,. There
exists “h € "L, such that

g\ (ne)y—"h in"L,.

as L, is order complete. Observing that "L, is order dense in C*°(Z(L,) ),
it follows readily that

g A (n"e)y= "h in CU(A(Ly))
as well. Uniqueness of order limits implies g = "\h, hence g € "L,.

As before, L is an Archimedean uniformly complete Riesz space with
weak order unit e > 0. Consider the Johnson-Kist representation "L, of
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L, in C®(#(L,)). By identifying Z(L) and _Z(L,) via the homeomor-
phism a of Lemma 4.2, we may consider AL, as an ideal of C®(Z(L)).
Forallf € LandJ € (L) we have (Be — /) € J whenever (Be — /)™
€ J, = a(J). Hence

W) = sup {B:(Be — )T € J} = sup {B:(Be — /)" € J;}
= "f(Jy).

It follows that the representation of L, induced by the Johnson-Kist
representation ‘L, of L, (regarded as an ideal in (C®(%(L)))
is precisely the Johnson-Kist representation "L of L in C®(Z(L)).
Clearly, Lemma 4.3 implies that the ideal L¥ generated by AL in
C®(Z(L)) is equal to AL,. We summarize the results.

THEOREM 4.4. Let L be an Archimedean uniformly complete Riesz space
with weak order unit e > 0. Then the order ideal L¥ generated by the
Johnson-Kist representation AL of L in C®( %) is the order completion of L.
In particular, the order completion of the principal ideal I, generated by e is

C(%).

This theorem can be compared with the result that the ideal generated
by the Ogasawara-Maeda representation of L in C*°(2) ( [16], Sections 49
and 50) is the Dedekind completion L” of L.

We proceed by investigating the effect upon the Riesz space L if we
impose some topological conditions on _Z. Recall that the completely
regular Hausdorff space X is called an F-space whenever every cozero-set
is Cp-embedded, equivalently, whenever any two disjoint cozero-sets in X
are completely separated (see [9], Theorem 14.25). The Archimedean Riesz
space L is said to have the o-interpolation property (o-i.p.) if it follows
fromf, 1 = g, | in L that there exists h € Lsuchthatf, =h =g, (n=
1, 2,...). It is shown in [13], Theorem 10.5 (see also [21], Theorem 1.1)
that C(X) has the o-i.p. if and only if X is an F-space.

Definition 4.5. The Archimedean Riesz space L is said to have almost
property (P) if L, has property (P).

Almost Dedekind complete Riesz spaces were introduced in [20], and
the almost Dedekind o-complete Riesz spaces in [1] and [20]. Characteri-
zations of the almost o-i.p. can be found in [18]. Another equivalence is
stated in the next theorem.

THEOREM 4.6. Let L be an Archimedean uniformly complete Riesz space
with a weak order unit e > 0. Then L has the almost o-i.p. if and only if 7 is
an F-space.
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Proof. If L has the almost o-i.p., then L¥ (see Theorem 4.4) has the
o-i.p., hence C(%), being an ideal in L¥, has the o-i.p. Therefore Z is an
F-space.

Conversely, suppose that C(%) has the o-i.p. A standard argument
shows that C*°(#) has the o-i.p. as well, and so L¥ has the o-i.p.
Therefore L has the almost o-i.p.

As is well known, the completely regular Hausdorff space X is basically
disconnected if and only if C(X) is Dedekind o-complete. Moreover, X is
extremally disconnected if and only if C(X) is Dedekind complete. Using
these facts, the proof of the next theorem goes along the same lines as the
proof of the previous theorem.

THEOREM 4.7. Let L be an Archimedean uniformly complete Riesz space
with a weak order unit.
(1) % is basically disconnected if and only if L is almost Dedekind
a-complete.
(i1) % is extremally disconnected if and only if L is almost Dedekind
complete (equivalently, L = Ly).

Characterizations of almost Dedekind o-completeness can be found in
[1], [8] and [20]. We mention one important criterion. Recall that an
Archimedean Riesz space L is said to be d-regular (see [13], Definition 9.1)
whenever every proper prime ideal which is a d-ideal as well is a minimal
prime ideal. Note that if L has, in addition, a weak order unit, then L is
d-regular if and only if the sets of maximal d-ideals and minimal prime
ideals coincide. A combination of [17], Theorem 7 and [13], Remark 9.6
yields the following theorem.

