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MAXIMAL d-IDEALS IN A RIESZ SPACE 

CHARLES B. HUIJSMANS AND BEN DE PAGTER 

1. Introduction. We recall that the ideal / in an Archimedean Riesz 
space L is called a d-ideal whenever it follows f rom/ e / that {/} c /. 
Several authors (see [4], [5], [6], [12], [13], [15] and [18] ) have considered 
the class of all d-ideals in L, but the s e t ^ of all maximal d-ideals in L has 
not been studied in detail in the literature. In [12] and [13] the present 
authors paid some attention to certain aspects of the theory of maximal 
d-ideals, however neglecting the fact t h a t ^ , equipped with its hull-kernel 
topology, is a structure space of the underlying Riesz space L. 

The main purpose of the present paper is to investigate the topological 
properties o f ^ and to compare^ to other structure spaces of L, such as 
the space Jt of minimal prime ideals and the space Qe of all ^-maximal 
ideals in L (where e > 0 is a weak order unit). This study of^ makes it for 
instance possible to place some recent results of F. K. Dashiell, A. W. 
Hager and M. Henriksen [7], concerning the order completion of C(X) in 
the general setting of Riesz spaces. 

After establishing some preliminary results in Section 2, it is proved in 
Section 3 that for any uniformly complete Riesz space L with weak order 
unit the spaced is a compact quasi-F-space. This result makes it possible 
to u s e ^ for the description of the order completion of L, which is done in 
Section 4. Furthermore we consider what conditions have to be imposed 
on L in order t h a t ^ is an F-space, basically disconnected or extremally 
disconnected respectively. In Section 5 it is investigated what effect 
certain homeomorphisms between^, Jt9 and £e have on L. 

Finally in Section 6, we interpret some of the results in the case that L is 
the Riesz space C(X). It turns out that ^ is precisely the minimal 
quasi-F-cover K(X) of X, as introduced in [7]. We can apply therefore the 
results of Sections 4 and 5 to the space K(X). Moreover, it is shown that 
the representation of the order completion of L which we have obtained in 
Section 4 is in the case L = C(X) precisely the realization of the order 
completion as obtained in [7]. 
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2. Sème preliminary results. All Riesz spaces considered in this paper 
are supposed to be Archimedean. For the terminology and unproved 
properties of Riesz spaces we refer to [16]. Throughout this paper 
relatively uniformly complete (closed) is called uniformly complete 
(closed). 

Let L be an Archimedean Riesz space. 

Definition 2.1 (see [12], Section 4). The ideal / in L is called a d-ideal if it 
follows f rom/ e / that {f}dd c /. 

It is immediate from the definition that the ideal / is a d-ideal if and 
only i f / G / , g G L and {f}dd = {g}dd imply g e l . All er-ideals in L (and 
hence all bands) are d-ideals. Moreover, every minimal prime ideal is a 
d-ideal. For any non-empty subset D of L, the d-ideal E(D) generated by 
D is the intersection of all d-ideals containing D. The proof of the next 
lemma is routine. 

LEMMA 2.2. 

E(D) = {/ e L3d{, dn e D such that 

/ e {|ddV...V|d,?/|}^}. 

In particular, every principal d-ideal is of the form {/} . 

The proper d-ideal J in L is called a maximal d-ideal if L is the only 
d-ideal in which J is properly contained. We denote the set of all maximal 
d-ideals b y ^ . Every maximal d-ideal is a (proper) prime ideal (see [12], 
Section 6). If L has in addition a weak order unit e > 0, then, by a Zorn 
argument, every proper d-ideal is contained in some maximal d-ideal. 

We é q u i p a with its hull-kernel topology by choosing as a base for the 
open sets all subsets of the form {J}u = {J G Jd\u & J} with 0 ^ u G L 
( [16], Section 36). The closed sets in this topology are precisely the hulls 
of subsets of L, i.e., sets of the form h(D) = [J e fd\D c / } . Clearly, we 
can replace D in this formula by the d-ideal E(D) generated by D. From 
the next proposition it follows thâtjy is a structure space of L. 

PROPOSITION 2.3. Let L be an Archimedean Riesz space with weak order 
unit e > 0. 

(i)c^ ^ a compact Hausdorff space. 
(ii) n {JJ e ^ } = {0}. 

Proof, (i) This is similar to the proof of [16], Theorem 36.4. 
(ii) For any 0 < u e L there exists n G N such that (nu — e)+ > 0. 
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Since 

(nu - e)+ £ I = {(nu - e)~}dd, 

the ideal / is, as a proper d-ideal, contained in some maximal d-ideal J. We 
claim that u & J. Indeed, u ^ J would imply that (nu — e ) + e J. 
Combined with (nu — e)~ <E J this would result in e e / , a 
contradiction. 

For future purposes we collect finally some simple properties of 
maximal d-ideals. The proof is omitted. 

PROPOSITION 2.4. In any Archimedean Riesz space L with a weak order 
unit e > 0 the following statements hold. 

(i) {u}dd = n {J <=fd:u G J} for allO ^ u e L. 
(ii) {J}u c {̂ }v if and only if {u}dd c {v}^(0 ^ M, v G L). 

In [13], Remark 7.6 (iii) it is observed that in any Archimedean Riesz 
space with a weak order unit every a-ideal is an intersection of maximal 
d-ideals, so Proposition 2.4 (i) is a special case of the former result. 

3. The quasi-F-space ^ . The main purpose of this section is to prove 
that for any uniformly complete Archimedean Riesz space L with a weak 
order unit the spaced is a quasi-F-space. 

We recall that a completely regular Hausdorff space X is said to be a 
quasi-F-space whenever every bounded continuous function on a dense 
cozero-set has a continuous extension to the whole of X, i.e., every dense 
cozero-set in X is Q-embedded. Quasi-F-spaces were orginally defined in 
[7], Definition 3.6. The following lemma gives a simple characterization of 
quasi-F-spaces. 

LEMMA 3.1 ( [18], Lemma 11.9). Let X be a completely regular Hausdorff 
space. The following are equivalent. 

(i) X is a quasi-F-space. 
(ii) For any two zero-sets Z\ and Z2 in X with disjoint interiors, the sets 

int Z\ and int Z^ are completely separated by a continuous function. 

The next theorem gives more information about the topological 
structure of^. 

THEOREM 3.2. Let L be an Archimedean uniformly complete Riesz space 
with weak order unit e > 0. Then the space J^ is a quasi-F-space. 

Proof. We use the criterion of Lemma 3.1, so suppose that Z\ and Z2 are 
zero-sets i n ^ such that 
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(int Zj) n (int Z2) = 0. 

Following [22], Lemma 6.2, there exist 0 ^ i/,7 G L, 0 ^ vw e L (n = 1, 
2, . . . ) such that 

OO CO 

Zj = n {/}„, Z. = n L / } v . 

Since Z! and Z2 are closed, Zj = h(I\) and Z2 = h(I2) for appropriate 
d-ideals ^ and I2 in L. From h(I\) c {/}Mn it follows that £ ( / j , ww) = 
L (n = 1, 2, . . . ). There exists, therefore, an element 0 ^ wn <E J^ such 
that e <E {w„ V w,?}'/J (see Lemma 2.2), i.e., un V wn is a weak order unit. 
Without loss of generality we may assume 0 < wn = e (n = \, 2, . . .). 
Analogously, there exist elements zn E 72, 0 = zn ~ e such that v„ V zn are 
weak order units in L ( « = 1 , 2 , . . . ) . 

Now define 

CO CO 

P = 2 2 - W H V <? = 2 2-»z„ 
/I = 1 /7 = 1 

(^-uniformly convergent series). Clearly p e I\ and g G I2 . We assert 
that/? V g is a weak order unit in L. To this end, take 0 ^ y e L such that 
j A (/? V </) = 0. It follows that 

y A w„ = y A zn = 0 (w = 1 ,2 , . . . ) . 

Since un V H>„ is a weak order unit we have y e. {W„ V wn}
dd- Hence, 

y A { * ( « B V H ' H ) } TA >% 

so 

J> A (k Un) TA- V 

which implies>> e {w,7}
tW. By Proposition 2.4 (ii), {/}v c {J}Ufi. Similarly, 

it is shown that {J}y c {</}v,;. It follows easily that 

{J}v c int (Z0 n int (Z2), 

so {/} r = 0, i.e., y = 0 (Proposition 2.3 (ii) ). Therefore/? V g is a weak 
order unit. 

Now it follows that the sets G\ = h(p) and <72 = h{q) are disjoint 
closed sets in #d. We claim that int Z\ c G\. In order to prove this 
inclusion, take/o e int Z\. There exists 0 < z e L such that70

 G {^}z c 

Zj = h(I\). For any 0 ^ x e /] and any i G / ^ we have z A x <E J. 
Indeed, if / e {/}z, then x e / , c J implies z A x e 7. On the other 
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hand, if / £ {J}z then z G / and soz A i G / . B y Proposition 2.3 (ii), z 
A x = 0. This holds for all 0 ^ x G 7 b thus z G / J . Since p G / , we 
derive z A p = 0. Therefore, z £ / 0 implies/? G / 0 , i.e., /Q G M/7) = ^ i -
The inclusion int Z\ c Gi has been proved. In like manner int Z2 c 
G2. 

The spaced , being Hausdorff and compact, is a normal topological 
space, so, by Urysohn's lemma, G\ and G2 are completely separated. 
Hence the sets int Z\ and int Z2 are completely separated as well and the 
proof is complete. 

As is well known, any continuous mapping/from a topological space X 
into the extended real number system R°° is called an extended continuous 
function on Xii the set {x G X: \f(x) \ < oo} is dense in X. The set of all 
such functions is denoted by C°°(X). With respect to pointwise operations 
C°°(X) is a lattice, but in general not an algebra. In [11], Proposition 2.2, 
M. Henriksen and D. G. Johnson proved that in case I is a compact 
topological space, C°°(X) is an algebra if and only if each open dense 
ivse t is Q,-embedded. Hence if X is a compact quasi-F-space, then 
C°°(X) is a uniformly complete/-algebra. In fact, C°°(X) is even order 
complete in this case. We recall the definition. 

Definition 3.3. The Archimedean Riesz space L is called order complete 
(also order Cauchy complete) whenever every order Cauchy sequence 
[fn}n=\ i n L (i-e-> a sequence for which there existpn I 0 with \fn — fn + k\ 
~ pn for all n, k) has an order limit/(i.e., \fn — f\ = pn for all n, which is 
denoted by/„ - > / ) . 

Papangelou's criterion ( [19], Lemma 2.1) states that L is order complete 
if and only if for all sequences {fn}^=\ and {gn}^L\ for which fn î ^ 
gn I and inf (gn ~ fn) = 0, there exists h G L such that/,, ^ h ^ gn for all 
n. Evidently,/j f h and gn I h in this case. Note that any order complete 
Riesz space is uniformly complete. For any completely regular Hausdorff 
space X the Riesz space C(X) is order complete if and only if X is a 
quasi-i7-space ( [7], Theorem 3.7; for a different proof see [18], Theorem 
11.8). 

Using the above mentioned criterion and the fact that C(X) is order 
complete whenever X is a quasi-77-space, the next theorem follows 
easily. 