THEOREM 4.8. The Archimedean uniformly complete Riesz space L is
almost Dedekind a-complete if and only if L is d-regular.

Characterizations of almost Dedekind completeness do not seem to
occur in the literature. (According to Math. Rev. 81m:06041, the result of
our Theorem 4.11 also appears in the paper ‘Conditions for coincidence of
the K-completion of an Archimedean /-group with its o-completion’ by
A.V. Koldunov, in Modern Algebra, pp. 50-57, Leningrad. Gos. Ped.
Inst., Leningrad, 1980 (Russian).) In order to prove such a criterion, we
first collect some facts on the set .# of all minimal prime ideals in an
Archimedean Riesz space L. The set ./#, equipped with its hull-kernel
topology, is a Hausdorff space and a structure space of L. For future
references we list some properties equivalent to the compactness of ./ (for
the proof we refer to [16], Theorem 37.4 and [13], Remark 9.6 and
Theorem 9.8 (1) ).
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PROPOSITION 4.9. In an Archimedean Riesz space the following statements
are equivalent.
(1) A is compact.
(1) L is d-regular and has a weak order unit.
(1) % = M and L has a weak order unit.
(iv) For every 0 = u € L there exists 0 = v € L such that {u}% =

()
The proof of the next proposition is a duplicate of the corresponding

proof of a theorem by T.P. Speed on distributive lattices (see [22],
Corollary 6.6 and also [10], Theorem 4.4).

PROPOSITION 4.10. For any Archimedean Riesz space L the following are
equivalent.
(1) A is compact and extremally disconnected.
(ii) For any non-empty D C L there exists 0 = v € L such that D =
{v}d (equivalently, every band in L is principal).

We are now able to prove the following result on almost Dedekind
completeness.

THEOREM 4.11. Let L be an Archimedean uniformly complete Riesz space
with a weak order unit. Then L is almost Dedekind complete if and only if
every band in L is principal.

Proof. First assume that L is almost Dedekind complete. By Theorem
4.7 (i1), # is extremally disconnected. By Theorem 4.8, L is d-regular and
so ¢ = M. Hence, # is compact and extremally disconnected, and
therefore, by Proposition 4.10, every band in L is principal.

Conversely, suppose that every band in L is principal. Using Speed’s
result, .# is compact and extremally disconnected. It follows from
Proposition 4.9 that # = _Z; and therefore ¢, is extremally disconnected.
Hence, by Theorem 4.8 (ii), L is almost Dedekind complete.

5. Some homeomorphism problems. Throughout this section L denotes
an Archimedean Riesz space with weak order unit e > 0. It is common
knowledge that the compact Hausdorff space 2¢ of all e-maximal ideals
(equipped with its hull-kernel topology) is a structure space of L ([16],
Theorem 36.4). The main object of the present section is to investigate
what consequences homeomorphisms between #,, # and 2¢ have for L.

First of all we compare  and . Since a minimal prime ideal is a
proper d-ideal, any such ideal M is contained in a unique maximal d-ideal
7(M). Clearly this mapping 7:.# — Z, is surjective. Similarly to the proof
of [13], Lemma 8.1, it can be shown that 7 is continuous. Moreover, 7 is
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injective (and hence bijective) if and only if every maximal d-ideal
contains a unique minimal prime ideal. Since L has a weak order unit, it
follows from [18], Theorem 12.9, that in the case L is uniformly complete
the latter property is equivalent to the almost o-i.p. Combining these
observations with Theorem 4.6 we have proved the next proposition.

PropPOSITION 5.1. Let L be an Archimedean uniformly complete Ries:z
space with a weak order unit. The following are equivalent.
(i) T is injective.
(i1) L has the almost o-1.p.
(i) % is an F-space.

The question when 7 1s a homeomorphism gets a complete answer in the
next theorem.

THEOREM 5.2. Let L be an Archimedean uniformly complete Riesz space

with a weak order unit. The following are equivalent.
(i) T is a homeomorphism.

(i) A and g; are homeomorphic.

(i) A = 2,

(1v) L is almost Dedekind a-complete.

Proof. First of all, the equivalence of (iii) and (iv) follows from a
combination of Theorem 4.8 and Proposition 4.9. Assuming (ii), ./ is
compact and hence, by Proposition 4.9, # = _¢. The remaining
implications are evident.