THEOREM 3.4. For any compact quasi-F-space X, the f-algebra C°°(X) is 
order complete. 

Applying this result t o ^ we get the following. 
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COROLLARY 3.5. For any Archimedean uniformly complete Riesz space L 
with a weak order unit C°°(^) is an order complete f-algebra with unit 
element. 

Remark 3.6. The Riesz space L is said to have the a-order continuity 
property (a-o.c.p.) whenever every positive linear mapping from L into an 
arbitrary Archimedean Riesz space is a-order continuous (the a-o.c.p. has 
been introduced, under a different name, by C. T. Tucker in [23] ). It is 
proved in [8], Theorem 1.3 A that L has the a-o.c.p. if and only if every 
uniformly closed ideal in L is a a-ideal. Moreover, every uniformly 
complete Riesz space with the a-o.c.p. is order complete (see [18], 
Corollary 11.5). It can be shown that C°°(X) has the a-o.c.p. for every 
compact quasi-i7-space X. Since the proof is beyond the scope of the 
paper, we omit it. 

4. The order completion of Archimedean Riesz spaces. Let L be an 
Archimedean uniformly complete Riesz space with weak order unit e > 0. 
Since J^ is a structure space of L, we can consider the Johnson-Kist 
representation of L in C°°(Jy), i.e., L is Riesz isomorphic to some Riesz 
subspace AL of the order complete Riesz space C°°(^). In addition, Ae(J) 
= 1 for a l l / e ^ ( s e e e.g. [16], Section 44). Let L# be the ideal generated 
by AL in C°°(^), i.e., 

L# = {g e C°°(fd): \g\ ^ \Af\ for some / e L}. 

The main purpose of this section is to show that L# is a realization of the 
order completion of L. We recall the definition. 

Definition 4.1. Let L be an Archimedean Riesz space. The order 
complete Riesz space K is called an order completion of L if 

(i) L is Riesz isomorphic to a Riesz subspace L of K, 
(ii) for every/ e K there exist sequences {gn}T=\ and {hn}^L\ in L 

such that gn t / a n d hn [f 

In the following we identify L and L, so we embed L as a Riesz 
subspace in K. It follows immediately from (ii) that L is order dense in K, 
i.e., for every 0 < u e K there exists 0 < v e L such that v ^ u. This 
implies among other things that for any sequence {/„}^=i in L satisfy
ing fn I 0 in L we also have/j | 0 in K. Two order completions of L are 
Riesz isomorphic via a Riesz isomorphism which is the identity on L. 
Hence, it is justified to refer to K as "the" order completion of L. The 
order completion of L exists. Indeed, let LA be the Dedekind completion 
of L and define 
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{fA
 G LA:3 {hn}„ = ] in L and vn [ 0 in L 

b 

{ & , } " , in L such tha t / , î / A , g, j / A } , 

such that \fA - hn\ ^ v,„ * G N} = {fA G L A : 3 {/w}~ 

as introduced by J. Quinn ( [20], Section 3). In Theorem 4.1 (i) of the same 
paper it is shown that LG is the order completion of L. For any non-empty 
subset D of La we shall denote the double disjoint complement in La by 
j)dd{L„)^ j n o r ( j e r t o avoid confusion we denote momentarily the space of 
all maximal d-ideals in L and La by #d(L) and^/(La) respectively. 

LEMMA 4.2. For any Archimedean uniformly complete Riesz space L with 
weak order unit e > 0 the spaces ̂ (L) and^(La) are homeomorphic. 

Proof. For any / G ̂ ( L ) , let Ja be the d-ideal generated by J in La, 
i.e., 

Ja = {fA e L03 g^J such t ha t / A G {g}ddiU}. 

We have [h}dd(La) n L = {h}dd, as L is order dense in La, and hence Ja n 
L = J. We claim that JG is a maximal d-ideal in La. To this end let N be a 
proper d-ideal in L containing Ja. Obviously, N n L is a d-ideal in L not 
containing <?, so./ = TV n L. Take any 0 = / A e iV. There exist w„ G L(« 
= 1 ,2 , . . . ) and v <= L such that 0 ^ w„ î / A ë v. Obviously 

oo 

w = 2 2~nun 

(v-uniformly convergent series in L) is an element of / . Since fA G 
{u}dd(La) we ge t / A

 G / a . This shows that N = Ja and thus Ja G ^ ( L C T ) . 

The mapping a\#d(L) -^fd(L0) defined by a(J) = Ja is a bijection. For 
any 0 ^ gA G La there exist wn G L(W = 1 ,2 , . . . ) and z G L such that 0 
— ̂  T gA = z- Using Proposition 2.4 (ii), it is not hard to show that the 
element 

oo 

w = 2 2-"wn 

(z-uniformly convergent series in L) satisfies a _ 1 ( {Ja}g ) = {J}w Hence 
a is continuous. Since both #d(L) and /d(La) are compact Hausdorff 
spaces, a is a homeomorphism. 

We now consider the Johnson-Kist representation ALa of La in 
C°°(^/(La) ). In the next lemma we show that the Riesz subspace AL0 of 
C°°(fd{La) ) is even an ideal. 
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LEMMA 4.3 (compare [3], Proposition 2.8.). La is an ideal in 
C°°tfc(La) ). 

Proof. Observe first that ALC separates the points of^(L a) . Indeed, take 
Ja, J'0 G J^(La) with Ja ¥= J'a . Since La is order complete, the sum of two 
d-ideals in La is again a d-ideal (see [18], Theorem 11.2), so JG -f J'a = La. 
Hence, e = f + / ' with 0 ^ / G J o , 0 ^ / ' e / ; . Now Af(Ja) = 0 implies 
A(f')(Jo) = 1. On the other hand, A(f')(J'a) = 0, so A(f) separates Ja 

and J'a. 
Consider the uniformly closed Riesz subspace 

AKb = {A/ e ALO- \Af\ = n Ae for some n G N} 

of C(^(L a ) ). Since La/? separates the points, the Stone-Weierstrass 
theorem yields 

AA,,/, = C(^/(La) ). 

In order to prove that ALa is an ideal, it suffices to show that 0 = g = 
A/, Af G AL a , g G C°°(fj(L0) ) implies g G AL a . For this purpose note 
that 

0 ^ g - g A(n Ae) S A
M/Ï 

with 

Ai/„ = A / - ( A / ) A(nAe) (n = 1 ,2 , . . . ) 

and that Aw„ j 0 in L0. By the above g A (n Ae) G ALa h. For m ^ n we 
have 

0 ^ g A (m Aé>) - g A (/z V) ^ 2 At/,7 

and hence {g A (n Ae) }^L, is an order Cauchy sequence in AL0 . There 
exists Ah G ALa such that 

g A (n Ae) -> A/7 in AL a , 

as La is order complete. Observing that AL0 is order dense in C°°(^(La) ), 
it follows readily that 

gA(nAe)-*Ah mC°°(fcl(Lo)) 

as well. Uniqueness of order limits implies g = A/z, hence g G AL a . 

As before, L is an Archimedean uniformly complete Riesz space with 
weak order unit e > 0. Consider the Johnson-Kist representation ALa of 
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LG in C°°(^(La) ). By identifying ^ ( L ) and ^(L f f) via the homeomor-
phism a of Lemma 4.2, we may consider ALa as an ideal of C^iJyiL) ). 
For a l l / e L and / G ^ ( L ) we have (fie - f)+ e / whenever (/te - / ) + 

e J a = «(/) . Hence 

A / ( / ) = sup {0:08e - / ) + e / } = sup {/?:(/te - / ) + e J a} 

= A / ( ^ ) -

It follows that the representation of L, induced by the Johnson-Kist 
representation ALa of La (regarded as an ideal in (C°°(Jy(L) ) ) 
is precisely the Johnson-Kist representation A L of L in C°°(J?/(L) ). 
Clearly, Lemma 4.3 implies that the ideal L# generated by A L in 
C°°(^(L) ) is equal to A L a . We summarize the results. 

THEOREM 4.4. Let L be an Archimedean uniformly complete Riesz space 
with weak order unit e > 0. Then the order ideal L # generated by the 
Johnson-Kist representation AL ofL in C°°(^) is the order completion of L. 
In particular, the order completion of the principal ideal Ie generated by e is 
C(Jj). 

This theorem can be compared with the result that the ideal generated 
by the Ogasawara-Maeda representation of L in C°°(S2) ( [16], Sections 49 
and 50) is the Dedekind completion L A of L. 

We proceed by investigating the effect upon the Riesz space L if we 
impose some topological conditions on fld. Recall that the completely 
regular Hausdorff space X is called an F-space whenever every cozero-set 
is Q-embedded, equivalently, whenever any two disjoint cozero-sets in X 
are completely separated (see [9], Theorem 14.25). The Archimedean Riesz 
space L is said to have the a-interpolation property (a-i.p.) if it follows 
from/w Î ^ gn I in L that there exists h <E L such that/^ ^ h ^ gn (n = 
1, 2, . . . ). It is shown in [13], Theorem 10.5 (see also [21], Theorem 1.1) 
that C(X) has the a-i.p. if and only if X is an .F-space. 

Definition 4.5. The Archimedean Riesz space L is said to have almost 
property (P) if La has property (P). 

Almost Dedekind complete Riesz spaces were introduced in [20], and 
the almost Dedekind a-complete Riesz spaces in [1] and [20]. Characteri
zations of the almost a-i.p. can be found in [18]. Another equivalence is 
stated in the next theorem. 

THEOREM 4.6. Let L be an Archimedean uniformly complete Riesz space 
with a weak order unit e > 0. Then L has the almost a-i.p. if and only if^ is 
an F-space. 
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Proof. If L has the almost a-i.p., then L# (see Theorem 4.4) has the 
a-i.p., hence C ( ^ ) , being an ideal in L # , has the a-i.p. Therefore^ is an 
F- space. 

Conversely, suppose that C ( ^ ) has the a-i.p. A standard argument 
shows that C°°(^) has the a-i.p. as well, and so L # has the a-i.p. 
Therefore L has the almost a-i.p. 

As is well known, the completely regular Hausdorff space X is basically 
disconnected if and only if C(X) is Dedekind a-complete. Moreover, X is 
extremally disconnected if and only if C(X) is Dedekind complete. Using 
these facts, the proof of the next theorem goes along the same lines as the 
proof of the previous theorem. 

THEOREM 4.7. Let L be an Archimedean uniformly complete Riesz space 
with a weak order unit. 

(l)Jd is basically disconnected if and only if L is almost Dedekind 
o-complete. 

( i i ) ^ is extremally disconnected if and only if L is almost Dedekind 
complete (equivaiently\ LA = La). 

Characterizations of almost Dedekind a-completeness can be found in 
[1], [8] and [20]. We mention one important criterion. Recall that an 
Archimedean Riesz space L is said to be J-regular (see [13], Definition 9.1) 
whenever every proper prime ideal which is a d-ideal as well is a minimal 
prime ideal. Note that if L has, in addition, a weak order unit, then L is 
d-regular if and only if the sets of maximal d-ideals and minimal prime 
ideals coincide. A combination of [17], Theorem 7 and [13], Remark 9.6 
yields the following theorem. 

THEOREM 4.8. The Archimedean uniformly complete Riesz space L is 
almost Dedekind o-complete if and only if L is d-regular. 