The second homeomorphism problem we shall treat in this section is the
homeomorphism of % and 2°. For every J & ¢, there exists a unique Q €
2¢ such that J < Q. This defines a mapping =, % — 2° which is
continuous (the proof is similar to the proof of [13], Lemma 8.1).
Furthermore, 7, is surjective. Indeed, if ¢ € 2¢ then Q contains a
minimal prime ideal M which is, as a proper d-ideal, contained in some
maximal d-ideal J. But J and Q are comparable, so e & J impliesJ C Q
and hence 7.(J) = Q. In general, 7, is not injective. The next theorem
gives some criterions for the injectiveness of ..

THEOREM 5.3, Let L be an Archimedean uniformly complete Riesz space
with weak order unit e > 0. The following are equivalent.
(i) 7, is injective (equivalently, w, is a homeomorphism).
(1) #Z; and 2° are homeomorphic.
(i11) The principal ideal 1, generated by e is order complete.

Proof. (i) = (ii). This is evident.
(i1) = (i11). Denote the space of all maximal ideals in I, by #(/,). The
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mapping y:2¢ — #(I,) defined by y(Q) = Q N I, is a homeomorphism. It
follows from the hypothesis that £, and #(I,) are homeomorphic, and
hence, by Theorem 3.2, #(I,) is a quasi-F-space, so C(#(l,)) is order
complete. An application of Yosida’s representation theorem ([16],
Theorem 45.4) yields that I, is order complete.

(iii) = (i). Suppose that there exist J,.J, € 4., J, # J, withJ; C Q and
J; € Q for some Q € 92°. Since E(J, + J,) = L, there exist, by Lemma
22,0 =p € Jyand 0 = g € J, such that p + ¢ is a weak order unit.
Observe that

ee]eﬂ{p-l—q}dd:Ieﬂ{(p+q)/\e}‘/d
Cleﬂ(p/\e—l—q/\e}‘jd:{p/\e-i—q/\e}d‘](’e).

Since I, is order complete, the sum of two principal bands in I, is again
principal ( [18], Theorem 11.2). Hence

e € {P A e + q A e}dd(lg) _ {p A 6‘}‘1‘1(1") 4 {q A e)dd(l,,)
c{p}+{g}cn+ico,
a contradiction. Therefore 7, is injective.

Unfortunately, it is in general not true that in the above situation order
completeness of I, implies order completeness of L, even though I, is
order dense. We present a counterexample.

1
Example 5.4. Let ¥ = {—:n =12.... } and X = Y U {0} both
n

equipped with the relative Euclidean topology. Then X is a compact
Hausdorff space, whereas Y is discrete. The function e in C(X) defined by
e(x) = x is a weak order unit in C(X). The set Y, being the cozero-set of e,
is dense. Clearly, Y is not Cpembedded in X, and so X is not a
quasi-F-space, i.e., C(X) is not order complete. However, I, is even
Dedekind complete, as I, is Riesz isomorphic to /o,

Remark 5.5. (1) In contrast to order completeness, d-regularity does
carry over from an order dense principal ideal , to L (use the equivalence
of (i) and (iv) of Proposition 4.9). Hence, if L is in addition uniformly
complete, then L is almost Dedekind o-complete if and only if 7, is almost
Dedekind o-complete. (i1) Clearly, L is order complete if and only if I, is
order complete for all weak order units 0 < e € L. Therefore, if L is in
addition uniformly complete, then L is order complete if and only if one of
the conditions (i), (ii) of Theorem 5.3 holds for all weak order units
simultaneously.
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The question remains whether it is possible to impose on a single weak
order unit 0 < e € L such an extra condition that order completeness of
I, does result in order completeness of L. To this end we introduce the
notion of a near order unit.

Definition 5.6 ([13]. Definition 7.1). The element 0 < e € L is called a
near order unit if I, = L (where I, denotes the closure of I, in the
uniform topology).

Since every band is uniformly closed, each near order unit is a weak
order unit. Near order units do occur ‘in nature’:
(1) every strong order unit is a near order unit,
(ii) a multiplicative unit e of an Archimedean f-algebra 4 is a near
order unit ( [14], Proposition 3.2 (i) ). This holds in particular for 4
= C(X) and e(x) = 1 for all x € X,
(111) every quasi-interior point in a Banach lattice is a near order unit.