Characterizations of almost Dedekind completeness do not seem to 
occur in the literature. (According to Math. Rev. 81m:06041, the result of 
our Theorem 4.11 also appears in the paper 'Conditions for coincidence of 
the A^-completion of an Archimedean /-group with its o-completion' by 
A. V. Koldunov, in Modern Algebra, pp. 50-57, Leningrad. Gos. Ped. 
Inst., Leningrad, 1980 (Russian).) In order to prove such a criterion, we 
first collect some facts on the set Jt of all minimal prime ideals in an 
Archimedean Riesz space L. The set Jt, equipped with its hull-kernel 
topology, is a Hausdorff space and a structure space of L. For future 
references we list some properties equivalent to the compactness of Jt (for 
the proof we refer to [16], Theorem 37.4 and [13], Remark 9.6 and 
Theorem 9.8 (i) ). 
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PROPOSITION 4.9. In an Archimedean Riesz space the following statements 
are equivalent. 

(i) Jt is compact. 
(ii) L is d-regular and has a weak order unit. 

( i i i ) ^ = Jt and L has a weak order unit. 
(iv) For every 0 = u e L there exists 0 = v e L such that {u} = 

The proof of the next proposition is a duplicate of the corresponding 
proof of a theorem by T. P. Speed on distributive lattices (see [22], 
Corollary 6.6 and also [10], Theorem 4.4). 

PROPOSITION 4.10. For any Archimedean Riesz space L the following are 
equivalent. 

(i) Jt is compact and extremally disconnected. 
(ii) For any non-empty D c L there exists 0 = v e L such that D = 

{v} (equivalently, every band in L is principal). 

We are now able to prove the following result on almost Dedekind 
completeness. 

THEOREM 4.11. Let L he an Archimedean uniformly complete Riesz space 
with a weak order unit. Then L is almost Dedekind complete if and only if 
every band in L is principal. 

Proof. First assume that L is almost Dedekind complete. By Theorem 
4.7 (ii),^/ is extremally disconnected. By Theorem 4.8, L is d-regular and 
s o fd = «^ Hence, Jt is compact and extremally disconnected, and 
therefore, by Proposition 4.10, every band in L is principal. 

Conversely, suppose that every band in L is principal. Using Speed's 
result, Jt is compact and extremally disconnected. It follows from 
Proposition 4.9 that Jt = Jd and therefore^ is extremally disconnected. 
Hence, by Theorem 4.8 (ii), L is almost Dedekind complete. 

5. Some homeomorphism problems. Throughout this section L denotes 
an Archimedean Riesz space with weak order unit e > 0. It is common 
knowledge that the compact Hausdorff space Ste of all e-maximal ideals 
(equipped with its hull-kernel topology) is a structure space of L ( [16], 
Theorem 36.4). The main object of the present section is to investigate 
what consequences homeomorphisms between^, Jt and £e have for L. 

First of all we compare Jj and Jt. Since a minimal prime ideal is a 
proper d-ideal, any such ideal M is contained in a unique maximal <i-ideal 
T(M) . Clearly this mapping T.Jt-*#d is surjective. Similarly to the proof 
of [13], Lemma 8.1, it can be shown that r is continuous. Moreover, T is 
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injective (and hence bijective) if and only if every maximal d-ideal 
contains a unique minimal prime ideal. Since L has a weak order unit, it 
follows from [18], Theorem 12.9, that in the case L is uniformly complete 
the latter property is equivalent to the almost a-i.p. Combining these 
observations with Theorem 4.6 we have proved the next proposition. 

PROPOSITION 5.1. Let L be an Archimedean uniformly complete Riesz 
space with a weak order unit. The following are equivalent. 

(i) r is injective. 
(ii) L has the almost a-i.p. 

( i i i ) ^ is an F-space. 

The question when r is a homeomorphism gets a complete answer in the 
next theorem. 

THEOREM 5.2. Let L be an Archimedean uniformly complete Riesz space 
with a weak order unit. The following are equivalent. 

(i) T is a homeomorphism. 
(ii) Jt andjj are homeomorphic. 
(m)Jt=fd. 
(iv) L is almost Dedekind o-complete. 

Proof First of all, the equivalence of (iii) and (iv) follows from a 
combination of Theorem 4.8 and Proposition 4.9. Assuming (ii), Jt is 
compact and hence, by Proposition 4.9, Jt = J^. The remaining 
implications are evident. 

The second homeomorphism problem we shall treat in this section is the 
homeomorphism of^ andi?e. For every / e fd there exists a unique Q e 
J2e such that J a Q. This defines a mapping fne\f(i —» £e which is 
continuous (the proof is similar to the proof of [13], Lemma 8.1). 
Furthermore, ire is surjective. Indeed, if Q e £c\ then Q contains a 
minimal prime ideal M which is, as a proper J-ideal, contained in some 
maximal d-ideal / . But / and Q are comparable, so e £ J implies J c Q 
and hence ire{J) = Q. In general, me is not injective. The next theorem 
gives some criterions for the injectiveness of me. 

THEOREM 5.3. Let L be an Archimedean uniformly complete Riesz space 
with weak order unit e > 0. The following are equivalent. 

(i) 7Te is injective (equivalently, 7Te is a homeomorphism). 
( i i ) ^ and Qe are homeomorphic. 

(iii) The principal ideal le generated by e is order complete. 

Proof, (i) => (ii). This is evident. 
(ii) =̂> (iii). Denote the space of all maximal ideals in Ie by f{le). The 
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mapping y:Me ->f(Ie) defined by y(Q) = Q n Ie is a homeomorphism. It 
follows from the hypothesis that ^ and J(Ie) are homeomorphic, and 
hence, by Theorem 3.2, «/(/«,) *s a quasi-F-space, so C(f(Ie) ) is order 
complete. An application of Yosida's representation theorem ( [16], 
Theorem 45.4) yields that Ie is order complete. 

(iii) => (i). Suppose that there exist J\,Ji^fd^\^^2 W l t n J\ c Q a n d 
«̂ 2 c Q f° r some g e J e . Since £(Jj 4- J{) = L, there exist, by Lemma 
2.2, 0 ^ p <E Jj and O l ^ e J2 such that /? + q is a weak order unit. 
Observe that 

e e 4 n {/? -f 4 } ^ - / , H { (/? + q) A e } J J 

c Ie n(p A e + q A e}dd = {p A e + q A e}dd{1*\ 

Since Ie is order complete, the sum of two principal bands in Ie is again 
principal ([18], Theorem 11.2). Hence 

e^{pAe + qA e}dd(I^ = {p A e}
dd{1^ + {q A e)dd(f^ 

C {p}dd + {q}dd c / ! +J2 C Q, 

a contradiction. Therefore 77£ is injective. 

Unfortunately, it is in general not true that in the above situation order 
completeness of Ie implies order completeness of L, even though Ie is 
order dense. We present a counterexample. 

Example 5.4. Let F - \-.n = 1, 2, . . . J and X = Y U {0} both 

equipped with the relative Euclidean topology. Then X is a compact 
Hausdorff space, whereas Y is discrete. The function e in C(X) defined by 
e(x) = x is a weak order unit in C(X). The set 7, being the cozero-set of e, 
is dense. Clearly, 7 is not Q-embedded in X, and so X is not a 
quasi-F-space, i.e., C(JQ is not order complete. However, Ie is even 
Dedekind complete, as Ie is Riesz isomorphic to l^ 

Remark 5.5. (i) In contrast to order completeness, ^-regularity does 
carry over from an order dense principal ideal Ie to L (use the equivalence 
of (ii) and (iv) of Proposition 4.9). Hence, if L is in addition uniformly 
complete, then L is almost Dedekind a-complete if and only if Ie is almost 
Dedekind a-complete. (ii) Clearly, L is order complete if and only if Ie is 
order complete for all weak order units 0 < e e L. Therefore, if L is in 
addition uniformly complete, then L is order complete if and only if one of 
the conditions (i), (ii) of Theorem 5.3 holds for all weak order units 
simultaneously. 
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The question remains whether it is possible to impose on a single weak 
order unit 0 < e e L such an extra condition that order completeness of 
Ie does result in order completeness of L. To this end we introduce the 
notion of a near order unit. 

Definition 5.6 ( [13], Definition 7.1). The element 0 < e e L is called a 
near order unit if Ie = L (where Ie denotes the closure of Ie in the 
uniform topology). 

Since every band is uniformly closed, each near order unit is a weak 
order unit. Near order units do occur 'in nature": 

(i) every strong order unit is a near order unit, 
(ii) a multiplicative unit e of an Archimedean /-algebra A is a near 

order unit ( [14], Proposition 3.2 (i) ). This holds in particular for A 
= C(X) and e(x) = 1 for all x e Xy 

(hi) every quasi-interior point in a Banach lattice is a near order unit. 

PROPOSITION 5.7. Let L he an Archimedean uniformly complete Riesz 
space with near order unit e > 0. Then L is order complete if and only if Ie is 
order complete. 

Proof. Suppose that Ie is order complete. By [13], Theorem 8.9, Ie and Iu 

are Riesz isomorphic for any near order unit 0 < u e L. Therefore Iu is 
order complete for all near order units 0 < u e L, and so L is order 
complete as well. The converse being trivial, we are done. 

Combining Theorem 5.3 and Proposition 5.7, the following result is 
immediate. 

THEOREM 5.8. Let L be an Archimedean uniformly complete Riesz space 
with near order unit e > 0. The Jollowing are equivalent. 

(i) ire is a homeomorphism. 
(ii)J[i and J2e are homeomorphic. 

(iii) L is order complete. 

The final homeomorphism problem to be considered is the homeomor
phism between Jt and £le. For every M e J( there exists a unique Q G J2e 

such that M c Q. As in the previous cases, the mapping oe\Jt —> =0̂ , 
assigning Q to M, is continuous and surjective. Obviously oe = ireo T. The 
question under what conditions oc is a homeomorphism has been studied 
before in the literature. The fact that the principal projection property in 
L implies that oe is a homeomorphism goes back to I. Amemiya ( [2], 
Theorem 6.4 or [16], Corollary 37.12). 
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Suppose now that L is in addition uniformly complete. Evidently, oe is 
injective if and only if me and T are both injective. By Proposition 5.1, 
T is injective if and only if L has the almost or-i.p. If e is, in addition, a near 
order unit, then ire is injective if and only if L is order complete (Theorem 
5.8). It is proved in [18], Corollary 12.6 that L has the a-i.p. if and only if L 
has the almost a-i.p. and L is order complete. We thus have proved the 
following result. 

PROPOSITION 5.9. Let L be an Archimedean uniformly complete Riesz 
space with a near order unit e > 0. Then oe is injective if and only ifL has the 
a-i.p. 

From this proposition the next theorem is easily deduced. 

THEOREM 5.10. For L as in Proposition 5.9. the following are 
equivalent. 

(i) oe is a homeomorphism. 
(ii) Ji and J2e are homeomorphic. 

(iii) L is Dedekind o-complete. 

Proof (i) => (ii). This is trivial. 
(ii) =» (iii). Since Jt and 2Le are homeomorphic, Jt is compact, so L is 

^-regular and Jt = ^d (Proposition 4.9). By Theorem 5.8, L is order 
complete. By [13], Theorem 9.16, order completeness together with 
^-regularity implies Dedekind a-completeness. 