ProPOSITION 5.7. Let L be an Archimedean uniformly complete Riesz
space with near order unit e > 0. Then L is order complete if and only if I, is
order complete.

Proof. Suppose that 1, is order complete. By [13], Theorem 8.9, I, and I,
are Riesz isomorphic for any near order unit 0 < u € L. Therefore I, is
order complete for all near order units 0 < 4 € L, and so L is order
complete as well. The converse being trivial, we are done.

Combining Theorem 5.3 and Proposition 5.7, the following result is
immediate.

THEOREM 5.8. Let L be an Archimedean uniformly complete Riesz space
with near order unit e > 0. The following are equivalent.
(1) 7, is a homeomorphism.
(1) #; and 92¢ are homeomorphic.
(iit) L is order complete.

The final homeomorphism problem to be considered is the homeomor-
phism between .# and 2,. For every M € # there exists a unique Q € 2°¢
such that M C Q. As in the previous cases, the mapping o, /4 — 2°,
assigning Q to M, is continuous and surjective. Obviously 6, = 7, o 7. The
question under what conditions o, is a homeomorphism has been studied
before in the literature. The fact that the principal projection property in
L implies that o, is a homeomorphism goes back to I. Amemiya ( [2],
Theorem 6.4 or [16], Corollary 37.12).
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Suppose now that L is in addition uniformly complete. Evidently, o, is
injective if and only if 7, and 7 are both injective. By Proposition 5.1,
7 is injective if and only if L has the almost o-i.p. If e is, in addition, a near
order unit, then , is injective if and only if L is order complete (Theorem
5.8). It is proved in [18], Corollary 12.6 that L has the o-i.p. if and only if L
has the almost o-i.p. and L is order complete. We thus have proved the
following result.

PROPOSITION 5.9. Let L be an Archimedean uniformly complete Riesz
space with a near order unit e > 0. Then o, is injective if and only if L has the
o-1.p.

From this proposition the next theorem is easily deduced.

THEOREM 5.10. For L as in Proposition 5.9. the following are
equivalent.
(1) o, is a homeomorphism.
(1) A and 2° are homeomorphic.
(ii1) L is Dedekind o-complete.

Proof. (i) = (ii). This is trivial.

(i1) = (iii). Since A& and £¢ are homeomorphic, ./# is compact, so L is
d-regular and 4 = _¢; (Proposition 4.9). By Theorem 5.8, L is order
complete. By [13], Theorem 9.16, order completeness together with
d-regularity implies Dedekind o-completeness.

(iii) = (1). Dedekind o-completeness implies d-regularity, i.e., # = %,
and so o, = 7,. Moreover, from Dedekind o-completeness follows order
completeness, hence 7, is a homeomorphism by Theorem 5.8.

Remark 5.11. Let L be an Archimedean uniformly complete Riesz space
with merely a weak order unit e > 0. Using similar methods as in the
proof of Theorem 5.3 and using Remark 5.5 (i) it can be shown that g, is a
homeomorphism if and only if # and 2¢ are homeomorphic, which
property is in its turn equivalent to Dedekind o-completeness of 1,. Notice
in this connection that in general Dedekind o-completeness of I, does not
carry over to L (see Example 5.4).

We conclude this section with an application to f-algebras. Let 4 be an
Archimedean uniformly complete f-algebra with multiplicative unit e
(which is a near unit). Recall that every prime ring ideal in 4 is a prime
(order) ideal (see e.g. [14], Corollary 4.8). We denote by £ the set of all
maximal ring ideals in 4 and by ./, the set of all minimal prime ring ideals
in A, both equipped with their hull-kernel topologies. The structure spaces
& and A, are both Hausdorff; moreover, £ is compact. It is shown in [5],
Theoréme 9.3.2 that A4, = # (cf. [13], Lemma 10.1).
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Since every J € £ is a prime (order) ideal not containing e, there exists
a unique Q € 2¢ such that J ¢ Q. The mapping p: £ — 2¢, defined by
p(J) = Q is a homeomorphism. Applying Theorem 5.10 we get the
following result.

THEOREM 5.12. The spaces_# and #, are homeomorphic if and only if A is
Dedekind o-complete.

6. Applications to the Riesz space C(X). In the present section we shall
interpret some of the preceding results in the case that L = C(X) for some
completely regular Hausdorff space X. As observed before, the function e
defined by e(x) = 1 for all x € X is a near order unit in C(X).