(iii) => (i). Dedekind a-completeness implies ^-regularity, i.e., Ji = ^ , 
and so oe = ire. Moreover, from Dedekind a-completeness follows order 
completeness, hence ire is a homeomorphism by Theorem 5.8. 

Remark 5.11. Let L be an Archimedean uniformly complete Riesz space 
with merely a weak order unit e > 0. Using similar methods as in the 
proof of Theorem 5.3 and using Remark 5.5 (i) it can be shown that oe is a 
homeomorphism if and only if Ji and J e are homeomorphic, which 
property is in its turn equivalent to Dedekind a-completeness of Ie. Notice 
in this connection that in general Dedekind a-completeness of Ie does not 
carry over to L (see Example 5.4). 

We conclude this section with an application to/-algebras. Let A be an 
Archimedean uniformly complete /-algebra with multiplicative unit e 
(which is a near unit). Recall that every prime ring ideal in A is a prime 
(order) ideal (see e.g. [14], Corollary 4.8). We denote b y ^ the set of all 
maximal ring ideals in A and byJfr the set of all minimal prime ring ideals 
in A, both equipped with their hull-kernel topologies. The structure spaces 

& and^# r are both Hausdorff; moreover,^ is compact. It is shown in [5], 
Théorème 9.3.2 that^# r = Jt (cf. [13], Lemma 10.1). 
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Since every J e #r is a prime (order) ideal not containing e, there exists 
a unique Q e ge such that J a Q. The mapping p : ^ —» J e , defined by 
P(^) = Q 1S a homeomorphism. Applying Theorem 5.10 we get the 
following result. 

THEOREM 5.12. The spaces^and ^r are homeomorphic if and only if A is 
Dedekind o-complete. 

6. Applications to the Riesz space C(X). In the present section we shall 
interpret some of the preceding results in the case that L = C(X) for some 
completely regular Hausdorff space X. As observed before, the function e 
defined by e(x) = 1 for all x e X is a near order unit in C(X). 

In order to give a description of the space of maximal d-ideals of C(X) 
we need another characterization of^y for a Riesz space L with weak order 
unit. Let A denote the set of all weak order units in L. Obviously. A is a 
sublattice of the positive cone of L. As in Section 5, âu(u e A) denotes the 
space of all w-maximal ideals in L. If M, v E A and u ^ v, then any ^ e i " 
is contained in a unique Qf e i?v. This defines a continuous surjective 
mapping 7TU

v\â
u —> £v. Note that TTU

W = 77\v o 77" whenever u = v ^ w in 
A. Furthermore, for any u e A we have the continuous surjection 77w:^ —> 
i?M, as defined in Section 5. Obviously u = v in A implies TTY = 77 v o 77M. 
The next theorem shows t h a t ^ is a natural object for the spaces J2u(u e 
A). 

THEOREM 6 . 1 . ^ /s the projective limit of {£u:u e A} {with respect to the 
above introduced mappings). 

Proof. It suffices to show that for any topological space X with 
continuous mappings £U:X -* £u(u e A) satisfying 77" o |M = £v for w ̂  v 
in A, there exists a unique continuous mapping £:X —>J^ such that £w = 77 w 

o £ for all w G A. We denote £w(.x) by g" for all 1 E I and all u <E A. 
For any x E I the collection {Qu

x:u <= A} of proper prime ideals in L is 
linearly ordered by inclusion and therefore 

Jx = n {Qx:u e A} 

is a proper prime ideal in L. Since Jx does not contain weak order units of 
L it follows that Jx is contained in some maximal d-ideal J. We assert that 
/* = J. Indeed, if M is a minimal prime ideal contained in Jx then M c 
Qx for all 1/ G A. This implies that J c Qx for all u e A, as £)_" and J 
are comparable, and so Jx = J Œ £d. The mapping £:X —>^ defined by 
£(x) = JT clearly satisfies the requirements. 
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Now consider the case that L = C(X). We denote by ^(X) the 
collection of all dense cozero-sets in X. For any 0 ^ u e C(X) we have u 
G A if and only if the cozero-set coz(w) e %>(X). Take u e A and put S = 
coz(w). The mapping y\Iu —> C/,(S), defined by <p(/) = / i / - 1 on S is a 
Riesz isomorphism and hence <p induces a homeomorphism between the 
space fl(Iu) of maximal ideals in Iu and the Stone-Cech compactification 
fiS of S (see e.g. [13], Corollary 8.5). Since^/^) is homeomorphic with Jw, 
we thus get a homeomorphism Aw: J " —» /?£. Now suppose that u = v in A 
and put S = coz(w), T = coz(v). Then S c 7 and the embedding of S into 
/?T has a continuous Stone extension ?rT:fiS —> fiT (see [9], 6.5). Using the 
definition of Xu and Av, it is not hard to see that 

7TT = Av O 7TV O Au . 

The directed system {fiS.S G ^(X) } (with respect to the mappings 77r) 
has a projective limit K(X), which is also a compact Hausdorff space. The 
space K(X) is called the minimal quasi-.F-cover of X (see [7], Sections 3 
and 4). It follows from the above remarks and from Theorem 6.1 that 
K(X) is homeomorphic t o ^ . In particular it follows from Theorem 3.2 
that K(X) is a quasi-F-space. Applying the results of Section 4 we are now 
able to prove the next theorem. 

THEOREM 6.2. For a completely regular Hausdorff space X the following 
statements hold. 

(i) K(X) is an F-space if and only ifC(X) has the almost o-interpolation 
property (equivalently, for any two disjoint cozero-sets C\ and C^ in X 
there exist zero-sets Z} and Z2 such that C\ c Z\9 C^ c Z2 and int 
(Z, n z2) = 0). 

(ii) K(X) is basically disconnected if and only if C(X) is almost Dedekind 
o-complete (equivalently, for every cozero-set C in X there exists a 
zero-set Z such that C~ = (int Z)~). 

(iii) K(X) is extremally disconnected if and only if C(X) is almost 
Dedekind complete (equivalently, for every closed set F in X there 
exists a zero-set Z such that (int F)~~ = (int Z)"~). 

Proof, (i) The first equivalence follows from Theorem 4.6, the second 
one is proved in [18], Theorem 12.13. 

(ii) The first equivalence follows from Theorem 4.7 (i), the second one is 
proved in [13], Theorem 10.4 (i). 

(iii) The first equivalence follows from Theorem 4.7 (ii). Furthermore, 
by Theorem 4.11, C(X) is almost Dedekind complete if and only if every 
band in C(X) is principal. Any band in C(X) is of the form 
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{/ e C(A-):(int F)~ c Z(f) } 

for some closed set F in X, whereas any principal band in C(X) is of the 
form 

{ / e C(X): ( in tZ)- c Z(f) } 

for some zero-set Z in Jf (see e.g. [13], Section 10). The second equivalence 
is now immediate. 

Remark 6.3. In [7], Proposition 4.5, it is proved that K(X) is extremally 
disconnected if and only if C(X) is almost Dedekind complete. In 
Proposition 4.6 of the same paper it is shown that a sufficient condition 
for K(X) to be extremally disconnected, is that every dense open set in X 
contains a dense cozero-set. The latter condition, however, is not 
necessary. By way of example, let D be an uncountable discrete 
topological space and take X = fiD. In fact, it can be shown that for every 
compact Hausdorff space Y the condition that every open dense set 
contains a dense cozero-set is equivalent to the countable chain condition 
in y, i.e., to order separability of C(Y) ( [13], Theorem 10.3). 

Next we apply the results of Section 5 to L = C(X). 

THEOREM 6.4. For a completely regular Hausdorff space X the following 
statements hold. 

(i) Jt and K(X) are homeomorphic if and only if C{X) is almost 
Dedekind o-complete. 

(ii) K(X) and fiX are homeomorphic if and only ifC(X) is order complete 
(equivalently, X is a quasi-F-space). 

(\ï\) Jt and fiX are homeomorphic if and only if C(X) is Dedekind 
o-complete (equivaiently, X is basically disconnected). 

Proof, (i) Since K(X) is homeomorphic wi th^ , the result follows from 
Theorem 5.2. 

(ii) The space £le is a model for the Stone-Cech compactification fiX of 
X (see e.g. [13], Corollary 8.5), so the desired equivalence follows from 
Theorem 5.8. 

(iii) Apply Theorem 5.10. 

Remark 6.5. In [10], Theorem 5.3, M. Henriksen and M. Jerison proved 
that C(X) is Dedekind a-complete if and only if J(r and £ = fiX are 
homeomorphic via the mapping which assigns to every minimal prime ring 
ideal the unique maximal ring ideal in which it is contained. In statement 
(iii) of the above theorem such a mapping is not specified. 
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Finally, we apply the results on the order completion of Section 4 to L 
= C(X). It follows from Theorem 4.4 that the order completion of C(X) 
can be represented as an ideal in the space C°°(K(X) ) of all extended real 
valued continuous functions on K(X). In particular, the order completion 
of Ch(X) is C(K(X) ) (cf. [7], Theorem 3.9 (b) ). Now we shall indicate how 
the realization of the order completion of C(X) as the space C#[%(/3X) ] 
can be deduced from the representation of the order completion of C(X) 
as an ideal in C°°(^) (for notations, see [7], Section 2). To this end, t a k e / 
e CmX) ], i.e., S e <g(X) a n d / e C{S). There exists a weak order unit 
0 ^ u e C(X) such that S = coz(u) and, as observed before, a 
homeomorphism \U\QU —> ftS. The function/has a Stone extension fif:(3S 
—> R°°, so we can define the continuous function (Pf)u:£

u —> R°° by 

(Pf)u = J8/O \u. 

Now define Af:fd -* R°° by 

It is routine to prove that A / is independent of the choice of the 
representative and the choice of the weak order unit u. Moreover, A / G 
C°°(fd). The mapping 

<b:C[<g(X)\-+C°°<Jd) 

defined by 0 ( / ) = A / i s an injective algebra and Riesz homomorphism 
which extends the Johnson-Kist representation of C{X) in C°°(/d). Note 
that the image AC[tf(X) ] of C[^(X) ] under the mapping $ separates the 
points of^. Since C[<#(X)] can clearly be identified with C[tf(pX)], it 
follows from [7], Proposition 3.4, that C[^(X)] is an ^-uniformly dense 
Riesz subspace of C[%(/1X) ]. Hence, 0 can be uniquely extended to an 
injective algebra and Riesz homomorphism 

$ : C [ ^ ( j 8 ^ ) ] ~ > C ° ° ( ^ ) , 

the image of C[%(/3X)] denoted by AC[%((3X)] again. Using that 
AC[%(fiX) ] is a uniformly complete, point separating Riesz subspace of 
C°%^/), and that every weak order unit in C[%(fiX) ] has an inverse, it is 
not hard to show that 

AC[V8(PX)] = C°°(fj). 

Applying Theorem 4.4, it follows immediately that the order ideal 
C#[%(pX) ] generated by C(X) in C[%(/3X) ] is the order completion of 
C(X). Hence, Theorem 4.4 can properly be considered as a generalization 
of [7], Theorem 2.1. 
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