In order to give a description of the space of maximal d-ideals of C(X)
we need another characterization of Z for a Riesz space L with weak order
unit. Let A denote the set of all weak order units in L. Obviously. A is a
sublattice of the positive cone of L. As in Section 5, 2%(u € A) denotes the
space of all u-maximal idealsin L. If u,v € A and u = v, then any Q € 2
is contained in a unique Q' € 2'. This defines a continuous surjective
mapping 7,:2% — 2*. Note that 7., = 7., o 7. whenever u = v = w in
A. Furthermore, for any u € A we have the continuous surjection 7,: %, —
94, as defined in Section 5. Obviously # = v in A implies 7, = 7, o 7,.
The next theorem shows that ¢, is a natural object for the spaces 2%(u €
A).

THEOREM 6.1. % is the projective limit of {2":u € A} (with respect to the
above introduced mappings).

Proof. 1t suffices to show that for any topological space X with
continuous mappings &,:X — 2%u € A) satisfying 7, 0 &, = &, foru = v
in A, there exists a unique continuous mapping &: X —_¢; such that §, = 7,
o ¢ forall u € A. We denote £,(x) by O for all x € X and all u € A.
For any x € X the collection {Qy:u € A} of proper prime ideals in L is
linearly ordered by inclusion and therefore

Jo= N {Qvu € A)

1s a proper prime ideal in L. Since J, does not contain weak order units of
L it follows that J is contained in some maximal d-ideal J. We assert that
J,. = J. Indeed, if M is a minimal prime ideal contained in J, then M C
Q% for all u € A. This implies that J ¢ QY for all u € A, as Q' and J
are comparable, and so J, = J € #,. The mapping & X — ¢ defined by
&(x) = J, clearly satisfies the requirements.
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Now consider the case that L = C(X). We denote by %(X) the
collection of all dense cozero-sets in X. For any 0 = u € C(X) we have u
€ A if and only if the cozero-set coz(u) € ¥(X). Takeu € A and put S =
coz(u). The mapping ¢:1, — C,(S), defined by o(f) = fu ' on S is a
Riesz isomorphism and hence ¢ induces a homeomorphism between the
space #(1,) of maximal ideals in I, and the Stone- Cech compactification
BS of S (see e.g. [13], Corollary 8.5). Since _#(1,,) is homeomorphic with 2,
we thus get a homeomorphism A,:2% — BS. Now suppose that u = vin A
and put § = coz(u), T = coz(v). Then S C T and the embedding of § into
BT has a continuous Stone extension "TT BS — BT (see [9], 6.5). Using the
definition of A, and A,, it is not hard to see that

77‘; =Aom o }\,:l

The directed system {B8S:S € %(X) } (with respect to the mappings 71‘;)
has a projective limit K(X), which is also a compact Hausdorff space. The
space K(X) is called the minimal quasi-F-cover of X (see [7], Sections 3
and 4). It follows from the above remarks and from Theorem 6.1 that
K(X) is homeomorphic to _#. In particular it follows from Theorem 3.2
that K(X) is a quasi-F-space. Applying the results of Section 4 we are now
able to prove the next theorem.

THEOREM 6.2. For a completely regular Hausdorff space X the following

statements hold.

(1) K(X) is an F-space if and only if C(X) has the almost o-interpolation
property (equivalently, for any two disjoint cozero-sets Cy and Cy in X
there exist zero-sets Z| and Z, such that Cy C Z,, C; C Z, and int
(Z) N Z,) = 0).

(il) K(X) is basically disconnected if and only if C(X) is almost Dedekind
a-complete (equivalently, for every cozero-set C in X there exists a
zero-set Z such that C~ = (int Z) ).

(iii) K(X) is extremally disconnected if and only if C(X) is almost
Dedekind complete (equivalently, for every closed set F in X there
exists a zero-set Z such that (int F)~ = (int Z) ).

Proof. (i) The first equivalence follows from Theorem 4.6, the second
one is proved in [18], Theorem 12.13.

(i1) The first equivalence follows from Theorem 4.7 (i), the second one is
proved in [13], Theorem 10.4 (i).

(ii1) The first equivalence follows from Theorem 4.7 (ii). Furthermore,
by Theorem 4.11, C(X) is almost Dedekind complete if and only if every
band in C(X) is principal. Any band in C(X) is of the form
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{f € C(X)(int F)~ € Z(f))

for some closed set F in X, whereas any principal band in C(X) is of the
form

{fe C(X):(int Z)” € Z()}

for some zero-set Z in X (see e.g. [13], Section 10). The second equivalence
is now immediate.

Remark 6.3. In [7], Proposition 4.5, it is proved that K(X) is extremally
disconnected if and only if C(X) is almost Dedekind complete. In
Proposition 4.6 of the same paper it is shown that a sufficient condition
for K(X) to be extremally disconnected, is that every dense open set in X
contains a dense cozero-set. The latter condition, however, is not
necessary. By way of example, let D be an uncountable discrete
topological space and take X = BD. In fact, it can be shown that for every
compact Hausdorff space Y the condition that every open dense set
contains a dense cozero-set is equivalent to the countable chain condition
in Y, i.e., to order separability of C(Y) ([13], Theorem 10.3).

Next we apply the results of Section 5 to L = C(X).

THEOREM 6.4. For a completely regular Hausdorff space X the following
statements hold.
(i) # and K(X) are homeomorphic if and only if C(X) is almost

Dedekind o-complete.

(i1) K(X) and BX are homeomorphic if and only if C(X) is order complete
(equivalently, X is a quasi-F-space).

(iii) # and BX are homeomorphic if and only if C(X) is Dedekind
a-complete (equivalently, X is basically disconnected).

Proof. (i) Since K(X) is homeomorphic with g, the result follows from
Theorem 5.2. .

(i1) The space 2° is a model for the Stone-Cech compactification S8X of
X (see e.g. [13], Corollary 8.5), so the desired equivalence follows from
Theorem 5.8.

(111) Apply Theorem 5.10.

Remark 6.5. In [10], Theorem 5.3, M. Henriksen and M. Jerison proved
that C(X) is Dedekind o-complete if and only if #, and & = BX are
homeomorphic via the mapping which assigns to every minimal prime ring
ideal the unique maximal ring ideal in which it is contained. In statement
(ii1) of the above theorem such a mapping is not specified.
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Finally, we apply the results on the order completion of Section 4 to L
= C(X). It follows from Theorem 4.4 that the order completion of C(X)
can be represented as an ideal in the space C*°(K(X) ) of all extended real
valued continuous functions on K(X). In particular, the order completion
of Cp(X)is C(K(X) ) (cf.[7], Theorem 3.9 (b) ). Now we shall indicate how
the realization of the order completion of C(X) as the space C*[%3(BX) |
can be deduced from the representation of the order completion of C(X)
as an ideal in C*°(_%) (for notations, see [7], Section 2). To this end, take /
€ C[¢(X) ], ie,S € €X)and f € C(S). There exists a weak order unit
0 = u € C(X) such that S = coz(u) and, as observed before, a
homeomorphism A,:2" — BS. The function f has a Stone extension Bf:8S
— R, so we can define the continuous function (8f),:2% — R*™ by

(Bf)u = Bfo >\u'
Now define "\f: g, — R by
/\f‘ = (Bf)u O Ty-

It is routine to prove that ”\f is independent of the choice of the
representative and the choice of the weak order unit u. Moreover, "'/ €
C*(%). The mapping

O:CIE(X) ] = CP(A)

defined by ®(f) = "\fis an injective algebra and Riesz homomorphism
which extends the Johnson-Kist representation of C(X) in C*(%). Note
that the image "C[%(X) ] of C[%(X) ] under the mapping ® separates the
points of #,. Since C[%(X)] can clearly be identified with C[%(BX) ], it
follows from [7], Proposition 3.4, that C[%(X)] is an e-uniformly dense
Riesz subspace of C[%;(BX)]. Hence, ® can be uniquely extended to an
injective algebra and Riesz homomorphism

O:C[B(BX) ] — C=(A),
the image of C[%(BX)] denoted by "C[%(BX)] again. Using that
AC[%(BX) ] is a uniformly complete, point separating Riesz subspace of
C(#). and that every weak order unit in C[%5(8X) ] has an inverse, it is
not hard to show that

PCIEBX) ] = CUAD.

Applying Theorem 4.4, it follows immediately that the order ideal
CT[65(BX) ] generated by C(X) in C[%(BX) ] is the order completion of
C(X). Hence, Theorem 4.4 can properly be considered as a generalization
of [7], Theorem 2.1.
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